
LF Fortran Express 
User’s Guide
Revision D



Copyright
Copyright © 1995-2004 Lahey Computer Systems, Inc.  All rights reserved worldwide.  Copyright © 1999-2004
FUJITSU, LTD.  All rights reserved.  Copyright © 1994-2004 Microsoft Corporation.  All rights reserved.  This
manual is protected by federal copyright law.  No part of this manual may be copied or distributed, transmitted,
transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by
any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties.

Trademarks
Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Disclaimer
Lahey Computer Systems, Inc. reserves the right to revise its software and publications with no obligation of
Lahey Computer Systems, Inc. to notify any person or any organization of such revision. In no event shall Lahey
Computer Systems, Inc. be liable for any loss of profit or any other commercial damage, including but not lim-
ited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
 865 Tahoe Boulevard

 P.O. Box 6091
Incline Village, NV 89450-6091

(775) 831-2500
Fax: (775) 831-8123

http://www.lahey.com

Technical Support
(775) 831-2500 (PRO version only)
support2@lahey.com (all versions)



Table of Contents

Getting Started........................................1

Manual Organization ....................................... 1
Notational Conventions ................................... 2
System Requirements ...................................... 2
Installing Lahey/Fujitsu Fortran 95 ................. 3
License Activation........................................... 9

License Activation....................................... 9
Activation During Installation................... 10
The License Activation Utility Program ... 11
Purchase or Upgrade License .................... 11
Activate or Reactivate a License ............... 12
Manually Activate a License..................... 13
After Activation......................................... 13

Product Registration ...................................... 14
Maintenance Updates .................................... 15
Repairing LF95.............................................. 17
Uninstalling LF95.......................................... 18
Building Your First LF95 Program ............... 18

Generating the Executable Program.......... 18
Running the Program ................................ 19

What’s Next? ................................................. 19
Other Sources of Information ........................ 19
Technical Support.......................................... 20

Developing with LF95...........................21
The Development Process ............................. 21
How the Driver Works .................................. 21
Running LF95................................................ 22

Filenames .................................................. 22
Options ...................................................... 23
Driver Configuration File (LF95.FIG) ...... 24
Command Files ......................................... 24
Passing Information................................... 24
Return Codes from the Driver ................... 25
Creating a Console-Mode Application...... 25
Creating a Windows GUI application ....... 25
Creating a 32-bit Windows DLL............... 25
Creating a static library ............................. 26
OpenGL Graphics Programs ..................... 26
Controlling Compilation ........................... 28

Errors in Compilation ................................28
Compiler and Linker Options.........................29
 Linking ..........................................................48

Link Environment Variables......................49
Additional Linker Options .........................49
Linking Fortran 95 Modules ......................49
Object File Processing Rules .....................49
Linking Libraries .......................................50

Recommended Option Settings......................50

Mixed Language Programming ...........53
Dynamically linked applications....................54

Supported language systems......................54
Declaring calling conventions ...................55
Building Fortran DLLs ..............................56
Building Import Libraries ..........................57
Delivering Applications with LF95 DLLs.58

Statically linked Fortran and C applications ..58
Calling Conventions ..................................59
Argument Passing ......................................60
Variable Type Correspondence .................61

Fortran Calling Fortran DLLs ........................69
Fortran and C applications .............................69

Fortran calling C DLLs..............................69
C Calling Fortran DLLs.............................70
Passing Data...............................................71

Microsoft Visual Basic Information...............71
Visual Basic calling Fortran ......................71
Declaring your Procedure in Visual Basic.72
Passing Character Data in Visual Basic.....72
Passing Arrays in Visual Basic ..................72

Borland Delphi Information...........................73
Delphi Calling Fortran ...............................73
Fortran Calling Delphi DLLs.....................73
Declaring your Procedure in Delphi ..........74
Passing Character Data in Delphi ..............74
Passing Arrays in Delphi ...........................75

Calling Fortran DLL’s from .NET Applications
75

Calling LF95 DLLs from Microsoft C# ....75
LF Fortran Express User’s Guide i



Contents
Calling LF95 DLLs from Microsoft Visual 
Basic .NET................................................ 76
Calling LF95 DLLs from Microsoft Visual 
C++ .NET.................................................. 77

Calling the Windows API.............................. 78
Calling assembly language procedures ......... 81

LF95 Conventions..................................... 81
Passing Arguments to Subroutines ........... 82
Returning Values from Functions ............. 90

Command-Line Debugging with FDB. 95
Starting FDB.................................................. 95
Commands..................................................... 95

Executing and Terminating a Program ..... 95
run arglist............................................. 95
Run ...................................................... 96
kill........................................................ 96
param commandline arglist ................. 96
param commandline ............................ 96
clear commandline .............................. 96
quit....................................................... 96

Shell Commands ....................................... 96
cd dir.................................................... 96
pwd ...................................................... 96

Breakpoints ............................................... 96
break [ ’file’ ] line ............................... 97
break [ ’file’ ] funcname...................... 97
break *addr .......................................... 97
break .................................................... 97
breakon [#n] ........................................ 97
breakoff [#n]........................................ 97
condition #n expr................................. 97
condition #n......................................... 98
oncebreak ............................................ 98
regularbreak "regex"............................ 98
delete location ..................................... 98
delete [ ’file’ ] line............................... 98
delete [ ’file’ ] funcname ..................... 98
delete *addr ......................................... 98
delete #n .............................................. 98
delete ................................................... 98
skip #n count ....................................... 98
onstop #n cmd[;cmd2;cmd3...;cmdn].. 98
show break........................................... 99

Controlling Program Execution.................99
continue [ count ] .................................99
silentcontinue [ count ] ........................99
step [ count ] ........................................99
silentstep [ count ]................................99
stepi  [ count ] ......................................99
silentstepi [ count ]...............................99
next [ count ] ........................................99
silentnext [ count ] .............................100
nexti [ count ] .....................................100
silentnexti [ count ] or nin [ count ] ...100
until ....................................................100
until loc ..............................................100
until *addr ..........................................100
until +|-offset......................................100
until return..........................................100

Displaying Program Stack Information...100
traceback [n] ......................................100
frame [#n] ..........................................100
upside [n] ...........................................101
downside [n] ......................................101
show args ...........................................101
show locals.........................................101
show reg [ $r ] ....................................101
show freg [ $fr ] .................................101
show regs ...........................................101
show map ...........................................101

Setting and Displaying Program Variables ...
101

set variable = value ............................101
set *addr = value ................................101
set reg = value ....................................101
print [ [:F] variable [ = value ] ].........102
memprint [:FuN ] addr .......................102

Source File Display .................................102
show source........................................102
list now...............................................103
list [ next ] ..........................................103
list previous........................................103
list around ..........................................103
list [ ’file’ ] num.................................103
list +|-offset ........................................103
list [ ’file’ ] top,bot.............................103
list [ func[tion ] funcname .................103
ii LF Fortran Express User’s Guide



