• DeLang, M. N., et al (2021). Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990-2017. Environmental Science and Technology, 55(8), 4389-4398. doi:10.1021/acs.est.0c07742.
  • Keller, C. A., et al. (2021). Description of the NASA GEOS composition forecast modeling system GEOS-CF v1.0. Journal of Advances in Modeling Earth Systems, 13, e2020MS002413. doi:10.1029/2020MS002413.

  • 2020

    • Strode, S.A., Wang, J.S., Manyin, M., Duncan, B., Hossaini, R., Keller, C.A., Michel, S.E. and White, J.W. (2020), Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine. Atmos. Chem. Phys., 20(14), 8405-8419, doi:10.5194/acp-20-8405-2020.
    • Gaudel, A., Cooper, O.R., Chang, K.L., Bourgeois, I., Ziemke, J.R., Strode, S.A., Oman, L.D., Sellitto, P., Nédélec, P., Blot, R. and Thouret, V. (2020), Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere. Science Advances, 6(34), p.eaba8272, doi:10.1126/sciadv.aba8272.
    • Kerr, G. H., Waugh, D. W., Steenrod, S. D., Strode, S. A., and Strahan, S.E. (2020). Surface ozone-meteorology relationships: Spatial variations and the role of the jet stream. Journal of Geophysical Research: Atmospheres, 125, e2020JD032735. doi:10.1029/2020JD032735.
    • Kuai, L. et al. (2020), Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites, Atmos. Chem. Phys., 20, 281-301, doi:10.5194/acp-20-281-2020.
    • Liu, F., Page, A., Strode, S.A., Yoshida, Y., Choi, S., Zheng, B., Lamsal, L.N., Li, C., Krotkov, N.A., Eskes, H. and Veefkind, P. (2020), Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Science Advances, 6(28), p.eabc2992, doi:10.1126/sciadv.abc2992.
    • Wang, J. S., Oda, T., Kawa, S. R., Strode, S. A., Baker, D. F., Ott, L. E., and S. Pawson (2020), The impacts of fossil fuel emission uncertainties and accounting for 3-D chemical CO2 production on inverse natural carbon flux estimates from satellite and in situ data, Environ. Res. Lett., 15, doi:10.1088/1748-9326/ab9795.
    • Zhao, Y. et al. (2020), On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget, Atmos. Chem. Phys., 20, 13011-13022, doi:10.5194/acp-20-13011-2020.

    • 2019

      • Strode, S.A., J.R. Ziemke, L.D. Oman, L.N. Lamsal, M.A. Olsen, J. Liu (2019), Global changes in the diurnal cycle of surface ozone, Atmos. Environ., 199, 323-333, doi:10.1016/j.atmosenv.2018.11.028.
      • Kerr, G. H., Waugh, D. W., Strode, S. A., Steenrod, S. D., Oman, L. D., Strahan, S.E. (2019). Disentangling the drivers of the summertime ozone-temperature relationship over the United States. J. Geophys. Res. Atmos., 124, 10503-10524. doi:10.1029/2019JD030572.
      • Zhao, Y. et al. (2019), Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000-2016 period, Atmos. Chem. Phys., 19, 13701-13723, doi:10.5194/acp-19-13701-2019.
      • Ziemke, J.R., L.D. Oman, S.A. Strode, A.R. Douglass, et al. (2019), Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation , Atmos. Chem. Phys., 19, 3257-3269, doi:10.5194/acp-19-3257-2019.

      • 2018

        • Strode, S. A., J. Liu, L. Lait, R. Commane, B. Daube, S. Wofsy, A. Conaty, P. Newman, and M. Prather (2018), Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling, Atmos. Chem. Phys., 18, 10955-10971, doi:10.5194/acp-18-10955-2018.
        • Hall, S.R. et al. (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys., 18, 16809–16828, doi:10.5194/acp-18-16809-2018.
        • Nicely, J.M., T.P. Canty, M. Manyin, L.D. Oman, R.J. Salawitch, S.D. Steenrod, S.E. Strahan and S.A. Strode (2018), Changes in global tropospheric OH expected as a result of climate change over the last several decades, Journal of Geophysical Research: Atmospheres, 123, 10,774–10,795, doi:10.1029/2018JD028388.
        • Prather, M.J., C.M. Flynn, X. Zhu, S.D. Steenrod, S.A. Strode, A.M. Fiore, G. Correa, L.T. Murray, and J.-F. Lamarque (2018), How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition, Atmos. Meas. Tech., 11, 2653-2668, doi:10.5194/amt-11-2653-2018.

