NASA GODDARD HOMEPAGE FOR TROPOSPHERIC OZONE
FROM SATELLITE MEASUREMENTS

NASA Goddard Space Flight Center

Code 614, Chemistry and Dynamics Branch



MAIN MENU

Listed below are tropospheric column ozone (TCO) satellite data
products that we produce within NASA Goddard Code 614 along with
links for other datasets including ozone measurements from the
SHADOZ ozonesonde network. The satellite data products represent
TCO derived from TOMS (January 1979 - December 2005), OMI/MLS
(October 2004 - recent), EPIC/MERRA (January 2015 - recent), and
OMPS/MERRA2 (January 2012 - recent):

  • DATA: TOMS (Nimbus-7 + Earth-Probe) Convective-Cloud
    Differential (CCD) monthly-mean tropospheric column
    ozone in Dobson Units for 30S-30N (5-degree latitude by 5-degree
    longitude gridding) and January 1979 - December 2005 (ASCII text
    file that includes latitudes and longitudes; N7 TOMS is
    January 1979 - April 1993 and EP TOMS is August 1996-December 2005)
  • DATA: EPIC/MERRA2 monthly-mean tropospheric column ozone (netCDF4, Dobson
    Units) at 1deg X 1deg resolution for January 2015 - December 2023.
  • DATA: OMI/MLS monthly-mean tropospheric column ozone (netCDF4, Dobson
    Units) at 5deg X 5deg resolution for October 2004 - December 2023.
  • DATA: OMI/MLS monthly-mean Ground-to-100hPa tropospheric column
    ozone (netCDF4, Dobson Units) at 5deg X 5deg resolution for
    October 2004 - December 2021.
  • DATA: OMI/MLS monthly-mean Ground-to-150hPa tropospheric column
    ozone at 5deg X 5deg resolution (netCDF4, Dobson Units) for
    October 2004 - December 2021.
  • DATA: OMI/MLS monthly-mean Ground-to-200hPa tropospheric column
    ozone at 5deg X 5deg resolution (netCDF4, Dobson Units) for
    October 2004 - December 2021.
  • DATA: OMI/MLS monthly-mean Ground-to-300hPa tropospheric column
    ozone at 5deg X 5deg resolution (netCDF4, Dobson Units) for
    October 2004 - December 2021.
  • DATA: OMPS/MERRA2 monthly-mean tropospheric column ozone (netCDF4, Dobson
    Units) at 1deg X 1deg resolution for January 2012 - December 2023
    (Research Product)
  • DATA: SHADOZ OZONESONDE MEASUREMENTS
  • DATA: OZONE ENSO INDEX (OEI) TIME SERIES DATA
  • DATA: OTHER PUBLIC DOMAIN DATA AND IMAGES, ETC.
  • PUBLICATIONS
  • CONTACT PERSON
  • GO TO NASA GODDARD CHEMISTRY AND DYNAMICS BRANCH (CODE 614) HOMEPAGE
  • GO TO NASA HOMEPAGE
  • TREND ANALYSIS SOFTWARE, ETC.


    NOTES

    (1) Dimensions for the above netCDF4 tropospheric ozone dataset arrays:
    EPIC:
    360: Longitude -179.5, -178.5, ..., 179.5
    180: Latitude -89.5, -88.5,. ..., 89.5
    96: Month Jan 2015, Feb 2015, ..., Dec 2023
    TOMS:
    72: Longitude -177.5, -172.5, ..., 177.5
    12: Latitude -27.5, -22.5,. ..., 27.5
    324: Month Jan 1979, Feb 1979, ..., Dec 2005
    OMI/MLS:
    72: Longitude -177.5, -172.5, ..., 177.5
    24: Latitude -57.5, -52.5, ..., 57.5
    207: Month Oct 2004, Nov 2004, ..., Dec 2021 (for 100, 150, 200, 300
    hPa upper level pressure surfaces)
    231: Month Oct 2004, Nov 2004, ..., Dec 2023 for Ground-to-tropopause
    column ozone
    OMPS(Research Product):
    360: Longitude -179.5, -178.5, ..., 179.5
    180: Latitude -89.5, -88.5,. ..., 89.5
    132: Month Jan 2012, Feb 2012, ..., Dec 2023

    (2) All satellite tropospheric ozone datasets above represent
    gridded monthly-mean tropospheric column ozone in Dobson Units. To
    determine troposheric column ozone for all four products, co-located
    stratospheric column ozone (SCO) is subtracted from total column
    ozone. For the OMI/MLS product, stratospheric column ozone is derived
    from MLS along-track stratospheric column ozone which is 2D
    interpolated to fill in between MLS orbital gaps (Ziemke et al., JGR,
    2006). For EPIC and OMPS nadir-mapper products, SCO is determined from
    MERRA-2 analyses that assimilate MLS ozone. TOMS CCD SCO is derived
    from above-cloud column ozone in the tropical Pacific under conditions
    of deep convective clouds. Co-located tropopause pressure is used to
    separate tropospheric from stratospheric column ozone for EPIC,
    OMI/MLS, and OMPS tropospheric column ozone products. The EPIC and
    OMPS Nadir Mapper products use MERRA2 PV-theta (2.5 PVU, 380 K)
    tropopause pressure while OMI/MLS uses NCEP reanalyses with WMO 2K/km
    lapse-rate definition for tropopause pressure. For TOMS CCD
    tropospheric column ozone, tropopause pressure is not used to derive
    the product since statospheric column ozone is determined by averaging
    above-cloud column ozone measurements over deep convective clouds in
    the tropical Pacific where the tropopause is consistently around 100
    hPa.

    (3) SPECIAL NOTE: For the five OMI/MLS tropospheric column ozone
    products listed above, a small long-term soft calibration (same
    adjustment applied to all five columns) was implemented to provide
    better estimates of long-term trends. This adjustment (documented by
    Gaudel, et al., Atmos. Chem. Phys., 2024) was necessary to update our
    corrections for drift error of the OMI/MLS products. The OMI/MLS TCO
    (ground-to-tropopause) tropospheric column ozone had an additionaly
    small adjustment of about -0.5 DU in 2020 and following years to
    account for an upward jump in 2020 in the OMI total ozone. This
    adjustment was based on measurements of ground-based Brewer/Dobson
    total ozone, ozonesondes, CCD TCO measurements, OMPS nadir-mapper
    total ozone, and OMI row anomaly. All of the adjustments made for the
    OMI products are important for TOAR II and other studies that use
    OMI/MLS data for measuring trends in tropospheric ozone.






  • TROPOSPHERIC OZONE DATA, MOVIES, AND IMAGES FROM AURA OMI/MLS

    As members of the Aura Ozone Monitoring Instrument (OMI) science
    team we are developing several tropospheric ozone data products from
    OMI in combination with Aura Microwave Limb Sounder (MLS). One of
    these involves OMI measurements alone to derive tropospheric and
    stratospheric ozone. By combining OMI total column ozone measurements
    with MLS stratospheric column ozone measurements, we are producing
    global maps of OMI/MLS tropospheric ozone. Aura MLS stratospheric
    ozone data were provided in collaboration with the Aura MLS team at
    Jet Propulsion Laboratory, Pasadena, CA.