Contents
disas ................................................... 103
disas *addr1 [ ,*addr2 ] ..................... 103
disas funcname .................................. 103

Automatic Display................................... 104
screen [:F] expr.................................. 104
screen ................................................. 104
unscreen [#n] ..................................... 104
screenoff [#n]..................................... 104
screenon [#n] ..................................... 104
show screen ....................................... 104

Symbols ................................................... 104
show function ["regex"]..................... 104
show variable ["regex"] ..................... 104

Scripts...................................................... 104
alias cmd  "cmd-str" .......................... 104
alias [cmd] ......................................... 104
unalias [cmd] ..................................... 105

Signals ..................................................... 105
signal sig action ................................. 105
show signal [sig]................................ 105

Miscellaneous Controls ........................... 105
param listsize num............................. 105
param prompt  "str" ........................... 105
param printelements num .................. 105
param prm.......................................... 105

Files ......................................................... 105
show exec .......................................... 105
param execpath [path] ....................... 106
param srcpath [path] .......................... 106
show source ....................................... 106
show sources...................................... 106

Fortran 95 Specific .................................. 106
breakall mdl ....................................... 106
breakall func ...................................... 106
show ffile ........................................... 106
show fopt ........................................... 106

Communicating with fdb......................... 106
Functions ........................................... 106
Variables............................................ 107
Values ................................................ 107
Addresses........................................... 107
Registers ............................................ 107
Names ................................................ 108

Library Manager..................................109
Options .........................................................109
Response Files..............................................111
Creating and maintaining COFF libraries ....111
Extracting object files from libraries............112
Creating import libraries ..............................112

Utility Programs ..................................115
DUMPBIN.EXE...........................................115

Invoking DUMPBIN................................115
DUMPBIN Options .................................115

EDITBIN.EXE.............................................117
Invoking EDITBIN ..................................117
EDITBIN Options....................................117

HDRSTRIP.F90 ...........................................119
LFSPLIT.EXE..............................................120
MAKEDEF.EXE..........................................120
SEQUNF.F90 ...............................................120
TRYBLK.F90...............................................120
UNFSEQ.F90 ...............................................120
WHERE.EXE...............................................121

Invoking WHERE....................................121

Programming Hints ............................123
Efficiency Considerations ............................123
Side Effects ..................................................123
File Formats .................................................124

Formatted Sequential File Format ...........124
Unformatted Sequential File Format .......124
Direct File Format....................................125
Transparent File Format...........................125

Determine Load Image Size.........................125
Link Time.....................................................125
Year 2000 compliance..................................126
Limits of Operation. .....................................127

Runtime Options.................................129
Command Format.........................................129
Command Shell Variable .............................129
Execution Return Values..............................130
Standard Input and Output ...........................131
Runtime Options ..........................................131

Description of Options.............................131
Shell Variables for Input/Output ..................136
LF Fortran Express User’s Guide iii



Contents
iv LF Fortran Express User’s Guide



1 Getting Started
Lahey/Fujitsu Fortran 95 (LF95) is a set of software tools for developing 32-bit Fortran appli-
cations.  LF95 is a complete implementation of the Fortran 95 standard.  The toolset includes 
a compiler, linker, debugger and librarian.

LF95 includes two manuals: the Express User’s Guide (this book), which describes how to 
use the tools; and the Language Reference, which describes the Fortran 95 language.

Manual Organization
This book is organized into six chapters and three appendices.  

• Chapter 1, Getting Started, identifies system requirements, describes the installation 
process,  and takes you through the steps of building of your first program.

• Chapter 2, Developing with LF95, describes the development process and the driver 
program that controls compilation, linking, the generation of executable programs, 
libraries, and DLLs.

• Chapter 3, Mixed Language Programming, describes building statically linked and 
dynamically linked mixed language applications, and discusses interfacing Fortran 
procedures with procedures written with other languages.

• Chapter 4, Command-Line Debugging with FDB, describes the command-line 
debugger.

• Chapter 5, Library Manager, describes command-line operation of the librarian.
• Chapter 6, Utility Programs, describes how to use the additional utility programs.
• Appendix A, Programming Hints, offers suggestions about programming in Fortran 

on the PC with LF95.
• Appendix B, Runtime Options, describes options that can be added to your execut-

able’s command line to change program behavior.
LF Fortran Express User’s Guide 1



Chapter 1    Getting Started
Notational Conventions
The following conventions are used throughout this manual:

Code and keystrokes are indicated by courier font.

In syntax descriptions, [brackets] enclose optional items.

An ellipsis, '...', following an item indicates that more items of the same form may appear.

Italics indicate text to be replaced by the programmer.

non italic characters in syntax descriptions are to be entered exactly as they appear.

A vertical bar separating non italic characters enclosed in curly braces ‘{ opt1 | opt2 | opt3 }’ 
indicates a set of possible options, from which one is to be selected.

System Requirements
• A Pentium series or compatible processor
• 32 MB of RAM
• 50 MB of available hard disk space for typical installation
• Windows 98,  Windows ME, Windows NT 4.0, Windows 2000, or Windows XP.
2 LF Fortran Express User’s Guide



Installing Lahey/Fujitsu Fortran 95
Installing Lahey/Fujitsu Fortran 95
Before starting, review the System Requirements.  Administrator rights are required for 
installation.

1. Insert disk – Lahey/Fujitsu Fortran Express v7.1
The following Lahey/Fujitsu Fortran Setup Menu will automatically display when 
the CD is inserted in the drive. If the Setup Menu does not display, run 
d:\LFSetup.exe, where d: is your CD drive..
LF Fortran Express User’s Guide 3



Chapter 1    Getting Started
2. Choose Install Lahey/Fujitsu Fortran Express v7.1 from the Setup Menu.
a. The following dialog will appear. 

Enter your serial number if you purchased this product, or leave blank to install the 
evaluation version. If you install the evaluation version at this time, you can convert 
it into a licensed version any time after purchase (see Product License Activation).  
A serial number is required to receive technical support.  

b. Follow the prompts to install this product. 
4 LF Fortran Express User’s Guide



Installing Lahey/Fujitsu Fortran 95
c. If desired, choose Custom on the Setup Type dialog to change the installation folder 
or to add or remove specific features. The following picture shows the features avail-
able for the Enterprise Edition: 

d. Select Finish when setup is complete. 
LF Fortran Express User’s Guide 5



Chapter 1    Getting Started
e. If you entered a serial number at the beginning of the setup, you will be given the 
following choice to activate your license online at this time: 
6 LF Fortran Express User’s Guide



Installing Lahey/Fujitsu Fortran 95
If online license activation is successful, you will be given the choice to register your 
product with Lahey online. You can choose to send the registration online, or create 
a file with registration information to send to Lahey. 
LF Fortran Express User’s Guide 7



Chapter 1    Getting Started
g. Finally, if online activation was successful, you will be given the choice to check for 
product updates that may be available on Lahey's website. 

