

L2-EASI

R.G.Lyon J. Herman 7/15/02

L2-EASI Draft Optical Requirements

R.G.Lyon J. Herman 7/15/02

- Fizeau Inteferometer Configuration
- 5 Telescopes => 9 non-redundant baselines
- Wavelengh range $\Delta\lambda = 1 5$ microns
- Resolution at limb = 2 km = 0.275 arcsec
 - resolution = $(2.44\lambda/B)^*z$
- Max baseline = 10 meters
 - 2.44 λ /B = resolution/range
 - B = 1.83 m at λ = 1 um
 - B = 9.15 m at λ = 5 um
- FOV = +/- 15 arcsec = 200 km at Earth limb
 - FOV ~200 km/1.5x10⁶ km ~ 30 arcsecs
- •Need optical design of:
 - •Telescopes
 - •Active Optical Bench (delay lines & FSMs)
 - Imaging optics
 - •Focal plane (filter wheels and/or dispersion method)
- Also:
 - •Boom (dynamics)
 - •Pointing & Roll

Linear Non-Redundant Hyper-telescope For *L2-EASI*

Gives 9 equally spaced non-redundant baseline pairs Maximal information w/ minimal glass area

@ $\lambda = 1.0$ micron		
В	λ / \mathbf{B}	Δx
(meters)	(arcsec)	(km)
0.00	0.0000	0.00
1.25	0.1650	1.20
2.50	0.0826	0.60
3.75	0.0550	0.40
5.00	0.0412	0.30
6.25	0.0330	0.24
7.50	0.0276	0.20
8.75	0.0236	0.17
10.0	0.0206	0.15

$\begin{array}{c} \textbf{PSF \& PRF} \\ \textbf{CO2 line } \lambda = 1.6 \text{ um, } \Delta \lambda = 20 \text{ nm} \end{array}$

R.G.Lyon J. Herman 7/15/02

PRF

 λ =1.6 um $\Delta\lambda$ =20 nm

R.G.Lyon J. Herman 7/15/02

$$\frac{e^{-}}{pixel} = \int \frac{r_0^2}{\left(r_0 + \Delta r\right)^2} F_s(\lambda) G_f T_a(\lambda, h) F(\lambda, \Delta \lambda) T_o(\lambda) q.e.(\lambda) \frac{\Delta \Omega_{pix}}{\Delta \Omega_{sun}} \frac{\lambda}{hc} d\lambda \Delta A \Delta t + \eta_e$$

- Te^- = Photo-electrons in 2km pixel at tangent height "h"
 - $r_0 = 1 \text{ AU} = 148.8 \text{x} 10^6 \text{ km}$

 $\Delta r = 1.5 \mathrm{x} 10^{6} \mathrm{km}$

 $F_s(\lambda)$ = Solar Irradiance at 1 AU (Watts/m²/um)

 G_f = Geomtetric Solar/Earth Vignetting factor (15%-20%)

 $T_a(\lambda, h)$ = Atmospheric Transmission at tangent height "h"

 $F(\lambda, \Delta \lambda)$ = Spectral Filter Transmission

$$T_o(\lambda)$$
 = Optics Transmission

 $q.e.(\lambda)$ = Detector quantum efficiency (electrons/photon) λ

 $\frac{\lambda}{hc}$ = Photons/Joule ΔA = Aperture Area (meters)

 $\Delta \Omega_{pix} / \Delta \Omega_{sun}$ = ratio of pixel sterance to solar sterance

 Δt = Detector Integration Time (secs)

 η_e = Photon & Readnoise (photo-electrons)

Tilt Sensitivity

MTF vs SupAperture Size

R.G.Lyon J. Herman 7/15/02