    NOTES: Below is the journal reference for the OMI/MLS tropospheric
    ozone data:

    Ziemke, J. R., S. Chandra, B. N. Duncan, L. Froidevaux, P. K. Bhartia,
    P. F. Levelt, and J. W. Waters,
    "Tropospheric ozone determined from Aura OMI and MLS: Evaluation
    of measurements and comparison with the Global Modeling Initiative's
    Chemical Transport Model"
    , J. Geophys. Res., 111, D19303,
    doi:10.1029/2006JD007089, 2006.

    The following provide links to data, movies, and images involving
    Aura OMI/MLS tropospheric ozone data from NASA Goddard Space Flight
    Center. The original monthly mean clear-sky measurements
    [Ziemke et al., 2006] are still being provided and updated. Please
    address Jerry Ziemke (jerald.r.ziemke@nasa.gov) involving problems
    or specific questions about the datasets.

    DATA: OMI/MLS tropospheric ozone (original product)

    DATA: OMI CCD monthly-mean tropical tropospheric column ozone
    (in Dobson Units) research product at 5deg X 5deg resolution for
    October 2004 - recent (IDL save file)

    MOVIES: Global tropospheric ozone movies from OMI/MLS showing the
    large year-round wave-one pattern in the tropics (maximum in the
    Atlantic), NH extra-tropical maximum around June-August (including
    the Mediterranean "crossroads" peak region) and SH extra-tropical
    maximum around September-November

    MOVIES: Some other tropospheric ozone movies from OMI/MLS

    SOME IMAGES: Tropospheric ozone images from Aura OMI tropical Cloud
    Slicing (+ other Aura images)


    MAPS OF MONTHLY-MEAN TROPOSPHERIC
    COLUMN OZONE FROM OMI/MLS RESIDUAL
    MEASUREMENTS:

    October 2004, November 2004, December 2004,
    January 2005, February 2005, March 2005, April 2005, May 2005, June 2005,
    July 2005, August 2005, September 2005, October 2005, November 2005, December 2005,
    January 2006, February 2006, March 2006, April 2006, May 2006, June 2006,
    July 2006, August 2006, September 2006, October 2006, November 2006, December 2006,
    January 2007, February 2007, March 2007, April 2007, May 2007, June 2007,
    July 2007, August 2007, September 2007, October 2007, November 2007, December 2007,
    January 2008, February 2008, March 2008, April 2008, May 2008, June 2008,
    July 2008, August 2008, September 2008, October 2008, November 2008, December 2008,
    January 2009, February 2009, March 2009, April 2009, May 2009, June 2009,
    July 2009, August 2009, September 2009, October 2009, November 2009, December 2009,
    January 2010, February 2010, March 2010, April 2010, May 2010, June 2010,
    July 2010, August 2010, September 2010, October 2010, November 2010, December 2010,
    January 2011, February 2011, March 2011, April 2011, May 2011, June 2011,
    July 2011, August 2011, September 2011, October 2011, November 2011, December 2011,
    January 2012, February 2012, March 2012, April 2012, May 2012, June 2012,
    July 2012, August 2012, September 2012, October 2012, November 2012, December 2012,
    January 2013, February 2013, March 2013, April 2013, May 2013 June 2013,
    July 2013, August 2013, September 2013 October 2013 November 2013 December 2013
    January 2014, February 2014, March 2014, April 2014, May 2014 June 2014,
    July 2014, August 2014, September 2014 October 2014, November 2014, December 2014
    January 2015, February 2015, March 2015, April 2015, May 2015 June 2015,
    July 2015, August 2015, September 2015, October 2015, November 2015, December 2015
    January 2016, February 2016, March 2016, April 2016, May 2016, June 2016,
    July 2016, August 2016, September 2016 October 2016, November 2016, December 2016
    January 2017, February 2017, March 2017, April 2017, May 2017, June 2017,
    July 2017, August 2017, September 2017 October 2017, November 2017, December 2017
    January 2018, February 2018, March 2018, April 2018, May 2018, June 2018,
    July 2018, August 2018, September 2018 October 2018, November 2018, December 2018
    January 2019, February 2019, March 2019, April 2019, May 2019, June 2019,
    July 2019, August 2019, September 2019 October 2019, November 2019, December 2019
    January 2020, February 2020, March 2020, April 2020, May 2020, June 2020,
    July 2020, August 2020, September 2020 October 2020, November 2020, December 2020

    MONTHLY MEAN CLIMATOLOGY MAPS OF TROPOSPHERIC COLUMN OZONE,
    STRATOSPHERIC COLUMN OZONE, AND NCEP TROPOPAUSE PRESSURE (WMO
    2K/km LAPSE RATE definition):

    Click here (PDF file) for color contour figures and information for obtaining
    a 12-month climatology of OMI/MLS high resolution (1 degree latitude
    by 1.25 degree longitude) tropospheric ozone, stratospheric ozone,
    total column ozone, and surface UV-Index.

    Click here (PowerPoint file) for color contour figures and information for obtaining
    a 12-month climatology of OMI/MLS high resolution (1 degree latitude
    by 1.25 degree longitude) tropospheric ozone, stratospheric ozone,
    total column ozone, and surface UV-Index.

    (1) Tropospheric column ozone (in Dobson Units)
    (2) Stratospheric column ozone (in Dobson Units)
    (3) NCEP Tropopause pressure (in hPa)

    Note: The above climatolgy of ozone and tropopause pressure was
    derived from OMI/MLS residual measurements and NCEP analyses,
    respectively. The time record for this monthly climatology
    is October 2004 through December 2010. Shown here are
    maps at 5 degree latitude by 5 degree longitude resolution.

    GIVEN BELOW ARE ASCII DATA TABLES FOR THE ABOVE CLIMATOLOGY
    MAPS (INCLUDED ARE ADDITIONAL TABLES FOR LOCAL TEMPORAL RMS
    FIELDS AND SURFACE PRESSURE)

    Horizontal resolution of 5 degrees latitude by 5 degrees longitude:
    (1) Tropospheric column ozone climatology (in Dobson Units) at
    5 degree latitude by 5 degree longitude resolution

    (2) Stratospheric column ozone climatology (in Dobson Units) at
    5 degree latitude by 5 degree longitude resolution

    (3) NCEP tropopause pressure climatology (in hPa) at
    5 degree latitude by 5 degree longitude resolution

    (4) Tropospheric column ozone RMS climatology (in Dobson Units) at
    5 degree latitude by 5 degree longitude resolution

    (5) Stratospheric column ozone RMS climatology (in Dobson Units) at
    5 degree latitude by 5 degree longitude resolution

    (6) NCEP tropopause pressure RMS climatology (in hPa) at
    5 degree latitude by 5 degree longitude resolution

    (7) Surface/terrain pressure climatology (in hPa) at
    5 degree latitude by 5 degree longitude resolution

