NASA GODDARD HOMEPAGE FOR TROPOSPHERIC
OZONE
NASA Goddard Space Flight Center
Code 614, Chemistry and Dynamics Branch
TROPOSPHERIC OZONE DATA, MOVIES, AND IMAGES FROM AURA OMI/MLS
As members of the Aura Ozone Monitoring Instrument (OMI) science
team we are developing several tropospheric ozone data products from
OMI in combination with Aura Microwave Limb Sounder (MLS). One of
these involves OMI measurements alone to derive tropospheric and
stratospheric ozone. By combining OMI total column ozone measurements
with MLS stratospheric column ozone measurements, we are producing
global maps of OMI/MLS tropospheric ozone. Aura MLS stratospheric
ozone data were provided in collaboration with the Aura MLS team at
Jet Propulsion Laboratory, Pasadena, CA.
NOTES:
Below is the journal reference for the OMI/MLS tropospheric
ozone data:
Ziemke, J. R., S. Chandra, B. N. Duncan, L. Froidevaux, P. K. Bhartia,
P. F. Levelt, and J. W. Waters,
"Tropospheric ozone determined from Aura OMI and MLS: Evaluation
of measurements and comparison with the Global Modeling Initiative's
Chemical Transport Model", J. Geophys. Res., 111, D19303,
doi:10.1029/2006JD007089, 2006.
The following provide links to data, movies, and images involving
Aura OMI/MLS tropospheric ozone data from NASA Goddard Space Flight
Center. A link to a new ozone profile product from GMAO assimilation
has been added below. The original monthly mean clear-sky measurements
[Ziemke et al., 2006] are still being provided and updated. Please
address Jerry Ziemke (jerald.r.ziemke@nasa.gov) involving problems
or specific questions about the datasets.
MAPS OF MONTHLY-MEAN TROPOSPHERIC
COLUMN OZONE FROM OMI/MLS RESIDUAL
MEASUREMENTS:
MAPS OF MONTHLY-AVERAGED TROPOSPHERIC
MEAN VOLUME MIXING RATIO FROM OMI/MLS RESIDUAL
MEASUREMENTS:
MONTHLY MEAN CLIMATOLOGY MAPS OF TROPOSPHERIC COLUMN OZONE,
STRATOSPHERIC COLUMN OZONE, AND NCEP TROPOPAUSE PRESSURE (WMO
2K/km LAPSE RATE definition):
Click here (PDF file)
for color contour figures and information for obtaining
a 12-month climatology of OMI/MLS high resolution (1 degree latitude
by 1.25 degree longitude) tropospheric ozone, stratospheric ozone,
total column ozone, and surface UV-Index.
OZONE ENSO INDEX (OEI) MONTHLY TIME SERIES DATA
We have combined column ozone measured in tropical latitudes from
Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS,
solar backscatter ultraviolet (SBUV), and Aura ozone monitoring
instrument (OMI) to derive an El Nino-Southern Oscillation (ENSO)
index. This index, which covers a time period from 1979 to near
present, is defined as the tropospheric "Ozone ENSO Index" (OEI)
[Ziemke et al., 2010, Atmos. Chem. Phys., 2010.]
Stratospheric column ozone in tropical low latitudes has very small
longitudinal variation of only a few Dobson Units. This has been
shown in previous studies from SAGE, HALOE, and UARS/Aura MLS
stratospheric ozone satellite measurements. Because of this
characteristic, the east-west zonal variation of tropospheric column
ozone in tropical low latitudes is essentially identical to that of
total column ozone. This property of near zero zonal variation of
stratospheric column ozone is used to derive the tropospheric OEI.
The OEI is calculated by differencing total column ozone between two
broad regions in the the western and eastern tropical Pacific.
Because of near zero zonal variation of stratospheric ozone, this
differencing eliminates the stratospheric ozone signal leaving only
tropospheric ozone variation in the OEI.