The appropriate LF95 directory names are appended to the PATH, LIB, and INCLUDE envi-
ronment variables.  The variables are appended, rather than prepended, in order to be less 
obtrusive to your current configuration.  For the compiler, tools and utilities that are used as 
command-line programs, the "LF95 Console Prompt" is available on the Programs menu to 
start a console command-line with the environment variables optimally set.  To to ensure cor-
rect operation of compilers, tools, and utilities in this product, we recommend either using 
the LF95 console prompt, or editing the aforementioned environment variables to put the 
LF95 directories ahead any others.

If you are using Windows 2000 or XP, your installation is complete.  Otherwise, reboot your 
system (or log out and log in if using Windows NT) to insure that your system environment 
are properly set. You are now ready to build your first program.
8 LF Fortran Express User’s Guide



License Activation
License Activation
By default, the Lahey/Fujitsu Fortran v7.1 product is installed with licenses set up to expire 
after an evaluation period. To continue using a purchased product, the licenses must be acti-
vated. Activation is done after a product is purchased or upgraded. The License Activation 
program cannot be used to purchase a product.

When license activation takes place, it will only be valid on the PC on which it was activated. 
There are several scenarios that will cause the license to revert to a trial version:

• This product is copied, moved, or installed on another PC. 
• The hardware configuration of the PC is significantly changed. 
• The Windows operating system is reinstalled. 
• The Windows registry is reverted to a version older than the time of activation. 

If you uninstall and reinstall this product on the same PC configuration, it will still be acti-
vated. Contact sales@lahey.com when you need to reactivate your purchased license on a 
different PC.

License Activation
Product activation can be accomplished in several ways:

1. The serial number for a purchased product is entered at the beginning of the Lahey/
Fujitsu Fortran installation, and online activation takes place after the installation is 
complete. 

2. The License Activation program is run and a purchased product's serial number is 
entered for online activation. 

3. The License Activation program is run and manual codes are entered after receiving 
them from Lahey. 
LF Fortran Express User’s Guide 9



Chapter 1    Getting Started
Activation During Installation
If you entered a serial number at the beginning of the setup, at the end you will be given the 
following choice to activate your license online:

Before pressing Yes, be sure to press Proxy and enter your proxy address if you have a net-
work proxy server. When Yes is pressed, the online activation will be initiated, and you will 
be notified whether activation was successful. If successful, your product is ready to use. If 
No is pressed, or the online activation fails, you will have to activate the product by using the 
License Activation utility program, as described below.
10 LF Fortran Express User’s Guide



The License Activation Utility Program
The License Activation Utility Program
Select the License Activation shortcut from the Programs menu, under Lahey/Fujitsu Fortran 
v7.1, Product Maintenance. The following dialog will appear:

Purchase or Upgrade License 
If you have not purchased the product or wish to purchase an upgrade to a new edition, 
choose this option and press Continue. This will display a web page at www.lahey.com with 
further instructions for purchasing.

Also, choose this option if you purchased the product and already have a serial number, but 
wish to manually activate a license. The web page contains instructions.
LF Fortran Express User’s Guide 11



Chapter 1    Getting Started
Activate or Reactivate a License
If you have a purchased product serial number, choose this option to activate your license 
online. Press Continue and this dialog will appear: 

Before pressing Yes, be sure to press Proxy and enter your proxy address if you have a net-
work proxy server. When you press OK, activation will be attempted over the internet. 
12 LF Fortran Express User’s Guide



Manually Activate a License
Manually Activate a License
This option is used for several purposes: 

• Online activation is not desired, or not possible. 
• Your license needs reactivation, perhaps due to a PC change. 
• A special function needs to be performed on your license. 

After pressing Continue, the following dialog will appear:

(The User Code numbers above are examples only.)

User Code 1 and User Code 2 are numbers that need to be provided to Lahey Sales or Tech-
nical Support personnel before the License Code(s) can be given to you. Once you receive 
the License Code(s), enter them and your serial number in the dialog fields and press OK.

Note that you can press cancel after copying down the User Codes to provide to Lahey, and 
rerun the License Activation utility program at a later time to enter the License Codes.

After Activation
When a new activation has taken place, you will be presented with the choices to register 
your product with Lahey and to check for available product updates.
LF Fortran Express User’s Guide 13



Chapter 1    Getting Started
An upgrade to a new edition can be accomplished using the License Activation utility pro-
gram – the Enterprise edition will be issued a new serial number at time of purchase.

Product Registration
Please register your Lahey product. When you activate your product license, you will be 
prompted to register. Also, you can initiate the registration program by selecting the Product 
Registration shortcut from the Program menu, or register at our website, www.lahey.com.

If you move or transfer a Lahey product’s ownership, please let us know.
14 LF Fortran Express User’s Guide



Maintenance Updates
Maintenance Updates
Maintenance updates for purchased products are made available from Lahey's website. They 
comprise bug fixes or enhancements or both for this version of this product. The update pro-
gram applies "patches" to your files to bring them up-to-date. The maintenance update 
version shows as the last two-digits of the version of your compiler. This is displayed in the 
first line of output when you run the compiler

Any time you want to check the availability of a maintenance update for this version, select 
Online Update from the Programs menu, and a program will step you through the updating 
process:

Online Update will first perform a quick check and tell you whether you are up-to-date or if 
an update is available. If you choose to install the update, the necessary patch files will be 
downloaded and applied. You need to be connected to the Internet to perform the check and 
download the files.

To automatically check for updates at regular intervals at startup, press the Advanced button 
after starting Online Update and enter the interval (in days) in the Check Interval field. An 
LF Online Update icon will be added to your Windows Startup folder. At startup, Online 
LF Fortran Express User’s Guide 15



Chapter 1    Getting Started
Update will start only if the specified check interval days have passed since the last time 
Online Update was run. Thereafter, to disable automatic checking, set the check interval to 0 
(zero) days.

Another way to get the latest maintenance update for this version is by going to Lahey's web 
site at www.lahey.com and navigate to Downloads. There you will find update programs you 
can download, as well as release notes and bug fix descriptions. Once you have downloaded 
an update program, you will no longer need an Internet connection. This method is preferred 
over Online Update by those who need to update on systems that are not connected to the 
Internet, or who want the ability to revert to a previous maintenance version by saving the 
update programs.