    Horizontal resolution of 10 degrees latitude by 10 degrees longitude:
    (8) Tropospheric column ozone climatology (in Dobson Units) at
    10 degree latitude by 10 degree longitude resolution

    (9) Stratospheric column ozone climatology (in Dobson Units) at
    10 degree latitude by 10 degree longitude resolution

    (10) NCEP tropopause pressure climatology (in hPa) at
    10 degree latitude by 10 degree longitude resolution

    (11) Tropospheric column ozone RMS climatology (in Dobson Units) at
    10 degree latitude by 10 degree longitude resolution

    (12) Stratospheric column ozone RMS climatology (in Dobson Units) at
    10 degree latitude by 10 degree longitude resolution

    (13) NCEP tropopause pressure RMS climatology (in hPa) at
    10 degree latitude by 10 degree longitude resolution

    (14) Surface/terrain pressure climatology (in hPa) at
    10 degree latitude by 10 degree longitude resolution

    Note: The above ozone and tropopause pressure climatology data
    were derived from OMI/MLS residual measurements and NCEP
    analyses, respectively. The time record for this monthly climatology
    is October 2004 through December 2010. Tables are given
    for both 5 degree by 5 degree and 10 degree by 10 degree
    horizontal resolution. The 12 columns of numbers in these
    files for ozone and tropopause pressure correspond to the
    months January, February, ..., December

    Note: Below are IDL readers for reading any of the above ozone
    and tropopause pressure data tables:

    (1) IDL reader for the ozone tables at 5 degree latitude by
    5 degree longitude horizontal resolution

    (2) IDL reader for the ozone tables at 10 degree latitude by
    10 degree longitude horizontal resolution

    REFERENCE FOR ABOVE CLIMATOLOGY MAPS AND DATA:
    Ziemke, J. R., S. Chandra, G. Labow, P. K. Bhartia,
    L. Froidevaux, and J. C. Witte,
    "A global climatology of tropospheric and stratospheric ozone
    derived from Aura OMI and MLS measurements"
    , Atmos. Chem. Phys.
    11, 9237-9251, doi:10.5194/acp-11-9237-2011, 2011.



    [return-to-top]


    OZONE ENSO INDEX (OEI) MONTHLY TIME SERIES DATA

    We have combined column ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to near present, is defined as the tropospheric "Ozone ENSO Index" (OEI) [Ziemke et al., 2010, Atmos. Chem. Phys., 2010.]

    Stratospheric column ozone in tropical low latitudes has very small longitudinal variation of only a few Dobson Units. This has been shown in previous studies from SAGE, HALOE, and UARS/Aura MLS stratospheric ozone satellite measurements. Because of this characteristic, the east-west zonal variation of tropospheric column ozone in tropical low latitudes is essentially identical to that of total column ozone. This property of near zero zonal variation of stratospheric column ozone is used to derive the tropospheric OEI.

    The OEI is calculated by differencing total column ozone between two broad regions in the the western and eastern tropical Pacific. Because of near zero zonal variation of stratospheric ozone, this differencing eliminates the stratospheric ozone signal leaving only tropospheric ozone variation in the OEI.

    There are many ENSO indices that have been developed. One commonly used ENSO index derived from sea surface temperature (SST) anomalies is the NOAA Nino 3.4 index. Another historic ENSO index comes from Tahiti minus Darwin surface pressure. Both ENSO indices are well correlated with tropospheric and total column ozone with an east-west "dipole" signature between the eastern and western Pacific in the tropics. (See IMAGE of temporal correlation between total column ozone and the ENSO indices Nino 3.4 and Tahiti minus Darwin pressure (denoted SOI in figure)). On average, a +1K change in Nino 3.4 index coincides with about a +2.5 to +3 DU change in OEI depending on the amount of cloud scenes included in calculation of the OEI. The more convective cloud scenes included in calculating the OEI, the smaller becomes the OEI sensitivity number with the Nino 3.4 ENSO index. This is likely because ozone concentrations in the lower troposphere in the remote Pacific are characteristically low and convective clouds inject these low concentrations into the middle and upper troposphere, reducing tropospheric column ozone and the calculated OEI.

    The OEI is a useful diagnostic test for ocean-atmosphere climate models of the troposphere [e.g., Oman et al., Geophys. Res. Lett., 2011]. Such models should be capable of reproducing signatures of the ozone ENSO index including it's sensitivity relationship with ENSO induced changes in tropical surface pressure and sea surface temperature.

    The OEI is updated periodically on this webpage. Listed below is the OEI monthly-mean data, and a figure of these two OEI time series versus the Nino 3.4 sea-surface temperature ENSO index.

    Below is the OEI data calculated using only clear-sky scenes
    for the satellite ozone measurements:
    OEI (clear-sky condition) DATA for January 1979 (top) through December 2018 (bottom).

    Below is a JPEG figure which shows the above OEI time series
    plotted with the Nino 3.4 ENSO index:
    IMAGE of the OEI and Nino 3.4 ENSO indices (Note: Nino 3.4
    time series was multiplied by +3 for scaling with the OEI time series)


    Below is the reference paper for the ozone ENSO index:

    Ziemke, J. R., S. Chandra, L. D. Oman, and P. K. Bhartia,
    "A new ENSO index derived from satellite measurements of column
    ozone"
    , Atmos. Chem. Phys., 10, 3711-3721, 2010.



    [return-to-top]


    OTHER PUBLIC DOMAIN DATA AND IMAGES, ETC. :

    Monthly-mean maps (GIF images) of tropical tropospheric column ozone (in Dobson Units) derived from the Convective Cloud Differential (CCD) method [Ziemke et al., 1998]:

    1979 1980 1981 1982 1983
    1984 1985 1986 1987 1988
    1989 1990 1991 1992 1993
    1994 1995 1996 1997 1998
    1999 2000 2001 2002 2003
    2004 2005

    GRIDDED TROPICAL DATA:

    Data for the above tropospheric column ozone images can be obtained at this website. The data (see DATA DOCUMENTATION ) represent monthly-means with a resolution of 5 degrees latitude by 5 degrees longitude and are printed in ASCII format for both TROPOSPHERIC and STRATOSPHERIC column measurements. Stratospheric column ozone to within a few Dobson Units in the tropics is zonally homogeneous. For this reason the stratospheric column ozone data file gives only one value for each latitude. There is also an IDL PROCEDURE provided to read these data tables. At current time these CCD data files are developed from Nimbus 7 TOMS and Earth Probe TOMS version 8 measurements. In the future, the new Aura OMI CCD data will be appended to continue this long time-record data set.