There are many ENSO indices that have been developed. One commonly
used ENSO index derived from sea surface temperature (SST) anomalies
is the NOAA Nino 3.4 index. Another historic ENSO index comes from
Tahiti minus Darwin surface pressure. Both ENSO indices are well
correlated with tropospheric and total column ozone with an east-west
"dipole" signature between the eastern and western Pacific in the
tropics. (See IMAGE of temporal correlation
between total column ozone and the ENSO indices Nino 3.4 and Tahiti
minus Darwin pressure (denoted SOI in figure)). On average, a +1K
change in Nino 3.4 index coincides with about a +2.5 to +3 DU change
in OEI depending on the amount of cloud scenes included in calculation
of the OEI. The more convective cloud scenes included in calculating
the OEI, the smaller becomes the OEI sensitivity number with the Nino
3.4 ENSO index. This is likely because ozone concentrations in the
lower troposphere in the remote Pacific are characteristically low and
convective clouds inject these low concentrations into the middle and
upper troposphere, reducing tropospheric column ozone and the
calculated OEI.
The OEI is a useful diagnostic test for ocean-atmosphere climate
models of the troposphere [e.g., Oman et al., Geophys. Res. Lett.,
2011]. Such models should be capable of reproducing signatures of the
ozone ENSO index including it's sensitivity relationship with ENSO
induced changes in tropical surface pressure and sea surface
temperature.
The OEI is updated periodically on this webpage. Listed below is the
OEI monthly-mean data, and a figure of these two OEI time series
versus the Nino 3.4 sea-surface temperature ENSO index.
Below is the OEI data calculated using only clear-sky scenes
for the
satellite ozone measurements:
OEI (clear-sky condition) DATA for January 1979 (top) through
December 2018 (bottom).
Below is a JPEG figure which shows the above OEI time series
plotted with the Nino 3.4 ENSO index:
IMAGE of the OEI and Nino 3.4
ENSO indices (Note: Nino 3.4
time series was multiplied by +3 for scaling with the OEI time series)
Below is the reference paper for the ozone ENSO index:
Ziemke, J. R., S. Chandra, L. D. Oman, and P. K. Bhartia,
"A new ENSO index derived from satellite measurements of column
ozone", Atmos. Chem. Phys., 10, 3711-3721, 2010.
[return-to-top]
OTHER PUBLIC DOMAIN DATA AND IMAGES, ETC. :
Monthly-mean maps (GIF images) of tropical tropospheric column
ozone (in Dobson Units) derived from the Convective Cloud Differential
(CCD) method [Ziemke et al., 1998]:
GRIDDED TROPICAL DATA:
Data for the above tropospheric column ozone images can be obtained
at this website. The data (see DATA DOCUMENTATION
) represent monthly-means with a resolution of 5 degrees latitude
by 5 degrees longitude and are printed in ASCII format for both TROPOSPHERIC and
STRATOSPHERIC column measurements.
Stratospheric column ozone to within a few Dobson Units in the
tropics is zonally homogeneous. For this reason the stratospheric
column ozone data file gives only one value for each latitude.
There is also an IDL
PROCEDURE provided to read these data tables. At current time
these CCD data files are developed from Nimbus 7 TOMS and Earth Probe
TOMS version 8 measurements. In the future, the new Aura OMI CCD data
will be appended to continue this long time-record data set.
PACIFIC AVERAGED DATA FOR 50S TO 60N:
Pacific averaged (120W-120E) monthly mean stratospheric and
tropospheric column ozone from TOMS measurements covering the
latitudes 50S to 60N (5 degree latitude bands) can be obtained here.
The tabulated data were obtain using the CCD method. Measurements for
latitudes south of 50S and north of 60N are not included in the tables
because there are not enough suitable clouds for using the CCD method.
As with the above data tables, TOMS version 8 level-2 footprint
measurements were used to construct the data. There are two ASCII
tables, one for STRATOSPHERIC
column ozone and one for TROPOSPHERIC
column ozone. Time coverage extends from January 1979 through
December 2005. Two-sigma uncertainties in these monthly measurements
of both stratospheric and tropospheric column ozone are 5 DU. There
is an IDL PROCEDURE
provided to read these data tables. Note that in the tables the two
left-most numbers designate latitude ranges (maximum and minimum) for
the measurements. It is noted that the stratospheric column ozone
measurements outside the tropics from Earth Probe TOMS began having
problems in mid-2001. Stratospheric ozone began showing an erroneous
downward trend and a signature of a solar zenith angle dependent
calibration drift. Stratospheric data for years 2001-2005 are lower
than they should be, so that the variabilities in the measurements
should be evaluated with caution. Tropospheric ozone is not affected
directly by calibration drift (it's a differencing method) and
maintains reasonable numbers through year 2005.