In general, if you modify the contents of any of the files installed by this product (except 
within the Examples directory), that particular file will no longer be valid for updating, and 
the update installation program may abort with an error message.
16 LF Fortran Express User’s Guide



Repairing LF95
Repairing LF95
The repair program can be found in the Add/Remove Programs applet in the system Control 
Panel. Select Lahey/Fujitsu Fortran v7.1 and press the Change button. The Windows installer 
will launch a program and you will see this dialog:

Choosing Modify allows you to change which program features are installed.

Choosing Repair will run through the original installation and fix missing or corrupt files, 
shortcuts, and registry entries.

You can also uninstall the product by choosing Remove.
LF Fortran Express User’s Guide 17



Chapter 1    Getting Started
Uninstalling LF95
To completely remove the Lahey/Fujitsu Fortran product installation, open the Add/Remove 
Programs applet in the system Control Panel. Select Lahey/Fujitsu Fortran v7.1 and press the 
Remove button. You will be prompted to confirm the removal, then the uninstall program 
will continue.

Building Your First LF95 Program
Building and running a Fortran program with LF95 involves three basic steps:

1. Creating a source file using the Lahey ED development environment or a suitable 
non formatting text editor.

2. Generating an executable program using LF95.  The LF95 driver automatically com-
piles the source file(s) and links the resulting object file(s) with the runtime library 
and other libraries you specify.

3. Running the program.

The following paragraphs take you through steps two and three using the DEMO.F90 source 
file included with LF95.  For the sake of illustration, we will use the command line interface 
to invoke LF95, even though it is a windows application.

Generating the Executable Program
Compiling a source file into an object file and linking that object file with routines from  the 
runtime library is accomplished using the LF95.EXE driver program. 

Open a system command prompt by selecting Start|Programs|Lahey-Fujitsu Fortran v7.1|LF 
Console Prompt.  From the command prompt, build the demo program by changing to 
LF95’s EXAMPLES directory (where DEMO.F90 is installed), and entering

LF95 demo 

This causes the compiler to read the source file DEMO.F90 (the extension.F90 is assumed by 
default) and compile it into the object file DEMO.OBJ.   Once DEMO.OBJ is created, LF95 
invokes the linker to combine necessary routines from the runtime library and produce the 
executable program, DEMO.EXE.
18 LF Fortran Express User’s Guide



Running the Program
Running the Program
To run the program, type its name at the command prompt:

demo

and press Enter.  The DEMO program begins and a screen similar to the following screen 
displays:

 

You've successfully built and run the Lahey demonstration program.  

What’s Next?
For a more complete description of the development process and instructions for using 
Lahey/Fujitsu Fortran 95, please turn to Chapter 2, Developing with LF95.

Before continuing, however, please read the files readme.txt and errata.txt.  These 
contain important last-minute information and changes to the documentation.

Other Sources of Information
Files

README.HTM last-minute information
README_PORT_LF90.TXT information on porting your code from LF90
README_PORT_56.TXT information on porting your code from LF95 v5.x
README_SERVICE_ROUTINES.TXT POSIX and other service routines

             Lahey/Fujitsu LF95 Compiler
             ---------------------------
 
  installation test and demonstration program
 
              Copyright(c) 2001
         Lahey Computer Systems, Inc.
 
    -----------------
    Test/Action List:
    -----------------
     1 - factorials
     2 - Fahrenheit to Celsius conversion
     3 - Carmichael numbers
     4 - Ramanujan's series
     5 - Stirling numbers of the 2nd kind
     6 - chi-square quantiles
     7 - Pythagorean triplets
     8 - date_and_time, and other system calls
     0 - <stop this program>
 
    Please select an option by entering the
    associated number followed by <return>.    
LF Fortran Express User’s Guide 19



Chapter 1    Getting Started
IO_ERROR.TXT runtime I/O error messages
RTERRMSG.TXT other runtime error messages

Manuals
Lahey/Fujitsu Fortran 95 Language Reference
Lahey/Fujitsu Fortran 95 Express User’s Guide (this document)

Newsletters
The Lahey Fortran Source newsletter

Lahey Web Page
http://www.lahey.com

Technical Support
For the most up to date support information, please visit the support page at Lahey's website: 
www.lahey.com.
20 LF Fortran Express User’s Guide



2 Developing with LF95
This chapter describes how to use Lahey/Fujitsu Fortran 95. It presents an overview of the 
development process and describes how to build Fortran applications.  LF95 controls com-
pilation, the production of executable programs, static link libraries, and dynamic link 
libraries (DLLs).

The Development Process
Developing applications with LF95 involves the following tools:

Driver. Use the driver (LF95.EXE) to control the creation of object files, libraries, execut-
able programs, and DLLs.  LF95.EXE is often referred to as a compiler, but it is actually a 
driver that invokes the appropriate compiler, linker, and other components used to create exe-
cutables, libraries, and other products.

Library Manager.  Use the library manager to create, change, and list the contents of object 
libraries.  See Chapter 5, Library Manager, for instructions on how to use the library 
manager.

Debugger  For Windows console and GUI applications use FDB to debug your code (See 
Chapter 4, Command-Line Debugging with FDB ). 

The remainder of this chapter focuses on the driver and the processes it controls.

How the Driver Works
The driver (LF95.EXE) controls the two main processes—compilation and linking—used to 
create an executable program.  Supplemental processes, like creating static libraries, DLL’s, 
import libraries and processing Windows resources, are sometimes used depending on 
whether you are creating a DLL or a 32-bit Windows program.  These processes are per-
formed by the following programs under control of the driver:
LF Fortran Express User’s Guide 21



Chapter 2    Developing with LF95
Compiler.  The compiler compiles source files into object files and creates files required for 
using Fortran 90 modules and files needed by the linker for creating DLLs.

Library Manager. LIB.EXE is the library manager.  It can be invoked from the driver or 
from the command prompt to create or change static libraries.

Linker.  LINK.EXE is the linker. The linker combines object files and libraries into a single 
executable program or dynamic link library. The linker also adds Windows resources, like 
icons and cursors, into Windows executables, and creates import libraries for use with LF95 
dynamic link libraries (DLLs).

Resource Compiler. RC.EXE is the resource compiler. It converts Windows resource files 
(.RC files) to.RES files. .RES files can be sent to the linker, or can be converted by 
CVTRES.EXE into object files.

Running LF95
By default, the LF95 driver program will compile any specified source files and link them 
along with any specified object files and libraries into an executable program.

To run the driver, type LF95 followed by a list of one or more file names and optional com-
mand-line options:

LF95 filenames [options]

The driver searches for the various tools (the compiler, library manager, linker, and resource 
compiler) first in the directory the driver is located and then, if not found, on the DOS path.  

To display the LF95 version number and a summary of valid command-line options, type 
LF95 without any command-line options or filenames.

The command line options are discussed later in this chapter.