    PACIFIC AVERAGED DATA FOR 50S TO 60N:

    Pacific averaged (120W-120E) monthly mean stratospheric and tropospheric column ozone from TOMS measurements covering the latitudes 50S to 60N (5 degree latitude bands) can be obtained here. The tabulated data were obtain using the CCD method. Measurements for latitudes south of 50S and north of 60N are not included in the tables because there are not enough suitable clouds for using the CCD method. As with the above data tables, TOMS version 8 level-2 footprint measurements were used to construct the data. There are two ASCII tables, one for STRATOSPHERIC column ozone and one for TROPOSPHERIC column ozone. Time coverage extends from January 1979 through December 2005. Two-sigma uncertainties in these monthly measurements of both stratospheric and tropospheric column ozone are 5 DU. There is an IDL PROCEDURE provided to read these data tables. Note that in the tables the two left-most numbers designate latitude ranges (maximum and minimum) for the measurements. It is noted that the stratospheric column ozone measurements outside the tropics from Earth Probe TOMS began having problems in mid-2001. Stratospheric ozone began showing an erroneous downward trend and a signature of a solar zenith angle dependent calibration drift. Stratospheric data for years 2001-2005 are lower than they should be, so that the variabilities in the measurements should be evaluated with caution. Tropospheric ozone is not affected directly by calibration drift (it's a differencing method) and maintains reasonable numbers through year 2005.

    SPECIAL NOTES:

    All of the above data tables were determined from Nimbus 7 TOMS (Jan79-Apr93) and Earth Probe TOMS (Aug96-Dec05) satellite measurements. Following December 2005, Earth Probe TOMS no longer provides data. In the future, the new Aura OMI ozone measurements will be used to continue adding to these long time records of stratospheric and tropospheric column ozone.

    Below is the primary journal reference for the CCD data and methodology:

    Ziemke, J. R., S. Chandra, and P. K. Bhartia,
    "Two new methods for deriving tropospheric column ozone from TOMS
    measurements: The assimilated UARS MLS/HALOE and convective-cloud
    differential techniques"
    , J. Geophys. Res., 103, 22,115-22,127, 1998.

    [return-to-top]


    REFEREED PUBLICATIONS RELATING TO TROPOSPHERIC OZONE
    FROM MEMBERS OF OUR RESEARCH GROUP (NOTE: IF YOU
    WISH TO HAVE A COPY OF ANY OF THESE PAPERS PLEASE SEND
    A REQUEST TO THE CONTACT PERSON LISTED AT THE BOTTOM
    OF THIS WEBPAGE):


    Year 2024:

    Elshorbany Y., J. R. Ziemke, S. Strode, H. Petetin, K, Miyazaki, I. De Smedt , K. Pickering, R. Seguel, H. Worden, T. Emmerichs, D. Taraborrelli, M. Cazorla, S. Fadnavis, R. Buchholz, B. Gaubert, N. Rojas, T. Nogueira, T. Salameh, and M. Huang, Tropospheric Ozone Precursors: Global and Regional Distributions, Trends and Variability, Atmos. Chem. Phys., 24, https://doi.org/10.5194/acp-24-12225-2024, 2024.

    Cooper, O. R., J. R. Ziemke, and K.-L. Chang, Tropospheric ozone, in State of the Climate in 2023, Bull. Amer. Meteorol. Soc., 105, S94-S96, 2024.

    Anderson, D. C., B. N. Duncan, J. H. Liu, J. M. Nicely, S. A. Strode, M. B. Follette-Cook, A. H. Souri, J. R. Ziemke, G. Gonzalez-Abad, Z. Avazpour, Trends and Interannual Variability of the Hydroxyl Radical in the Remote Tropics During Boreal Autumn Inferred From Satellite Proxy Data, Geophys. Res. Lett., 51, doi:10.1029/2024GL108531, 2024.

    Yu, X., A. Fiore, J. R. Ziemke, B. D. Santer, J.-F. Lamarque, G. Correa, Q. Zhu, D, Anthropogenic Fingerprint Detectable in Upper Tropospheric Ozone Trends Retrieved from Satellite, Env. Sci. Tech., 58, doi:10.1021/acs.est.4c01289, 2024.

    Kramarova, N. A., P. Xu, J. B. Mok, P. K. Bhartia, G. Jaross, L. Moy, Z. Chen, S. Frith, M. DeLand, D. Kahn, G. Labow, J. Li, E. Nyaku, C. Weaver, J. R. Ziemke, S. Davis, and Y. Jia, Decade-long Ozone Profile Record from Suomi NPP OMPS Limb 2 Profiler: Assessment of Version 2.6 Data, Earth and Space Sci., 11, doi: 10.1029/2024EA003707, 2024.

    Gaudel A., I. Bourgeois, M. Li, K.-L. Chang, J. R. Ziemke, B. Sauvage, R. M. Stauffer, A. M. Thompson, D. E. Kollonige, N. Smith, D. Hubert, A. Keppens , J. Cuesta , K.-P. Heue, P. Veefkind, K. Aikin, J. Peischl, C. R. Thompson, T. B. Ryerson, G. J. Frost, B. C. McDonald, and O. R. Cooper, Tropical tropospheric ozone distribution and trends from in situ and satellite data, Atmos. Chem. Phys., 24, 9975-10000, doi:10.5194/acp-24-9975-2024, 2024.


    Year 2023:

    Cooper, O. R., J. R. Ziemke, and K.-L. Chang, Tropospheric ozone, in State of the Climate in 2022, Bull. Amer. Meteorol. Soc., 103, S98-S100, 2023.

    Herman, J. R., J. R. Ziemke, and R. D. McPeters, Total Column Ozone Trends from the NASA Merged Ozone Time Series 1979 to 2021 Showing Latitude Dependent Ozone Recovery Dates (1994 to 1998), Atmos. Meas. Tech., in press, 2023.


    Year 2022:

    Fiore, A. M., S. E. Hancock, J.-F. Lamarque, G. P. Correa, K.-L. Chang, M. Ru, O. Cooper, A. Gaudel, L. M. Polvani, Bastien Sauvage, and J. R. Ziemke, Understanding recent tropospheric ozone trends in the context of large internal variability: a new perspective from chemistry-climate model ensembles, Env. Res. Clim. 1, https://doi.org/10.1088/2752-5295/ac9cc2, 2022.

    Liu, J., S. A. Strode, Q.-L. Qing, L. D. Oman, P. R. Colarco, E. L. Fleming, M. E. Manyin, J. R. Ziemke, L. N. Lamsal, C. Li, Change in tropospheric ozone in the recent decades and its contribution to global total ozone, J. Geophys. Res. Atmos., https://doi.org/10.1029/2022JD037170, 2022.

    Sullivan, S., A. Apituley, N. Mettig, K. Kreher, K. E. Knowland, M. Allart, A. Piters, M. V. Roozendael, P. Veefkind, J. R. Ziemke, N. Kramarova, M. Weber, A. Rozanov, L. Twigg, G. Sumnicht, and T. McGee, Measurement Report: Tropospheric and Stratospheric Ozone Profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19), Atmos. Chem. Phys. Disc., in review, https://doi.org/10.5194/acp-2022-202, 2022.

    Cooper, O. R., J. R. Ziemke, and K.-L. Chang, Tropospheric ozone, in State of the Climate in 2021, Bull. Amer. Meteorol. Soc., 103, S98-S100, 2022.