SPECIAL NOTES:
All of the above data tables were determined from Nimbus 7 TOMS
(Jan79-Apr93) and Earth Probe TOMS (Aug96-Dec05) satellite
measurements. Following December 2005, Earth Probe TOMS no
longer provides data. In the future, the new Aura OMI ozone
measurements will be used to continue adding to these long time
records of stratospheric and tropospheric column ozone.
Below is the primary journal reference for the CCD data and methodology:
Ziemke, J. R., S. Chandra, and P. K. Bhartia,
"Two new methods for deriving tropospheric column ozone from TOMS
measurements: The assimilated UARS MLS/HALOE and convective-cloud
differential techniques",
J. Geophys. Res., 103, 22,115-22,127, 1998.
[return-to-top]
REFEREED PUBLICATIONS ON TROPOSPHERIC OZONE
FROM MEMBERS OF OUR RESEARCH GROUP
(NOTE: IF YOU
WISH TO HAVE A COPY OF ANY OF THESE PAPERS PLEASE SEND
A REQUEST TO THE CONTACT PERSON LISTED AT THE BOTTOM
OF THIS WEBPAGE):
McPeters, R. D., S. M. Frith, N. A. Kramarova, J. R. Ziemke,
and G. J. Labow,
"Trend Quality Ozone from NPP OMPS: the Version 2 Processing",
Atmos. Meas. Tech., in review, 2018.
Ziemke, J. R., L. D. Oman, S. A. Strode, A. R. Douglass, M. A. Olsen,
R. D. McPeters, P. K. Bhartia, L. Froidevaux, G. J. Labow,
J. C. Witte, A. M. Thompson, D. P. Haffner, N. A. Kramarova,
S. M. Frith, L. K. Huang, G. R. Jaross, C. J. Seftor, M. T. Deland,
and S. L. Taylor,
"Trends in global tropospheric ozone inferred from a composite record
of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI
simulation",
Atmos. Chem. Phys., in review, 2018.
Strode, S. A., J. R. Ziemke, L. D. Oman, L. N. Lamsal,
M. A. Olsen, and J. Liu,
"Global changes in the diurnal cycle of surface ozone",
Atmos. Env., in review, 2018.
Gaudel, Gaudel, A., O. R. Cooper, G. Ancellet, B. Barret, A. Boynard,
J. P. Burrows, C. Clerbaux, P.-F. Coheur, J. Cuesta, E. Cuevas,
S. Doniki, G. Dufour, F. Ebojie, G. Foret, O. Garcia,
M. J. Granados-Muñoz, J. Hannigan, F. Hase, B. Hassler, G. Huang,
D. Hurtmans, D. Jaffe, N. Jones, P. Kalabokas, B. Kerridge,
S. Kulawik, B. Latter, T. Leblanc, E. Le Flochmoën, W. Lin, J. Liu,
X. Liu, E. Mahieu, A. McClure-Begley, J. Neu, M. Osman, M. Palm,
H. Petetin, I. Petropavlovskikh, R. Querel, N. Rahpoe, A. Rozanov,
M. G. Schultz, J. Schwab, R. Siddans, D. Smale, M. Steinbacher,
H. Tanimoto, D. Tarasick, V. Thouret, A. M. Thompson, T. Trickl,
E. Weatherhead, C. Wespes, H. Worden, C. Vigouroux, X. Xu, G. Zeng,
and J. Ziemke,
"Tropospheric Ozone Assessment Report: Present-day distribution and
trends of tropospheric ozone relevant to climate and global
atmospheric chemistry model evaluation",
Elem. Sci. Anthrop., 6, 39. doi:https://doi.org/10.1525/elementa.291, 2018.
Ball, W.T., J. Alsing, J. Staehelin, T. Peter, D. J. Mortlock,
J. D. Haigh, F. Tummon, R. Stubli, A. Stenke, J. Anderson,
A. Bourassa, S. Davis, D. Degenstein, S. Frith, L. Froidevaux,
G. Labow, C. Roth, V. Sofieva, R. Wang, J. Wild, J. Ziemke, and
E. V. Rozanov
J. Ziemke
"Continuous decline in lower stratospheric ozone offsets ozone layer recovery",
Atmos. Chem. Phys., 18, 1379-1394, https://doi.org/10.5194/acp-18-1379-2018, 2018.