Filenames
Depending on the extension(s) of the filename(s) specified, the driver will invoke the neces-
sary tools.  The extensions.F95,.F90,.FOR, and.F, for example, cause the compiler to be 
invoked.  The extension .OBJ causes the linker to be invoked; the extension .RC causes the 
resource compiler to be invoked. 

Filenames containing spaces must be enclosed in quotes.

Note:  the extension .MOD is reserved for compiler-generated module files.  Do not use this 
extension for your Fortran source files.
22 LF Fortran Express User’s Guide



Options
Source Filenames
One or more source filenames may be specified, either by name or using the DOS wildcards 
* and ?.  Filenames must be separated by a space.

Example
LF95 *.f90

If the files ONE.F90, TWO.F90, and THREE.FOR were in the current directory, ONE.F90 and 
TWO.F90 would be compiled and linked together, and the executable file, ONE.EXE, would 
be created because the driver found ONE.F90 before TWO.F90 in the current directory.  
THREE.FOR would not be compiled because its extension does not match the extension spec-
ified on the LF95 command line.

Source  filenames are specified as a complete file name or can be given without an extension, 
in which case LF95 supplies the default extension .F90.  In the absence of an option speci-
fying otherwise:

.F90 and .F95 specifies interpretation as Fortran 95 free source form.

.FOR and .F specify interpretation as Fortran 95 fixed source form.

Source files for a given invocation of the driver should not mix free form and fixed form.  If 
files with both the .FOR or .F and .F90 or .F95 appear on the same command line, then all 
are assumed to use the source form the driver assumes for the last file specified.

The -fix and -nfix compiler options can be used to control the assumed extension and 
override the interpretation specified by the extension.  see “-[N]FIX” on page 35

Object Filenames
The default name for an object file is the same as the source file name.  By default, the object 
file is placed in the current directory.  

Output Filenames
The default name for the executable file or dynamic link library produced by the driver is 
based on the first source or object name encountered on the command line.  By default, output 
files are placed in the same directory as the first file encountered.  This may be overridden 
by specifying the -OUT option with a new path and name (see “-OUT filename” on page 40).  
The default extension for executable files is .EXE.  The default extension for static link librar-
ies is .LIB.  The default extension for dynamic link libraries is .dll.

Options
The driver recognizes one or more letters preceded by a hyphen (-) as a command-line 
option.   You may not combine options after a hyphen:  for example, -x and -y may not be 
entered as -xy.  

Some options take arguments in the form of filenames, strings, letters, or numbers.  You must 
enter a space between the option and its argument(s).
LF Fortran Express User’s Guide 23



Chapter 2    Developing with LF95
Example
-i incdir

If an unknown option is detected, the entire text from the beginning of the unknown option 
to the beginning of the next option or end of the command line is passed to the linker.

Conflicts Between Options
Command line options are processed from left to right.  If conflicting options are specified, 
the last one specified takes precedence.  For example, if the command line contained LF95 
foo -g -ng, the -ng option would be used.

Driver Configuration File (LF95.FIG)
In addition to specifying options on the command line, you may specify a default set of 
options in the file LF95.FIG.  When the driver is invoked, the options in LF95.FIG are pro-
cessed before those on the command line.  Command-line options override those in 
LF95.FIG.  The driver searches for LF95.FIG first in the current directory and then, if not 
found, in the directory in which the driver is located. 

Command Files
If you have too many options and files to fit on the command line, you can place them in a 
command file.  Enter LF95 command line arguments in a command file in exactly the same 
manner as on the command line.  Command files may have as many lines as needed.  Lines 
beginning with an initial # are comments.

To process a command file, preface the name of the file with the @ character.  When LF95 
encounters a filename that begins with @ on the command line, it opens the file and processes 
the commands in it.

Example
LF95 @mycmds

In this example, LF95 reads its commands from the file mycmds.

Command files may be used both with other command-line options and other command files.  
Multiple command files are processed left to right in the order they are encountered.

Passing Information
The LF95 driver uses temporary files for sending information between the driver and pro-
cesses it controls.  These files are automatically created using random names and are deleted 
when the process is complete.
24 LF Fortran Express User’s Guide



Return Codes from the Driver
Return Codes from the Driver
When the LF95 driver receives a failure return code, it aborts the build process.  The driver 
will return an error code depending on the success of the invoked tools.  If a linker or resource 
compiler error occurs, LF95 exits with the exit code from the failing tool.  Other return codes 
are listed below:

Note that there may be overlap between exit codes presented in Table 1 and exit codes passed 
through from a tool.

Creating a Console-Mode Application
LF95 creates Windows console-mode executables by default, so no options need be 
specified.

Example
LF95 MYPROG.F90

Creating a Windows GUI application
To create a Windows GUI application, either with a third-party package (such as Winter-
acter, GINO, or RealWin) or by calling the Windows API’s directly, specify the -win option.  
To call the Windows API’s directly, you must also specify the -ml winapi option (see ”-
ML { bc | bd | fc | lf90 | lf95 | msvb | msvc | winapi }”  on page 39 and ”Calling the Windows 
API”  on page 78 for more information).  Note that console I/O is not permitted when using 
the -win option.

Example
LF95 MYPROG.F90 -win

Creating a 32-bit Windows DLL
To create a 32-bit Windows DLL, use the -dll option.

Table 1: Driver Return Codes

Code Condition

0 Successful compilation and link

1
Compiler or tool failed to run or 
fatal compilation error occurred

2 Library Manager error

4 Driver error

5 Help requested
LF Fortran Express User’s Guide 25



Chapter 2    Developing with LF95
Example
LF95 myprog.f90 -dll -win -ml msvc

In this example, the source file MYPROG.F90 contains procedures with DLL_EXPORT state-
ments.  The following takes place:

1. MYPROG.F90 is compiled to create MYPROG.OBJ.
2. MYPROG.OBJ is automatically linked with the LF95 runtime library to create 

MYPROG.DLL and MYPROG.LIB, the corresponding import library.  Calling conven-
tions in this case are those expected by Microsoft Visual C/C++.

For more information on DLLs, see ”Dynamically linked applications”  on page 54.

Creating a static library
To create a static library, specify the library name using the -out option.

Example
LF95 mysub.f90 -out mylib.lib

LF95 recognizes that a library is requested because of the .lib extension for the output file.  
This causes LF95 to invoke the library manager rather than the linker.  If the library specified 
with -out does not exist, it is created; if it already exists, it is updated.