    Ziemke, J. R., N. A. Kramarova, S. M. Frith, L.-K. Huang, D. P. Haffner, K. Wargan, L. N. Lamsal, G. J. Labow, R. D. McPeters, and P. K. Bhartia, NASA satellite measurements show global-scale reductions in tropospheric ozone in 2020 and again in 2021 during COVID-19, Geophys. Res. Lett., 49, https://doi.org/10.1029/2022GL098712, 2022.

    Heue, K.-P., D. Loyola, F. Romahn, W. Zimmer, S. Chabrillat, Q. Errera, J. R. Ziemke, and N. A. Kramarova, Tropospheric ozone retrieval by a combination of TROPOMI/S5P measurements with BASCOE assimilated data, Atmos. Meas. Tech. Disc., 15, https://doi.org/10.5194/amt-15-5563-2022, 2022.


    Year 2021:

    Ziemke, J. R., G. L. Labow, N. A. Kramarova, R. D. McPeters, P. K. Bhartia, L. D. Oman, S. M. Frith, and D. P. Haffner, A Global Ozone Profile Climatology for Satellite Retrieval Algorithms Based on Aura MLS Measurements and the MERRA-2 GMI Simulation, Atmos. Meas. Tech., 14, 64076418, https://doi.org/10.5194/amt-14-6407-2021, 2021.

    Thompson, A. M., R. M. Stauffer, K. Wargan, J. C. Witte., D. E. Kollonige, J. R. Ziemke, Regional and Seasonal Trends in Tropical Ozone From SHADOZ Profiles: Reference for Models and Satellite Products, J. Geophys. Res., https://doi.org/10.1029/2021JD034691, 2021.

    Kramarova, N. A., J. R. Ziemke, L.-K. Huang, J. R. Herman, K. Wargan, C. J. Seftor, G. J. Labow, L. D. Oman, Evaluation of Version 3 Total and Tropospheric Ozone Columns From Earth Polychromatic Imaging Camera on Deep Space Climate Observatory for Studying Regional Scale Ozone Variations, Front. Rem. Sens., 2:734071, doi: 10.3389/frsen.2021.734071, 2021.

    Ziemke, J. R., and O. R. Cooper, Tropospheric ozone, in State of the Climate in 2020, Bull. Amer. Meteorol. Soc., 102, S98-S100, 2021.

    Dufour, G., D. Hauglustaine, Y. Zhang, M. Eremenko, Y. Cohen, A. Gaudel, G. Siour, M. Lachatre, A. Bense, B. Bessagnet, J. Cuesta, J. Ziemke, V. Thouret, and B. Zheng, Recent ozone trends in the Chinese free troposphere: role of the local emission reductions and meteorology, Atmos. Chem. Phys., 21, 1600116025, https://doi.org/10.5194/acp-21-16001-2021, 2021.

    Elshorbany, Y. Y, H. C. Kapper, J. R. Ziemke, S. A. Parr, The Status of Air Quality in the United States during the COVID-19 Pandemic: A Remote Sensing Perspective, Rem. Sens., 13(3), 369, https://doi.org/10.3390/rs13030369. 2021.


    Year 2020:

    Ziemke, J. R., and O. R. Cooper, Tropospheric ozone, in State of the Climate in 2019, Bull. Amer. Meteorol. Soc., 101, S83-S85, 2020.

    Gaudel, A. O. R. Cooper, K.-L. Chang, I. Bourgeois, J. R. Ziemke, S. A.Strode, L. D. Oman, P. Sellitto, P. Nédélec, R. Blot, V. Thouret, C. Granier, Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere, Sci. Adv., 6, 34, doi:10.1126/sciadv.aba8272, 2020.


    Year 2019:

    David Tarasick, Ian E. Galbally, Owen R. Cooper, Martin G. Schultz, Gerard Ancellet, Thierry Leblanc, Timothy J. Wallington, Jerry Ziemke, Xiong Liu, Martin Steinbacher, Johannes Staehelin, Corinne Vigouroux, James W. Hannigan, Omaira García, Gilles Foret, Prodromos Zanis, Elizabeth Weatherhead, Irina Petropavlovskikh, Helen Worden, Mohammed Osman, Jane Liu, Kai-Lan Chang, Audrey Gaudel, Meiyun Lin, Maria Granados-Muñoz, Anne M. Thompson, Samuel J. Oltmans, Juan Cuesta, Gaelle Dufour, Valerie Thouret, Birgit Hassler, Thomas Trickl, Jessica L. Neu, Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties, Elem Sci Anth, k7(1), p.39.doi:http://doi.org/10.1525/elementa.376, 2019.

    Ziemke, J. R., and O. R. Cooper, Tropospheric ozone, in State of the Climate in 2018, Bull. Amer. Meteorol. Soc., 100, S58-S60, 2019.

    Strode, S. A., J. R. Ziemke, L. D. Oman, L. N. Lamsal, M. A. Olsen, and J. Liu, Global changes in the diurnal cycle of surface ozone, Atmos. Env., 199, 323-333, https://doi.org/10.1016/j.atmosenv.2018.11.028, 2019.

    Ziemke, J. R., L. D. Oman, S. A. Strode, A. R. Douglass, M. A. Olsen, R. D. McPeters, P. K. Bhartia, L. Froidevaux, G. J. Labow, J. C. Witte, A. M. Thompson, D. P. Haffner, N. A. Kramarova, S. M. Frith, L. K. Huang, G. R. Jaross, C. J. Seftor, M. T. Deland, and S. L. Taylor, Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation, Atmos. Chem. Phys., 19, 3257-3269, https://doi.org/10.5194/acp-19-3257-2019, 2019.

    McPeters, R. D., S. M. Frith, N. A. Kramarova, J. R. Ziemke, and G. J. Labow, Trend Quality Ozone from NPP OMPS: the Version 2 Processing, Atmos. Meas. Tech., 12, 977-985, https://doi.org/10.5194/amt-12-977-2019, 2019.


    Year 2018:

    Ziemke, J. R., and O. R. Cooper, Tropospheric ozone, in State of the Climate in 2017, Bull. Amer. Meteorol. Soc., 99, S56-S57, 2018.

    Young, P. J., V. Naik, A. M. Fiore, A. Gaudel, J. Guo, M. Y. Lin, J. Neu, D. D. Parrish, H. E. Rieder, J. L. Schnell, S. Tilmes, O. Wild, L. Zhang, J. Brandt, A. Delcloo, R. M. Doherty, C. Geels, M. I. Hegglin, L. Hu, U. Im, R. Kumar, A. Luhar, L. Murray, D. Plummer, J. Rodriguez, A. Saiz-Lopez, M. G. Schultz, M. Woodhouse, G. Zeng, and J. Ziemke, Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends, Elem. Sci. Anthrop., 6: 10, doi:https://doi.org/10.1525/elementa.265, 2018.