Ziemke, J. R., and O. R. Cooper,
"Tropospheric ozone, in State of the Climate in 2017",
Bull. Amer. Meteorol. Soc., 99, S56-S57, 2018.
Young, P. J., V. Naik, A. M. Fiore, A. Gaudel, J. Guo, M. Y. Lin,
J. Neu, D. D. Parrish, H. E. Rieder, J. L. Schnell, S. Tilmes,
O. Wild, L. Zhang, J. Brandt, A. Delcloo, R. M. Doherty, C. Geels,
M. I. Hegglin, L. Hu, U. Im, R. Kumar, A. Luhar, L. Murray,
D. Plummer, J. Rodriguez, A. Saiz-Lopez, M. G. Schultz, M. Woodhouse,
G. Zeng, and J. Ziemke
"Tropospheric Ozone Assessment Report: Assessment of global-scale
model performance for global and regional ozone distributions,
variability, and trends",
Elem. Sci. Anthrop., 6, doi:10.1525/elementa.265, 2018.
Ziemke, J. R., S. A. Strode, A. R. Douglass, J. Joiner,
A. Vasilkov, L. D. Omans, J. Liu, S. E. Strahan, P. K. Bhartia,
D. P. Haffner,
"A cloud-ozone data product from Aura OMI and MLS
satellite measurements",
Atmos. Meas. Tech., 10, 40674078,
https://doi.org/10.5194/amt-10-4067-2017, 2017.
Levelt, P., J. Joiner, J. Tamminen, P. Veefkind,
B. Duncan, H. Eskes, O. Torres, M. DeLand, S. Marchenko,
Q. Kleipool, K. Pickering, A. Apituley, D. Stein Zweers, S. Carn,
R. van der A, I. Ialongo, A. Arola, S. Hassinen, J. Hakkarainen,
R. McPeters, J. Ziemke, F. Boersma, N. Krotkov, D. Fu, X. Liu,
G. G. Abad, K. Chance, R. Suileman, C. Li, and P. Bhartia,
"The Ozone Monitoring Instrument: Overview of twelve years in space",
Atmos. Chem. Phys., https://doi.org/10.5194/acp-2017-487, 2017.
Strode, S. A., A. R. Douglass, J. R. Ziemke, M. Manyin,
J. E. Nielsen, and L. D. Oman,
"A Model and Satellite-Based Analysis of the Tropospheric Ozone
Distribution in Clear Versus Convectively Cloudy Conditions",
J. Geophys. Res., 122, 11,94811,960,
doi:10.1002/2017JD027015, 2017.
Ziemke, J. R., and O. R. Cooper,
"Tropospheric ozone, in State of the Climate in 2016",
Bull. Amer. Meteorol. Soc., 98, S52-S54, 2017.
Liu, J. J. M. Rodriguez, S. D. Steenrod, A. R. Douglass,
J. A. Logan, M. A. Olsen, K. Wargan, and J. R. Ziemke,
"Causes of interannual variability over the southern hemispheric
tropospheric ozone maximum",
Atmos. Chem. Phys., 17, 3279-3299,
doi:10.5194/acp-17-3279-2017, 2017.
Benedetti, A., F. Di Giuseppe, J. Flemming, A. Inness,
M. Parrington, S. Remy, and J. R. Ziemke,
"Atmospheric composition changes due to the extreme 2015
Indonesian fire season triggered by El Nino",
Bull. Amer. Meteorol. Soc. State of the Climate
in 2015, S56-S57, 2016.
Ziemke, J. R., and O. R. Cooper,
"Tropospheric ozone, in State of the Climate in 2015",
Bull. Amer. Meteorol. Soc., 97, 73-75, 2016.
Jeong, G.-R., B. M. Monge-Sanz, E.-H. Lee, and J. R. Ziemke,
"Simulation of stratospheric ozone in a global forecast model
using linear photochemistry parameterization",
Asia-Pac. J. Atmos. Sci., 52(5), 479-494,
doi:10.1007/s13143-016-0032-x, 2016.
Cooper, O. R., and J. R. Ziemke,
"Tropospheric ozone, in State of the Climate in 2014",
Bull. Amer. Meteorol. Soc., 96, 7, 548-549, 2015.