        • 2017

          • Strode, S. A., A. R. Douglass, J. R. Ziemke, M. Manyin, J. E. Nielsen and L. D. Oman, L. D. (2017), A model and satellite-based analysis of the tropospheric ozone distribution in clear versus convectively cloudy conditions. Journal of Geophysical Research: Atmospheres, 122, doi:10.1002/2017JD27015.
          • Ziemke, J. R., S. A. Strode, A. R. Douglass, J. Joiner, A. Vasilkov, L. D. Oman, J. Liu, S. E. Strahan, P. K. Bhartia, and D. P. Haffner (2017), A cloud-ozone data product from Aura OMI and MLS satellite measurements, Atmos. Meas. Tech., 10, 4067-4078, doi:10.5194/amt-10-4067-2017.
          • Prather, M. J., X. Zhu, C. M. Flynn, S. A. Strode, J. M. Rodriguez, S. D. Steenrod, J. Liu, J.-F. Lamarque, A. M. Fiore, L. W. Horowitz, J. Mao, L. T. Murray, D. T. Shindell, and S. C. Wofsy (2017): Global atmospheric chemistry – which air matters, Atmospheric Chemistry and Physics 17 (14): 9081-9102, doi:10.5194/acp-17-9081-2017.


          • Strode, S. A., H. M. Worden, M. Damon, A. R. Douglass, B. N. Duncan, L. K. Emmons, J.-F. Lamarque, M. Manyin, L. D. Oman, J. M. Rodriguez, S. E. Strahan, and S. Tilmes (2016), Interpreting space-based trends in carbon monoxide with multiple models Atmos. Chem. Phys., 16, 7285-7294, doi:10.5194/acp-16-7285-2016.
          • Elshorbany, Y. F., B. N. Duncan, S. A. Strode, J. S. Wang, and J. Kouatchou (2016), The description and validation of the computationally Efficient CH 4–CO–OH (ECCOHv1. 01) chemistry module for 3-D model applications, Geosci. Model Devel., 9, 2, 799-822, doi:10.5194/gmd-9-799-2016.
          • Flynn, C. M. et al (2016), Variability of O3 and NO2 profile shapes during DISCOVER-AQ: Implications for satellite observations and comparisons to model-simulated profiles, Atmos. Environ., 147, 133-156, doi:10.1016/j.atmosenv.2016.09.068.
          • Silva, R. A. et al (2016), The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble, Atmos. Chem. Phys., 16, 9847-9862, doi:10.5194/acp-16-9847-2016.


          • Strode, S. A., B. N. Duncan, E. A. Yegorova, J. Kouatchou, J. R. Ziemke, and A. R. Douglass (2015), Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models, Atmos. Chem. Phys., 15, 11789-11805, doi:10.5194/acp-15-11789-2015.
          • Schnell et al. (2015), Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone, Atmos. Chem. Phys., 15,10581-10596, doi:10.5194/acp-15-10581-2015.
          • Strode, S. A., J. M. Rodriguez, J. A. Logan, O. R. Cooper, J. C. Witte, L. N. Lamsal, M. Damon, B. Van Aartsen, S. D. Steenrod, and S. E. Strahan (2015), Trends and Variability in Surface Ozone over the United States, J. Geophys. Res. Atmos., 120, doi:10.1002/2014JD022784.
          • Emmons et al. (2015), The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmos. Chem. Phys., 15, 6721-6744, doi:10.5194/acp-15-6721-2015.


          • Chin, M., et al. (2014), Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos. Chem. Phys., 14, 3657-3690, doi:10.5194/acp-14-3657-2014.


          • Strode, S. A. and S. Pawson (2013), Detection of carbon monoxide trends in the presence of Interannual variability, J. Geophys. Res. Atmos., 118, 12,257–12,273, doi:10.1002/2013JD020258.
          • Bowman, K. W., et al. (2013), Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmos. Chem. Phys. 13(8), 4057-4072, doi:10.5194/acp-13-4057-2013.
          • Kirschke, S. et al. (2013), Three decades of global methane sources and sinks. Nature Geosci. 6(10), 813-823, doi:10.1038/ngeo1955.
          • Lamarque, J. F., et al. (2013), The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geosci. Model Devel. 6(1), 179-206, doi:10.5194/gmd-6-179-2013.
          • Lamarque, J.-F. et al. (2013), Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes, Atmos. Chem. Phys., 13, 7997-8018, doi:10.5194/acp-13-7997-2013.
          • Naik et al. (2013), Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, doi:10.5194/acp-13-5277-2013.
          • Silva, R.A., et al. (2013), Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ. Res. Lett. 8(3), 034005, doi:10.1088/1748-9326/8/3/034005.
          • Stevenson, D. S., et al. (2013), Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13(6), 3063-3085, doi:10.5194/acp-13-3063-2013.
          • Vougarakis et al. (2013), Analysis of present day and future OH and methane lifetime in the ACCMIP simulations, Atmos. Chem. Phys., 13, doi:10.5194/acp-13-2563-2013.
          • Young, P. J., et al. (2013), Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13(4), 2063-2090, doi:10.5194/acp-13-2063-2013.