    Gaudel, A., O. R. Cooper, G. Ancellet, B. Barret, A. Boynard, J. P. Burrows, C. Clerbaux, P.-F. Coheur, J. Cuesta, E. Cuevas, S. Doniki, G. Dufour, F. Ebojie, G. Foret, O. Garcia, M. J. Granados-Muñoz, J. Hannigan, F. Hase, B. Hassler, G. Huang, D. Hurtmans, D. Jaffe, N. Jones, P. Kalabokas, B. Kerridge, S. Kulawik, B. Latter, T. Leblanc, E. Le Flochmoën, W. Lin, J. Liu, X. Liu, E. Mahieu, A. McClure-Begley, J. Neu, M. Osman, M. Palm, H. Petetin, I. Petropavlovskikh, R. Querel, N. Rahpoe, A. Rozanov, M. G. Schultz, J. Schwab, R. Siddans, D. Smale, M. Steinbacher, H. Tanimoto, D. Tarasick, V. Thouret, A. M. Thompson, T. Trickl, E. Weatherhead, C. Wespes, H. Worden, C. Vigouroux, X. Xu, G. Zeng, J. Ziemke, Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem Sci Anth, 6: 39. DOI: https://doi.org/10.1525/elementa.291, 2018.

    Levelt, P., J. Joiner, J. Tamminen, P. Veefkind, B. Duncan, H. Eskes, O. Torres, M. DeLand, S. Marchenko, Q. Kleipool, K. Pickering, A. Apituley, D. Stein Zweers, S. Carn, R. van der A, I. Ialongo, A. Arola, S. Hassinen, J. Hakkarainen, R. McPeters, J. Ziemke, F. Boersma, N. Krotkov, D. Fu, X. Liu, G. G. Abad, K. Chance, R. Suileman, C. Li, and P. Bhartia, The Ozone Monitoring Instrument: Overview of twelve years in space, Atmos. Chem. Phys., 18, 5699-5745, https://doi.org/10.5194/acp-18-5699-2018, 2018.

    Ball, W.T., J. Alsing, J. Staehelin, T. Peter, D. J. Mortlock, J. D. Haigh, F. Tummon, R. Stubli, A. Stenke, J. Anderson, A. Bourassa, S. Davis, D. Degenstein, S. Frith, L. Froidevaux, G. Labow, C. Roth, V. Sofieva, R. Wang, J. Wild, J. Ziemke, and E. V. Rozanov, Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery , Atmos. Chem. Phys., 18, 1379-1394, https://doi.org/10.5194/acp-18-1379-2018, 2018.


    Year 2017:

    Ziemke, J. R., S. A. Strode, A. R. Douglass, J. Joiner, A. Vasilkov, L. D. Oman, J. Liu, S. E. Strahan, P. K. Bhartia, D. P. Haffner, A cloud-ozone data product from Aura OMI and MLS satellite measurements, Atmos. Meas. Tech., 10, 40674078, https://doi.org/10.5194/amt-10-4067-2017, 2017.

    Strode, S. A., A. R. Douglass, J. R. Ziemke, M. Manyin, J. E. Nielsen, and L. D. Oman, A model and satellite-based analysis of the tropospheric ozone distribution in clear versus convectively cloudy conditions, J. Geophys. Res., 122, 11,94811,960, doi:10.1002/2017JD027015, 2017.

    Ziemke, J. R., and O. R. Cooper, Tropospheric ozone, in State of the Climate in 2016, Bull. Amer. Meteorol. Soc., 98, S52-S54, 2017.

    Liu, J. J. M. Rodriguez, S. D. Steenrod, A. R. Douglass, J. A. Logan, M. A. Olsen, K. Wargan, and J. R. Ziemke, Causes of inter-annual variability over the southern hemispheric tropospheric ozone maximum, Atmos. Chem. Phys., 17, 3279-3299, doi:10.5194/acp-17-3279-2017, 2017.


    Year 2016:

    Ziemke, J. R., and O. R. Cooper, Tropospheric ozone, in State of the Climate in 2015, Bull. Amer. Meteorol. Soc., 97, 73-75, 2016.

    Benedetti, A., F. Di Giuseppe, J. Flemming, A. Inness, M. Parrington, S. Remy, and J. R. Ziemke, Atmospheric composition changes due to the extreme 2015 Indonesian fire season triggered by El Niño, Bull. Amer. Meteorol. Soc. State of the Climate in 2015, S56-S57, 2016.


    Year 2015:

    Cooper, O. R., and J. R. Ziemke, Tropospheric ozone, in State of the Climate in 2014, Bull. Amer. Meteorol. Soc., 96, 7, 548-549, 2015.

    Ziemke, J. R., A. R. Douglass, L. D. Oman, S. E. Strahan, and B. N. Duncan, Tropospheric ozone variability in the tropical Pacific from ENSO to MJO and shorter timescales, Atmos. Chem. Phys., 15, 8037-8049, doi:10.5194/acp-15-8037-2015, 2015.

    Labow, G. J., J. R. Ziemke, R. D. McPeters, D. P. Haffner, and P. K. Bhartia, A total ozone-dependent ozone profile climatology based on ozonesondes and Aura MLS data, J. Geophys. Res. Atmos., 120, 2537-2545, doi:10.1002/2014JD022634, 2015.

    Wargan, K., S. Pawson, M. A. Olsen, J. C. Witte, A. R. Douglass, J. R. Ziemke, S. E. Strahan, and J. E. Nielsen, The global structure of upper troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data, J. Geophys. Res. Atmos., 120, 20132036, doi:10.1002/2014JD022493., 2015.


    Year 2014:

    Cooper, O. R., and J. R. Ziemke, Tropospheric ozone, in State of the Climate in 2013, Bull. Amer. Meteorol. Soc., 95 (7), S42, doi:10.1175/2014BAMSStateoftheLimate.1, 2014.

    Cooper, O. R., D. D. Parrish, J. R. Ziemke, N. V. Balashov, M. Cupeiro, I. Galbally, S. Gilge, L. Horowitz, N. R. Jensen, J.-F Lamarque, V. Naik, S. J. Oltmans, J. Schwab, D. T. Shindell, A. M. Thompson, V. Thouret, Y. Wang, and R. M. Zbinden, Global distribution and trends of tropospheric ozone: An observation-based review, Elementa: Science of the Anthropocne, 2, 000029, doi:10.12952/journal.elementa.000029, 2014.

    Ziemke, J. R., M. A. Olsen, J. C. Witte, A. R. Douglass, S. E. Strahan, K. Wargan, X. Liu, M. R. Schoeberl, K Yang, T. B. Kaplan, S. Pawson, B. N. Duncan, P. A. Newman, P. K. Bhartia, M. K. Heney, Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI Chemical Transport Model, J. Geophys. Res. Atmos., 119, 5671-5699,doi:10.1002/2013JD020914, 2014.


    Year 2013:

    Cooper, O. R., and J. R. Ziemke, Tropospheric ozone, in State of the Climate in 2012, Bull. Amer. Meteorol. Soc., S38-S39, 2013.