Strode, S., B. N. Duncan, E. A. Yegorova, J. Kouatchou,
J. R. Ziemke, and A. R. Douglass,
"Implications of CO model bias for methane lifetime", Atmos.
Chem. Phys., 15, 11,789-11,805, doi:10.5194/acp-15-11789-2015, 2015.
Labow, G. J., J. R. Ziemke, R. D. McPeters, D. P. Haffner,
and P. K. Bhartia,
"A total ozone-dependent ozone profile climatology based on
ozonesondes and Aura MLS data", J. Geophys. Res. Atmos.,
120, 2537-2545, doi:10.1002/2014JD022634, 2015.
Ziemke, J. R., A. R. Douglass, L. D. Oman, S. E. Strahan,
and B. N. Duncan,
"Tropospheric ozone variability in the tropics from ENSO to MJO
and shorter timescales", Atmos. Chem. Phys. Discuss., 15,
6373-6401, doi:10.5194/acpd-15-6373-2015, 2015.
Wargan, K., S. Pawson, M. A. Olsen, J. C. Witte, A. R. Douglass,
J. R. Ziemke, S. E. Strahan, and J. E. Nielsen,
"The global structure of upper troposphere-lower stratosphere
ozone in GEOS-5: A multiyear assimilation of EOS Aura data",
J. Geophys. Res. Atmos., 120,doi:10.1002/2014JD022493, 2015.
Cooper, O. R., D. D. Parrish, J. R. Ziemke, N. V. Balashov,
M. Cupeiro, I. Galbally, S. Gilge, L. Horowitz, N. R. Jensen,
J.-F Lamarque, V. Naik, S. J. Oltmans, J. Schwab, D. T. Shindell,
A. M. Thompson, V. Thouret, Y. Wang, and R. M. Zbinden,
"Global distribution and trends of tropospheric ozone: An
observation-based review", Elementa: Science of the
Anthropocne, 2, 000029, doi:10.12952/journal.elementa.000029,
2014.
Ziemke, J. R., M. A. Olsen, J. C. Witte, A. R. Douglass,
S. E. Strahan, K. Wargan, X. Liu, M. R. Schoeber, K Yang,
T. B. Kaplan, S. Pawson, B. N. Duncan, P. A. Newman,
P. K. Bhartia , M. K. Heney,
"Assessment and applications of NASA ozone data products derived
from Aura OMI/MLS satellite measurements in context of the GMI
Chemical Transport Model", J. Geophys. Res., in press, 2014.
Cooper, O. R., and J. R. Ziemke,
"Tropospheric ozone, in State of the Climate in 2013",
Bull. Amer. Meteorol. Soc., 95 (7), S42,
doi:10.1175/2014BAMSStateoftheclimate.1, 2014.
Oman, L. D., A. R. Douglass, J. R. Ziemke, J. M. Rodriguez,
D. W. Waugh,and J. E. Nielson,
"The ozone response to ENSO in Aura satellite measurments
and a chemistry-climate simulation", J. Geophys. Res.,
118, 965976, doi:10.1029/2012JD018546, 2013.
Cooper, O. R., and J. R. Ziemke,
"Tropospheric ozone, in State of the Climate in 2012",
Bull. Amer. Meteorol. Soc., S38-S39, 2013.
Ziemke, J. R., and S. Chandra,
"Development of a climate record of tropospheric and stratospheric
ozone from satellite remote sensing: Evidence of an early recovery
of global stratospheric ozone", Atmos. Chem. Phys., 12, 5737-5753,
doi:10.5194/acp-12-5737-2012, 2012.
Yuan, T., L. A. Remer, H. Bian, J. R. Ziemke, R. Albrecht, et al.,
"Aerosol indirect effect on tropospheric ozone via cloud lightning",
J. Geophys. Res., 117, D18213, doi:10.1029/2012JD017723, 2012.
Oman, L. D., J. R. Ziemke, A. R. Douglass, D. W. Waugh, C. Lang,
J. M. Rodriguez, and J. E. Nielsen,
"The response of tropical tropospheric ozone to ENSO",
Geophys. Res. Lett., 38, L13706, doi:10.1029/2011GL047865, 2011.