OpenGL Graphics Programs
OpenGL is a software interface for applications to generate interactive 2D and 3D computer 
graphics independent of operating system and hardware operations.  It is essentially a 2D/3D 
graphics library which was originally developed by Silicon Graphics with the goal of creating 
an efficient, platform-independent interface for graphical applications (Note: OpenGL is a 
trademark of Silicon Graphics Inc.).  It is available on many Win32 and Unix systems, and 
is strong on 3D visualization and animation. 

f90gl is a public domain implementation of the official Fortran 90 bindings for OpenGL, con-
sisting of a set of libraries and modules that define the function interfaces.  The f90gl 
interface was developed by William F. Mitchell of the Mathematical and Computational Sci-
ences Division, National Institute of Standards and Technology, Gaithersburg, in the USA.  
For information on f90gl, see the f90gl web page at:

http://math.nist.gov/f90gl

The OpenGL Libraries
To use f90gl/OpenGL you will need three OpenGL DLL's installed in your Windows SYS-
TEM or SYSTEM32 directory: 

OPENGL32.DLL
GLU32.DLL
GLUT32.DLL
26 LF Fortran Express User’s Guide



OpenGL Graphics Programs
The first two of these libraries are a standard part of Windows NT4, 2000, XP, 95(OSR2), 98 
and Me.  Many video card manufacturers now also provide accelerated OpenGL support as 
part of their video drivers.   These drivers may replace the functionality of these two DLL's.

GLUT32.DLL is not part of the standard Windows distribution.  GLUT32.DLL will be 
installed in the System or System32 (NT) directory by the installation program.

The f90gl Libraries & Modules
The f90gl interface on the f90gl website is posted in source form only.  For many users this 
is unsuitable since it requires a C compiler and a certain level of technical expertise in build-
ing the interface. In the case of Lahey LF95, which uses the Microsoft linker, f90gl is best 
built using Microsoft Visual C.  

This product eliminates the need for C compilers by providing pre-built f90gl modules and 
libraries suitable for use with Lahey LF95 5.7 and newer.  The sources for f90gl are not 
included here since they are not required (as noted, they are available from the f90gl website).

Example Programs
A subset of the f90gl examples are supplied in the LF95 EXAMPLES directory.  A Run-
Demos.bat file is included to build and run all of the examples.

Compilation and linking of f90gl programs simply requires that the LF95 LIB directory be 
specified in the compiler module path and that the names of the f90gl libraries are specified 
for linking. Specify -win to create a Windows program. See the RUNDEMOS.BAT file for 
command line examples. These are substantially simplified from the somewhat complex 
MF8N?O.BAT equivalents supplied with the f90gl distribution.

Example programs:

• Blender - two rotating objects, one red, one green, which fade in and out, plus some 
text.

• Fbitfont - some text

• Fscene - three 3D objects in red. The right mouse button brings up a menu. Redraw 
is really slow in outline mode on some machines.

• Logo - the f90gl logo. Rotate with the mouse while holding the left mouse button. 
Right mouse button brings up a menu. Middle mouse button selects a new value on 
the color bars (rgb sliders).

• Modview - contains a module for using the mouse and arrow keys to rotate, zoom, 
pan and scale. Initially the left button rotates (hold button down while moving 
mouse), middle button zoom, arrow keys pan, and right button brings up a menu.

• Olympic - the olympic rings come flying into position. Restart the animation with the 
space bar; terminate with escape.
LF Fortran Express User’s Guide 27



Chapter 2    Developing with LF95
• Plotfunc - plots a function of two variables as contours, a surface mesh, or a solid 
surface. Uses the modview module. Right button brings up a menu.

• Scube - a rotating cube in front of a background. Right mouse button brings up a 
menu.  There are also keyboard keys for the same functions as on the menu (look for 
keyboard in the source code).

• Sphere - a red sphere.

Sources of Information
General inquiries and bug reports regarding f90gl should be sent to: 

william.mitchell@nist.gov.

Lahey specific issues should be directed to support2@lahey.com.

OpenGL information can be found at http://www.opengl.org.

Controlling Compilation
During the compilation phase, the driver submits specified source files to the compiler for 
compilation and optimization.  If the -c (compile only) option is specified, processing will 
stop after the compiler runs and modules are created (if necessary).  See ”-[N]C”  on page 
30.  Otherwise, processing continues with the appropriate action depending on what sort of 
output file is requested.

Errors in Compilation
If the compiler encounters errors or questionable code, you may receive any of the following 
types of diagnostic messages (a letter precedes each message, indicating its severity):

U:Unrecoverable error messages indicate it is not practical to continue 
compilation.
S:Serious error messages indicate the compilation will continue, but no object file 
will be generated.
W:Warning messages indicate probable programming errors that are not serious 
enough to prevent execution.  Can be suppressed with the -nw or -swm option.
I:Informational messages suggest possible areas for improvement in your code and 
give details of optimizations performed by the compiler.  These are normally sup-
pressed, but can be seen by specifying the -info option (see ”-[N]INFO”  on page 
36).

If no unrecoverable or serious errors are detected by the compiler, the DOS ERRORLEVEL is 
set to zero (see ”Return Codes from the Driver”  on page 25).  Unrecoverable or serious 
errors detected by the compiler (improper syntax, for example) terminate the build process, 
and the DOS ERRORLEVEL is set to one.  An object file is not created.
28 LF Fortran Express User’s Guide



Compiler and Linker Options
Compiler and Linker Options
You can control compilation and linking by using any of the following options.  These 
options are not case sensitive.  Some options apply only to the compilation phase, others to 
the linking phase, and still others (-g and -win) to both phases; this is indicated next to the 
name of the option.  If compilation and linking are performed separately (i.e., in separate 
command lines), then options that apply to both phases must be included in each command 
line.

Compiling and linking can be broken into separate steps using the -c option.  Unless the -c 
option is specified, the LF95 driver will attempt to link and create an executable after the 
compilation phase completes.  Specifying -c anywhere in the command line will cause the 
link phase to be abandoned and all linker options to be ignored.

Note also that linker options may be abbreviated as indicated by the uppercase characters in 
the option name.  For example, the -LIBPath option can be specified as either -libpath or 
-libp.  Some linker options require a number as an argument.  By default, all numbers are 
assumed to be decimal numbers.  A different radix can be specified by appending a radix 
specifier to the number.  The following table lists the bases and their radix specifiers:

The underscore character (‘_’) can be used in numbers to make them more readable:  
80000000h is the same as 8000_0000h.

-[N]AP 
Arithmetic Precision

Compile only. Default: -nap

Specify -ap to guarantee the consistency of REAL and COMPLEX calculations, regardless 
of optimization level; user variables are not assigned to registers.  Consider the following 
example:

Table 2: Radix Specifiers

Base Radix Specifier Example of 32 in base

2 B or b 10000b

8 Q or q 40q

10 none 32

16 H or h 20h
LF Fortran Express User’s Guide 29



Chapter 2    Developing with LF95
Example
  X = S - T
2 Y = X - U
...
3 Y = X - U

By default (-nap), during compilation of statement 2, the compiler recognizes the value X is 
already in a register and does not cause the value to be reloaded from memory.  At statement 
3, the value X may or may not already be in a register, and so the value may or may not be 
reloaded accordingly.  Because the precision of the datum is greater in a register than in mem-
ory, a difference in precision at statements 2 and 3 may occur.