    Oman, L. D., A. R. Douglass, J. R. Ziemke, J. M. Rodriguez, D. W. Waugh, and J. E. Nielsen, The ozone response to ENSO in Aura satellite measurements and a chemistry climate simulation, J. Geophys. Res., 118, 965-976, doi:10.1029/2012JD018546, 2013.


    Year 2012:

    Yuan, T., L. A. Remer, H. Bian, J. R. Ziemke, R. Albrecht, et al., Aerosol indirect effect on tropospheric ozone via cloud lightning, J. Geophys. Res., 117, D18213, doi:10.1029/2012JD017723, 2012.

    Ziemke, J. R., and S. Chandra, Development of a climate record of tropospheric and stratospheric column ozone from satellite remote sensing: Evidence of an early recovery of global stratospheric ozone, Atmos. Chem. Phys., 12, 5737-5753, doi:10.5194/acp-12-5737-2012, 2012.


    Year 2011:

    Oman, L. D., J. R. Ziemke, A. R. Douglass, D. W. Waugh, C. Lang, J. M. Rodriguez, and J. E. Nielsen, The response of tropical tropospheric ozone to ENSO, Geophys. Res. Lett., 38, L13706, doi:10.1029/2011GL047865, 2011.

    Ziemke, J. R., S. Chandra, G. J. Labow, P. K. Bhartia, L. Froidevaux, and J. C. Witte, A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements, Atmos. Chem. Phys., 11, 9237-9251, doi:10.5194/acp-11-9237-2011, 2011.


    Year 2010:

    Kar, J., J. Fishman, J. K. Creilson, A. Richter, J. R. Ziemke, and S. Chandra, Are there urban signatures in the tropospheric ozone column products derived from satellite measurements?, Atmos. Chem. Phys., 10, 5213-5222, doi:10.5194/acp-10-5213-2010, 2010.

    Ziemke, J. R., S. Chandra, L. D. Oman, and P. K. Bhartia, A new ENSO index derived from satellite measurements of column ozone, Atmos. Chem. Phys., 10, 3711-3721, 2010.

    Law, K., D. Parrish, S. Arnold, et al., Observational Evidence and Capabilities Related to Intercontinental Transport of Ozone and Particulate Matter, 2010 Hemispheric Transport of Air Pollution (HTAP) report, Eco. Comm. Europe, 2010.

    Avery, M., C. Twohy, D. McCabe, J. Joiner, K. Severance, E. Atlas, D. Blake, T. P. Bui, J. Crounse, J. Dibb, G. Diskin, P. Lawson, M. McGill, D. Rogers, G. Sachse, E. Scheuer, A. M. Thompson, C. Trepte, P. Wennberg, and J. R. Ziemke, Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4. J. Geophys. Res., 115, doi:10.1029/2009JD013450, 2010.


    Year 2009:

    Ziemke, J. R., S. Chandra, B. N. Duncan, M. R. Schoeberl, M. R. Damon, O. Torres, and P. K. Bhartia, Recent biomass burning events in the tropics and elevated concentrations of tropospheric ozone, Geophys. Res. Lett., 36, L15819, doi:10.1029/2009GL039303, 2009.

    Chandra, S., J. R. Ziemke, B. N. Duncan, T. L. Diehl, N. Livesey, and L. Froidevaux, Effects of the 2006 El Nino on tropospheric ozone and carbon monoxide: Implications for dynamics and biomass burning, Atmos. Chem. Phys., 9, 4239-4249, doi:10.5194/acp-9-4239-2009, 2009.

    Ziemke, J. R., J. Joiner, S. Chandra, P. K. Bhartia, A. Vasilkov, D. P. Haffner, K. Yang, M. R. Schoeberl, L. Froidevaux, and P. F. Levelt, Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements, Atmos. Chem. Phys., 9, 573-583, doi: 10.5194/acp-9-573-2009, 2009.


    Year 2008:

    Fishman, J., K. W. Bowman, J. P. Burrows, A. Richter, K. V. Chance, D. P. Edwards, R. V. Martin, G. A. Morris, R. B. Pierce, J. R. Ziemke, J. A. Al-Saadi, T. K. Schaack, and A. M. Thompson, et al., Remote sensing of chemically reactive tropospheric trace gases from space, Bull. Amer. Meteorol. Soc., 89 (6), 805-821, 2008.

    Duncan, B. N., J. J. West, Y. Yoshida, A. M. Fiore, and J. R. Ziemke, The influence of European pollution on ozone in the Near East and northern Africa, Atmos. Chem. Phys., 8, 2267-2283, 2008.


    Year 2007:

    Schoeberl, M. R., J. R. Ziemke, B. Bojkov, N. Livesey, B. Duncan, et al., A trajectory-based estimate of the tropospheric ozone column using the residual method, J. Geophys. Res., 112, D24S49, doi:10.1029/2007JD008773, 2007.

    Ziemke, J. R., S. Chandra, M. R. Schoeberl, L. Froidevaux, W. G. Read, P. F. Levelt, and P. K. Bhartia, Intra-seasonal variability in tropospheric ozone and water vapor in the tropics, Geophys. Res. Lett., 34, L17804, doi:10.1029/2007GL030965, 2007.

    Sauvage, B., R. V. Martin, A. van Donkelaar, and J. R. Ziemke, Quantification of the factors controlling tropical tropospheric ozone and the South Atlantic maximum, J. Geophys. Res., 112 (D11) D11309, doi:1029/2006JD008008, 2007.

    Chandra, S., J. R. Ziemke, M. R. Schoeberl, L. Froidevaux, W. G. Read, P. F. Levelt, and P. K. Bhartia, Effects of the 2004 El Nino on tropospheric ozone and water vapor, Geophys. Res. Lett., 34, L06802, doi:10.1029/2006GL028779, 2007.

    Martin, R. V., B. Sauvage, I. Folkins, C. E. Sioris, C. Boone, P. Bernath, and J. R. Ziemke, Space-based constraints on the production of nitric oxide by lightning, J. Geophys. Res., 112, D09309, doi:10.1029/2006JD007831, 2007.


    Year 2006:

    Tie, X., S. Chandra, J. R. Ziemke, C. Granier, and G. P. Brasseur, Satellite Measurements of tropospheric column O3 and NO2 in eastern and southeastern asia: Comparison with a global model (MOZART-2), J. Atmos. Chem., doi:10.1007/s10874-006-9045-7, 2006.

    Ziemke, J. R., S. Chandra, B. N. Duncan, L. Froidevaux, P. K. Bhartia, P. F. Levelt, and J. W. Waters, Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model, J. Geophys. Res., 111, D19303, doi:10.1029/2006JD007089, 2006.


    Year 2005:

    Ziemke, J. R., S. Chandra, and P. K. Bhartia, A 25-year data record of atmospheric ozone from TOMS Cloud Slicing: Implications for trends in stratospheric and tropospheric ozone, J. Geophys. Res., 110, D15105, doi:10.1029/2004JD005687, 2005.


    Year 2004:

    Chandra, S., J. R. Ziemke, X. Tie, and G. Brasseur, Elevated ozone in the troposphere over the Atlantic and Pacific Oceans in the northern hemisphere, Geophys. Res. Lett., 31, L23102, doi:10.1029/2004GL020821, 2004.