Ziemke, J. R., S. Chandra, G. Labow, P. K. Bhartia, L. Froidevaux,
and J. C. Witte,
"A global climatology of tropospheric and stratospheric ozone
derived from Aura OMI and MLS measurements",
Atmos. Chem. Phys., 11, 9237-9251, doi:10.5194/acp-11-9237-2011, 2011.
Ziemke, J. R., S. Chandra, L. D. Oman, and P. K. Bhartia,
"A new ENSO index derived from satellite measurements of column
ozone", Atmos. Chem. Phys., 10, 3711-3721, 2010.
Oman, L. D., D. A., Plummer, D. W. Waugh, et al.,
"Multi-model assessment of the factors driving stratospheric ozone
evolution over the 21st century", J. Geophys. Res., 115,
D24306, doi:10.1029/2010JD014362, 2010.
Kar, J., J. Fishman, J. K. Creilson, J. R. Ziemke, and S. Chandra,
"Are there urban signatures in the tropospheric ozone column products
derived from satellite measurements?" , Atmos. Chem. Phys.,
10, 5213-5222, doi:10.5194/acp-10-5213-2010, 2010.
Avery, M., C. Twohy, D. McCabe, et al.,
"Convective distribution of tropospheric ozone and tracers in the
Central American ITCZ region: Evidence from observations during
TC4", J. Geophys. Res., 115, doi:10.1029/2009JD013450, 2010.
Chandra, S., J. R. Ziemke, B. N. Duncan, T. L. Diehl,
N. J. Livesey, and L. Froidevaux,
"Effects of the 2006 El Nino on tropospheric ozone and carbon
monoxide: Implications for dynamics and biomass burning",
Atmos. Chem. Phys., 9, 4239-4249, 2009.
Ziemke, J. R., J. Joiner, S. Chandra, P. K. Bhartia, A. Vasilkov,
D. P. Haffner, K. Yang, M. R. Schoeberl, L. Froidevaux and P. F. Levelt,
"Ozone mixing ratios inside tropical deep convective clouds from
OMI satellite measurements", Atmos. Chem. Phys., 9, 573-583, 2009.
Ziemke, J. R., S. Chandra, B. N. Duncan, M. R. Schoeberl, O. Torres,
M. R. Damon, and P. K. Bhartia
"Recent biomass burning in the tropics and related changes
in tropospheric ozone", Geophys. Res. Lett., 36, L15819,
doi:10.1029/2009GL039303, 2009.
Duncan, B. N., J. J. West, Y. Yoshida, A. M. Fiore, and J. R. Ziemke,
"The influence of European pollution on ozone in the Near East
and northern Africa", Atmos. Chem. Phys., 8, 2267-2283, 2008.
Fishman, J., K. W. Bowman, J. P. Burrows, et al.,
"Remote sensing of chemically reactive tropospheric trace gases
from space", Bull. Amer. Meteorol. Soc., 805-821, June 2008.
Schoeberl, M. R., J. R. Ziemke, B. Bojkov, N. Livesey, B. N. Duncan, et al.,
"A trajectory-based estimate of the tropospheric ozone column using
the residual method", J. Geophys. Res., 112, D24S49,
doi:10.1029/2007JD008773, 2007.
Martin, R. V., B. Sauvage, I. Folkins, C. E. Sioris, C. Boone,
P. Bernath, and J. R. Ziemke
"Space-based constraints on the production of nitric oxide by
lightning", J. Geophys. Res., 112 (D9), D09309, 2007.
Sauvage, B., R. V. Martin, A. van Donkelaar, and J. R. Ziemke,
"Quantification of the factors controlling tropical tropospheric
ozone and the South Atlantic maximum", J. Geophys. Res.,
112 (D11) D11309, 2007.
Ziemke, J. R., S, Chandra, S., M. R. Schoeberl, L. Froidevaux,
W. G. Read, P. F. Levelt, and P. K. Bhartia,
"Intra-seasonal variability in tropospheric ozone and water vapor in
the tropics", Geophys. Res. Lett., 34, L17804,
doi:10.1029/2007GL030965, 2007.
Chandra, S., J. R. Ziemke, M. R. Schoeberl, L. Froidevaux, W. G. Read,
P. F. Levelt, and P. K. Bhartia,
"Effects of the 2004 El Nino on tropospheric ozone and water vapor",
Geophys. Res. Lett., 34, L06802, doi:10.1029/2006GL028779, 2007.