Specify -ap to choose the memory reference for non INTEGER operands; that is, registers 
are reloaded.  -ap must be specified when testing for the equality of randomly-generated 
values.

The default, -nap, allows the compiler to take advantage of the current values in registers, 
with possibly greater accuracy in low-order bits.

Specifying -ap will usually generate slower executables.

-BLOCK blocksize
Default blocksize
Compile only. Default:  8192 bytes

Default to a specific blocksize for file I/O (See the OPEN Statement in the LF95 Language 
Reference).  blocksize must be a decimal INTEGER constant.  Specifying an optimal block-
size can make an enormous improvement in the speed of your executable.  The program 
TRYBLOCK.F90 in the SRC directory demonstrates how changing blocksize can affect exe-
cution speed.  Some experimentation with blocksize in your program is usually necessary to 
determine the optimal value.

-[N]C
Suppress Linking
Compile only. Default:  -nc

Specify -c to create object (.OBJ), and, if necessary, module (.MOD) files without creating 
an executable.  This is especially useful in make files, where it is not always desirable to per-
form the entire build process with one invocation of the driver.

-[N]CHK [([a][,e][,s][,u][,x])]
Checking
Compile only. Default:  -nchk

Specify -chk to generate a fatal runtime error message when substring and array subscripts 
are out of range, when non common variables are accessed before they are initialized, when 
array expression shapes do not match, and when procedure arguments do not match in type, 
attributes, size, or shape.
30 LF Fortran Express User’s Guide



Compiler and Linker Options
Note: Commas are optional, but are recommended for readability.

Specifying -chk with no arguments is equivalent to specifying -chk (a,e,s,u).  Specify 
-chk with any combination of a, e, s, u and x to activate the specified diagnostic checking 
class.

Specification of the argument x must be used for compilation of all files of the program, or 
incorrect results may occur.  Do not use with 3rd party compiled modules, objects, or librar-
ies.  Specifically, the x argument must be used to compile all USEd modules and to compile 
program units which set values within COMMONs.  Specifying the argument x will force 
undefined variables checking (u), and will increase the level of checking performed by any 
other specified arguments.

If -chk (a) is specified in conjunction with -pca, the action of -chk (a) is overridden by the 
action of -pca.  In this case, no error is generated when a dummy argument that is associated 
with a constant actual argument is assigned a new value in the subprogram.

Specifying -chk (u) checks for undefined variables by initializing them with a bit pattern.  
If that bit pattern is detected in a variable on the right side of an assignment then chances are 
that the variable was uninitialized.  Unfortunately, you can get a false diagnostic if the vari-
able holds a value that is the same as this bit pattern.  This behavior can be turned off by not 
using the u argument to the -chk option.  The values used with -chk (u) are:

One-byte integer: -117

Two-byte integer: -29813

Four-byte integer: -1953789045

Eight-byte integer: -8391460049216894069

Default real: -5.37508134e-32

Double precision real: -4.696323204354320d-253

Quadruple precision real: -9.0818487627532284154072898964213742q-4043

Table 3: -chk Arguments

Diagnostic Checking Class Option Argument

Arguments a

Array Expression Shape e

Subscripts s

Undefined variables u

Increased (extra) x
LF Fortran Express User’s Guide 31



Chapter 2    Developing with LF95
Default complex: (-5.37508134e-32,-5.37508134e-32)

Double precision complex: (-4.696323204354320d-253,-4.696323204354320d-
253)

Quadruple precision complex: (-9.0818487627532284154072898964213742q-
4043, -90818487627532284154072898964213742q-4043)

Character : Z’8B’

Specifying -chk adds to the size of a program and causes it to run more slowly, sometimes 
as much as an order of magnitude. It forces -trace and removes optimization by forcing 
-o0.  Some of the arguments to the -chk option may severely impact program execution 
speed, depending on the source code.  Eliminating unneeded options will improve speed.

Example
LF95 myprog -chk (a,x)

instructs the compiler to activate increased runtime argument checking and increased unde-
fined variables checking.

The -chk option will not check bounds (s) in the following conditions:

• The referenced expression has the POINTER attribute or is a structure one or more 
of whose structure components has the POINTER attribute.

• The referenced expression is an assumed-shape array.
• The referenced expression is an array section with vector subscript.
• The referenced variable is a dummy argument corresponding to an actual argument 

that is an array section.
• The referenced expression is in a masked array assignment.
• The referenced expression is in a FORALL statement or construct.
• The referenced expression has the PARAMETER attribute.
• The parent string is a scalar constant.

Undefined variables (u) are not checked if:
• Subscript checking (s) is also specified, and diagnostic message 0320-w, 0322-w, or 

1562-w is issued.
• The referenced expression has the POINTER attribute or is a structure variable one 

of whose structure components has the POINTER attribute.
• The referenced expression has the SAVE attribute.
• The referenced expression is an assumed-shape array.
• The referenced expression is an array section with a vector subscript.
• A pointer variable is referenced.
• The referenced variable is a dummy argument corresponding to an actual argument 

that is an array section.
• The referenced expression is in a masked array assignment.
• The referenced expression is in a FORALL statement or construct."
32 LF Fortran Express User’s Guide



Compiler and Linker Options
-[N]CHKGLOBAL
Global Checking
Compile only. Default: -nchkglobal

Specify -chkglobal to generate compiler error messages for inter-program-unit diagnos-
tics, and to perform full compile-time and runtime checking.

The global checking will only be performed on the source which is compiled within one invo-
cation of the compiler (the command line).  For example, the checking will not occur on a 
USEd module which is not compiled at the same time as the source containing the USE state-
ment, nor will the checking occur on object files or libraries specified on the command line.

Because specifying -chkglobal forces -chk (x), specification of -chkglobal must be 
used for compilation of all files of the program, or incorrect results may occur.  Do not use 
with 3rd-party-compiled modules, objects, or libraries.  See the description of -chk for more 
information.

Global checking diagnostics will not be published in the listing file.  Specifying -chkglo-
bal adds to the size of a program and causes it to run more slowly, sometimes as much as an 
order of magnitude.  It forces -chk (a,e,s,u,x), -trace, and removes optimization by 
forcing -o0.

-[N]CO
Compiler Options
Compile and link.  Default:  -co

Specify -co to display current settings of compiler options; specify -nco to suppress them.

-COMMENT comment
Insert comment into executable file
Link only.  Default:  no comment

Specify -comment to insert a comment line into an executable file.  If comment contains 
space or tab characters, it must be enclosed in double quotes.