          • Strode, S. A., L. E. Ott, S. Pawson, and T. W. Bowyer (2012), Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010, J. Geophys. Res., 117, D09302, doi:10.1029/2011JD017382.


          • Soerensen, A. L., E. M. Sunderland, C. D. Holmes, D. J. Jacob, R. M. Yantosca, H. Skov, J. H. Christensen, S. A. Strode, and R. P. Mason (2010), An improved global model for air-sea exchange of mercury: High concentrations over the North Atlantic, Environ. Sci. Technol. 44(22), 8574-8580, doi:10.1021/es102032g.
          • Strode, S. A., L. Jaeglé, and S. Emerson (2010), Vertical transport of anthropogenic mercury in the ocean, Global Biogeochem. Cycles, 24, GB4014, doi:10.1029/2009GB003728.
          • Sinha, P., W. A. Schew, A. Sawant, K. J. Kolwaite, and S. A. Strode (2010), Greenhouse gas emissions from U.S. institutions of higher education, J. Air & Waste Manage. Assoc., 60(5), 568-573, doi:10.3155/1047-3289.60.5.568.


          • Strode, S., L. Jaeglé, and N. E. Selin (2009), Impact of mercury emissions from historic gold and silver mining: Global modeling, Atmos. Environ., 43, 2012-2017 doi:10.1016/j.atmosenv.2009.01.006.
          • Reidmiller, D. R., D. A. Jaffe, D. Chand, S. Strode, P. C. Swartzendruber, G. M. Wolfe, and J. A. Thornton (2009), Interannual variability of long-range transport as seen at the Mt. Bachelor Observatory, Atmos. Chem. Phys., 9, 557-572, doi:10.5194/acp-9-557-2009.
          • Sunderland, E. M., D. P. Krabbenhoft, J. M. Moreau, S. A. Strode, and W. M. Landing (2009),Mercury sources, distribution and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochem. Cycles, 23, GB2010, doi:10.1029/2008GB003425.


          • Strode, S. A., L. Jaeglé, D. A. Jaffe, P. C. Swartzendruber, N. E. Selin, C. Holmes, and R. M. Yantosca, Trans-Pacific transport of mercury (2008), J. Geophys. Res., 113(D15305), doi:10.1029/2007JD009428.
          • Jaffe, D. and S. Strode (2008), Fate and Transport of Atmospheric Mercury from Asia, Environ. Chem., 5, 121, doi:10.1071/EN08010.
          • Selin, N. E., D. J. Jacob, R. M. Yantosca, S. Strode, L. Jaeglé, and E.M. Sunderland (2008), Global 3-D land-ocean-atmosphere model for mercury: present-day vs. pre-industrial cycles and anthropogenic enrichment factors for deposition, Global Biogeochemical Cycles, 22(GB3099), doi:10.1029/2007GB003040.
          • Swartzendruber, P. C., D. Chand, D. A. Jaffe, J. Smith, D. Reidmiller, L. Gratz, J. Keeler, S. Strode, L. Jaeglé, and R. Talbot (2008), Vertical distribution of mercury, CO, ozone, and aerosol scattering coefficient in the Pacific Northwest during the spring 2006 INTEX-B campaign, J. Geophys. Res., 113, D10305, doi:10.1029/2007JD009579.


          • Strode, S., L. Jaeglé, N. Selin, D. J. Jacob, R. Park, R. Yantosca, R. P. Mason, and F. Slemr (2007), Global simulation of air-sea exchange of mercury, Global Biogeochemical Cycles, 21(GB1017), doi:10.1029/2006GB002766.
          • Selin, N., D. J. Jacob, R. Park, R. Yantosca, S. Strode, L. Jaeglé, and D. Jaffe (2007), Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, J. Geophys. Res., 112(D02308), doi:10.1029/2006JD007450.


          • Swartzendruber, P.C., D.A. Jaffe, E.M. Prestbo, P. Weiss-Penzias, N.E. Selin, R. Park, D. Jacob, S. Strode, and L. Jaeglé (2006), Observations of reactive gaseous mercury in the free-troposphere at the Mt. Bachelor observatory, J. Geophys. Res., 11(D24301), doi:10.1029/2006JD007415.