Ziemke, J. R., S. Chandra, B. N. Duncan, L. Froidevaux, P. K. Bhartia,
P. F. Levelt, and J. W. Waters,
"Tropospheric ozone determined from Aura OMI and MLS: Evaluation
of measurements and comparison with the Global Modeling Initiative's
Chemical Transport Model", J. Geophys. Res., 111, D19303,
doi:10.1029/2006JD007089, 2006.
Tie, X., S. Chandra, J. R. Ziemke, C. Granier, and G. P. Brasseur,
"Satellite measurements of tropospheric column O3 and NO2 in eastern
and southeastern Asia: Comparison with a global model (MOZART-2)",
J. Atmos. Chem.", doi:10.1007/s10874-006-9045-7, 2006.
Ziemke, J. R., S. Chandra, and P. K. Bhartia,
"A 25-year data record of atmospheric ozone in the Pacific from TOMS
Cloud Slicing: Implications for ozone trends in the stratosphere and
troposphere", J. Geophys. Res., 110, D15105, doi:10.1029/2004JD005687,
2005.
Chandra, S., J. R. Ziemke, X. Tie, and G. Brasseur,
"Elevated ozone in the troposphere over the Atlantic and Pacific Oceans
in the northern hemisphere", Geophys. Res. Lett., 31, L23102,
doi:10.1029/2004GL020821, 2004.
Ziemke, J. R., and S. Chandra,
"A Madden-Julian Oscillation in tropospheric ozone", Geophys. Res.
Lett., 30(23), 2182, doi:10.1029/2003GL018523, 2003.
Ahn, C., J. R. Ziemke, S. Chandra, and P. K. Bhartia,
"Derivation of tropospheric column ozone from EPTOMS/GOES co-located
data sets using the Cloud Slicing technique", J. Atmos. Solar Terr.
Phys., 65(10), 1127-1137, 2003.
Ziemke J. R., S. Chandra, and P. K. Bhartia,
"Upper tropospheric ozone derived from the Cloud Slicing technique:
Implications for large-scale convection",
J. Geophys. Res., 108(D13),
4390, doi:10.1029/2002JD002919, 2003.
Chandra, S., J. R. Ziemke, and R. V. Martin,
"Tropospheric ozone at tropical and middle latitudes derived from
TOMS/MLS residual: Comparison with a global model",
J. Geophys. Res.,
108(D9), 4291, doi:10.1029/2002JD002912, 2003.
Ziemke, J. R., and S. Chandra,
"La Nina and El Nino induced variabilities of ozone in the tropical
lower atmosphere during 1970-2001",
Geophys. Res. Lett., 30(3), 1142,
doi:10.1029/2002GL016387, 2003.
Chandra, S., J. R. Ziemke, P. K. Bhartia, and R. V. Martin,
"Tropical tropospheric ozone: Implications for dynamics and biomass
burning", J. Geophys. Res., 107(D14),
doi:10.1029/2001JD00044, 2002.
Ziemke, J. R., S. Chandra, and P. K. Bhartia,
"Cloud slicing: A new technique to derive upper tropospheric ozone
from satellite measurements",
J. Geophys. Res., 106, 9853-9867, 2001.
Martin, R. V., D. J. Jacob, J. A. Logan, J. R. Ziemke, and R. Washington,
"Detection of lightning influence on tropical tropospheric ozone using
empirical orthogonal functions",
Geophys. Res. Lett., 27, 1639-1642, 2000.
Ziemke, J. R., S. Chandra, and P. K. Bhartia,
"A new NASA data product: Tropospheric and stratospheric column ozone
in the tropics derived from TOMS measurements",
Bull. Amer. Meteorol.
Soc., 81, 580-583, 2000.
Ziemke, J. R., and S. Chandra,
"Seasonal and interannual variabilities in tropical tropospheric ozone"
,
J. Geophys. Res., 104, 21,425-21,442, 1999.
Chandra S., J. R. Ziemke, and R. W. Stewart,
"An 11-year solar-cycle in tropospheric ozone from TOMS measurements"
,
Geophys. Res. Lett., 26, 185-188, 1999.