    Year 2003:

    Ziemke, J. R., and S. Chandra, A Madden-Julian Oscillation in tropospheric ozone, Geophys. Res. Lett., 30(23), 2182, doi:10.1029/2003GL018523, 2003.

    Ahn, C., J. R. Ziemke, S. Chandra, and P. K. Bhartia, Derivation of tropospheric column ozone from EPTOMS/GOES co-located data sets using the Cloud Slicing technique, J. Atmos. Solar Terr. Phys., 65 (10), 1127-1137, 2003.

    Ziemke, J. R., S. Chandra, and P. K. Bhartia, Upper tropospheric ozone derived from the Cloud Slicing technique: Implications for large-scale convection, J. Geophys. Res., 108(D13), 4390, doi:10.1029/2002JD002919, 2003.

    Chandra, S., J. R. Ziemke, and R. V. Martin, Tropospheric ozone at tropical and middle latitudes derived from TOMS/MLS residual: Comparison with a global model, J. Geophys. Res., 108(D9), 4291, doi:10.1029/2002JD002912, 2003.

    Ziemke, J. R., and S. Chandra, La Nina and El Nino induced variabilities of ozone in the tropical lower atmosphere during 1970-2001, Geophys. Res. Lett., 30(3), 1142, doi:10.1029/2002GL016387, 2003.

    Ziemke, J. R., Tropospheric data from the United States, 55-58, in "Sounding the troposphere from space: a new era for atmospheric chemistry", P. Borrell, P. M. Borrell, J. P. Burrows, and U. Platt, editors, Springer-Verlag, Germany, pp. 446, 2003.


    Year 2002:

    Chandra, S., J. R. Ziemke, P. K. Bhartia, and R. V. Martin, Tropical tropospheric ozone: Implications for dynamics and biomass burning, J. Geophys. Res., 107(D14), 4188, doi:10.1029/2001JD00044, 2002.


    Year 2001:

    Ziemke, J. R., S. Chandra, and P. K. Bhartia, "Cloud slicing": A new technique to derive upper tropospheric ozone from satellite measurements, J. Geophys. Res., 106, 9853-9867, 2001.


    Year 2000:

    Morris, G. A., J. Gleason, J. R. Ziemke, and M. R. Schoeberl, An evaluation of trajectory mapping as a tool for validation of trace gas observations, J. Geophys. Res., 105, 17,875-17,894, 2000.

    Martin, R. V., D. J. Jacob, J. A. Logan, J. R. Ziemke, and R. Washington, Detection of lightning influence on tropical tropospheric ozone using empirical orthogonal functions, Geophys. Res. Lett., 27, 1639-1642, 2000.

    Ziemke, J. R., S. Chandra, and P. K. Bhartia, A new NASA data product: Tropospheric and stratospheric column ozone in the tropics derived from TOMS measurements, Bull. Amer. Meteorol. Soc., 81, 580-583, 2000.

    Ziemke, J. R., S. Chandra, J. Herman, and C. Varotsos, Erythemal weighted ultraviolet trends over northern latitudes, Radiat. Prot. Dosim., 91, 157-160, 2000.


    Year 1999:

    Ziemke, J. R., and S. Chandra, Seasonal and interannual variabilities in tropical tropospheric ozone, J. Geophys. Res., 104, 21,425-21,442, 1999.

    Chandra S., J. R. Ziemke, and R. W. Stewart, An 11-year solar-cycle in tropospheric ozone from TOMS measurements, Geophys. Res. Lett., 26, 185-188, 1999.


    Year 1998:

    Ziemke, J. R., S. Chandra, and P. K. Bhartia, Two new methods for deriving tropospheric column ozone from TOMS measurements: The assimilated UARS MLS/HALOE and convective-cloud differential techniques, J. Geophys. Res., 103, 22,115-22,127, doi:10.1029/98JD01567, 1998.

    Chandra, S., J. R. Ziemke, W. Min, and W. G. Read, Effects of 1997-1998 El Nino on tropospheric ozone and water vapor, Geophys. Res. Lett., 25, 3867-3870, 1998.

    Ziemke, J. R., and S. Chandra, Comment on "Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A" by J. Fishman et al., J. Geophys. Res., 103, 13,903-13,906, 1998.

    Ziemke, J. R., and S. Chandra, On tropospheric ozone and the tropical wave 1 in total ozone, Atmospheric Ozone, Vol. 1, edited by R. D. Bojkov and G. Visconti, pp. 447-450, 1998.


    Year 1996:

    Ziemke, J. R., S. Chandra, A. M. Thompson, and D. P. McNamara, Zonal asymmetries in southern hemisphere column ozone: Implications of biomass burning, J. Geophys. Res., 101, 14,421-14,427, 1996.

    [return-to-top]


    TREND ANALYSIS SOFTWARE, ETC.:

    MULTIPLE LINEAR REGRESSION SOURCE CODES FOR TREND ANALYSIS AND GENERAL SCIENCE APPLICATIONS (both Fortran and IDL software - includes example programs). The trend analysis codes originate from Ziemke et al. [1997]:

    Ziemke, J. R., S. Chandra, R. D. McPeters, and P. Newman,
    Dynamical proxies of column ozone with applications to global
    trend models
    , J. Geophys. Res., 102, 6117-6129, 1997.

    (If you use the regression trend routine(s) for published work, you may if you want list this paper as the reference to these trend programs.) Ziemke et al. [1997] used a Monte Carlo statistical approach. The multi-variate statistics built into the trend code can be turned off and replaced by a Monte Carlo method by adding random noise to the independent proxies.

    FORTRAN CODE for the exact solution (i.e., angles, distances, times, orbital speeds) to the general two-body gravitational problem with two arbitrary masses.

    FORTRAN CODE for determining the locations and stability of the five Lagrangian points for the generalized three-body problem with two large masses and one infinitesimally small mass.

    Short glossary of commonly-used terms in Atmospheric Science (all pages are GIF IMAGES): PAGE1, PAGE2, PAGE3, PAGE4, PAGE5, PAGE6.

    SHORT GLOSSARY (text file) of commonly-used terms in Atmospheric Science from the University of Illinois at Urbana-Champaign.

    [return-to-top]


    CONTACT PERSON:

    Dr. Jerry R. Ziemke
    NASA Goddard Space Flight Center
    Code 614, Chemistry and Dynamics Branch
    Greenbelt, Maryland, 20771
    Office phone: 301-614-6034
    Office Fax: 301-614-5903
    Email: jerald.r.ziemke@nasa.gov
    Current Affiliation: Morgan State University, Baltimore, Maryland

    [return-to-top]


    NASA HOME GSFC HOME Web Curator: Dr. Jerry R. Ziemke (NASA GSFC Code 614 and Morgan St. Univ. GESTAR)
    Responsible NASA official: Dr. P. K. Bhartia, Atmospheric Chemistry and Dynamics Branch, NASA GSFC Code 614