Ziemke, J. R., S. Chandra, and P. K. Bhartia,
"Two new methods for deriving tropospheric column ozone from TOMS
measurements: The assimilated UARS MLS/HALOE and convective-cloud
differential techniques",
J. Geophys. Res., 103, 22,115-22,127, 1998.
Ziemke, J. R., and S. Chandra,
"On tropospheric ozone and the tropical wave 1 in total ozone",
in Atmospheric
ozone, Vol. 1, edited by R. D. Bojkov and
G. Visconti, pp. 447-450, 1998.
Chandra, S., J. R. Ziemke, W. Min, and W. G. Read,
"Effects of 1997-1998 El Nino on tropospheric ozone and water vapor"
,
Geophys. Res. Lett., 25, 3867-3870, 1998.
Ziemke, J. R., and S. Chandra,
"Comment on 'Tropospheric ozone derived from TOMS/SBUV measurements
during TRACE A' by J. Fishman et al.", J. Geophys. Res., 103,
13,903-13,906, 1998.
Ziemke, J. R., S. Chandra, A. M. Thompson, and D. P. McNamara,
"Zonal asymmetries in southern hemisphere column ozone: Implications of
biomass burning", J. Geophys. Res., 101, 14,421-14,427, 1996.
[return-to-top]
TREND ANALYSIS SOFTWARE, ETC.:
MULTIPLE LINEAR REGRESSION SOURCE CODES FOR
TREND ANALYSIS AND GENERAL SCIENCE APPLICATIONS (both Fortran and IDL
software - includes example programs). The trend analysis codes
originate from Ziemke et al. [1997]:
Ziemke, J. R., S. Chandra, R. D. McPeters, and P. Newman,
Dynamical proxies of column ozone with applications to global
trend models, J. Geophys. Res., 102, 6117-6129, 1997.
(If you use the regression trend routine(s) for published work, you
may if you want list this paper as the reference to these trend
programs.) Ziemke et al. [1997] used a Monte Carlo statistical
approach. The multi-variate statistics built into the trend code can
be turned off and replaced by a Monte Carlo method by adding random
noise to the independent proxies.
FORTRAN CODE for solving general N X N linear
system problems (i.e.,solves AX=B using Gauss-Jordan method).
FORTRAN CODE for numerically solving ordinary
differential equations (coupled Runge-Kutta method). This program
shows one example of a 3rd-order ODE and prints the results to an
ASCII table which can be plotted using an IDL
PLOTTING PROGRAM . The IDL program generates a postscript IMAGE.
FORTRAN CODE for Empirical Orthogonal
Function (EOF) analysis of data.
FORTRAN CODE for Fast Fourier
Transform analysis of data. The first step of Fourier analysis is to
determine prime number factorization of the time series length (Here
is a FORTRAN CODE for providing prime
number factorization). Here is also a FORTRAN CODE
for listing prime numbers.
FORTRAN CODE for the exact solution
(i.e., angles, distances, times, orbital speeds) to the general
two-body gravitational problem with two arbitrary masses.
FORTRAN CODE for determining the
locations and stability of the five Lagrangian points for the
generalized three-body problem with two large masses and one
infinitesimally small mass.
Short glossary of commonly-used terms in Atmospheric Science
(all pages are GIF IMAGES): PAGE1,
PAGE2, PAGE3,
PAGE4, PAGE5,
PAGE6.
SHORT GLOSSARY (text file) of
commonly-used terms in Atmospheric Science from the University
of Illinois at Urbana-Champaign.
FIGURE (GIF IMAGE): What is a Dobson
Unit (DU)?
FIGURE (GIF IMAGE): How is Column
Ozone Computed?
SPACE TIME HARMONIC DECOMPOSITION (GIF
IMAGE) for data with one temporal and one spatial (longitude)
variable.
[return-to-top]
CONTACT PERSON:
Dr. Jerry R. Ziemke
NASA Goddard
Space Flight Center
Code 614, Chemistry and
Dynamics Branch
Greenbelt, Maryland, 20771
Office phone: 301-614-6034
Office Fax: 301-614-5903
Email: jerald.r.ziemke@nasa.gov
Current Affiliation:
Morgan State University, Baltimore,
Maryland
[return-to-top]
 |
 |
Web Curator: Dr. Jerry R. Ziemke (NASA GSFC Code 614
and Morgan St. Univ. GESTAR)
Responsible NASA official: Dr. P. K. Bhartia, Atmospheric
Chemistry and Dynamics Branch, NASA GSFC Code 614
|