-[N]CONCC
Support carriage control characters in console I/O
Compile only. Default: -concc

Specify -nconcc to turn off Fortran carriage control processing for console I/O.

-[N]DAL
Deallocate Allocatables
Compile only.  Default:  -dal
LF Fortran Express User’s Guide 33



Chapter 2    Developing with LF95
Specify -dal to deallocate allocated arrays that do not appear in DEALLOCATE or SAVE 
statements when a RETURN, STOP, or END statement is encountered in the program unit 
containing the allocatable array.  Note that -ndal will suppress automatic deallocation for 
Fortran 95 files (automatic deallocation is standard behavior in Fortran 95).

-[N]DBL
Double
Compile only.  Default:  -ndbl

Specify -dbl to extend all single-precision REAL and single-precision COMPLEX vari-
ables, arrays, constants, and functions to 64 bit double-precision.  If you use -dbl, all source 
files (including modules) in a program should be compiled with -dbl.  Specifying -dbl may 
or may not result in a somewhat slower executable.

-[N]DLL
Dynamic Link Library
Link only.  Default:  -ndll

Specify -dll to create a 32-bit Windows dynamic link library (for more information, see 
”Dynamically linked applications”  on page 54).

-[N]F95
Fortran 95 Conformance
Compile only.  Default:  -nf95

Specify -f95 to generate warnings when the compiler encounters non standard Fortran 95 
code.

Note that -nf95 allows any intrinsic data type to be equivalenced to any other intrinsic type.

-FILE filename
Filename
Compile and link.  Default:  not present

Precede the name of a file with -file to ensure the driver will interpret filename as the name 
of a file and not an argument to an option.

Example
On the following command line, bill.f90 is correctly interpreted as a source file:

LF95 -checksum -file bill.f90

On this next command line, bill.f90 is not recognized as a source file.  The driver passes 
the unrecognized option, -checksum, to the linker and assumes the following string, 
“bill.f90”, is an argument to the -checksum option.

LF95 -checksum bill.f90
34 LF Fortran Express User’s Guide



Compiler and Linker Options
On this last command line, -file is not necessary.  The order of driver arguments allows 
unambiguous interpretation:

LF95 bill.f90 -checksum

-[N]FIX
Fixed Source Form
Compile only.  Default:  -nfix for .f90 and .f95 files; -fix for .for and .f files

Specify -fix to instruct the compiler to interpret source files as Fortran 90 fixed source form 
regardless of the file extension.  -nfix instructs the compiler to interpret source files as For-
tran 90 free source form regardless of the file extension.

Example
LF95 @bob.rsp bill.f90

If the command file BOB.RSP contains -fix, BILL.F90 will be interpreted as fixed source 
form even though it has the free source form extension .F90. 

LF95 assumes a default file extension of .f90.  Specifying -fix causes LF95 to assume a 
default file extension of .for.

All source files compiled at the same time must be fixed or free.  LF95 doesn’t compile files 
(including INCLUDE files) that mix both fixed and free source form.

-[N]G
Debug
Compile and link.  Default:  -ng

Specify -g to instruct the compiler to generate an expanded symbol table and other informa-
tion for the debugger.  -g automatically overrides any optimization option and forces -o0, 
no optimizations, so your executable will run more slowly than if one of the higher optimi-
zation levels were used.  -g is required to use the debugger.  Supplemental debug information 
is stored in a file having the same name as the executable file with extension .ydg.  If the fol-
lowing error message appears during linking

fwdmerg:[error] Terminated abnormally. (signal 11)

It means that the .ydg file was not created (contact Technical Support if this happens).  

This option is required to debug if a separate link is performed.

-I path1[;path2 ...]
Include Path
Compile only.  Default:  current directory

Instruct the compiler to search the specified path(s) for Fortran INCLUDE files after searching 
the current directory.  Separate multiple search paths with a semicolon, not spaces.  If a space 
appears as part of a pathname, the entire path must be enclosed in quotes.
LF Fortran Express User’s Guide 35



Chapter 2    Developing with LF95
Example
LF95 demo -i ..\project2\includes;..\project3\includes

In this example, the compiler first searches the current directory, then searches 
..\project2\includes and finally ..\project3\includes for INCLUDE files speci-
fied in the source file DEMO.F90

-[N]IN
Implicit None
Compile only.  Default:  -nin

Specifying -in is equivalent to including an IMPLICIT NONE statement in each program 
unit of your source file:  no implicit typing is in effect over the source file.

When -nin is specified, standard implicit typing rules are in effect.

-[N]INFO 
Display Informational Messages
Compile only.  Default:  -ninfo

Specify -info to display  informational messages at compile time. Informational messages 
include such things as the level of loop unrolling performed, variables declared but never 
used, divisions changed to multiplication by reciprocal, etc.

-[N]INLINE [(arg[,arg[,...]])]
Inline Code
Compile only.  Default:  -ninline

Specify -inline to cause user-defined procedures to be inserted inline at the point they are ref-
erenced in the calling code.  This option only affects code which is in the same source file as 
the calling procedure.  Intrinsic functions, module procedures and internal procedures are not 
inlined.

Multiple arguments are separated by commas. At least one argument must be present. 

If arg is a number, any user defined procedure with total lines of executable code smaller than 
arg is inlined.  This argument may only appear once in the argument list.

If arg is a number with the letter capital “K” appended, arrays which have a size less than arg 
kilobytes are inlined.  Inlining arrays can enhance the optimization abilities of the compiler. 
This argument may only appear once in the argument list.

If arg is a procedure name, or comma separated list of procedure names, the named proce-
dures are inlined.

If arg is absent, all procedures having fewer than 30 lines of code and all local data are 
inlined.

Use of the -inline option may cause long compile times, and may lead to very large 
executables.
36 LF Fortran Express User’s Guide



Compiler and Linker Options
-[N]LI 
Lahey Intrinsic Procedures
Compile only.  Default:  -li

Specify -nli to avoid recognizing non standard Lahey intrinsic procedures.

-LIBPath dir1[,dir2 ...]
Library Path
Link only.  Default: current directory.

The -LIBPATH option allows specification of one or more directories to be searched for  
libraries.  Note that all necessary library files must still be called out in the command line.

Example
LF95 main.obj -libpath d:\mylibs -lib mine.lib

-[N]LONG
Long Integers
Compile only.  Default:  -nlong

Specify -long to extend all default INTEGER variables, arrays, constants, and functions to 
64 bit INTEGER.  If you use -long, all source files (including modules) in a program should 
be compiled with -long.  

-[N]LST [(f=fval[,i=ival])]
Listing
Compile only.  Default:  -nlst

Specify -lst to generate a listing file that contains the source program, compiler options, 
date and time of compilation, and any compiler diagnostics.  The compiler outputs one listing 
file for each compile session.  By default, listing file names consist of the root of the first 
source file name plus the extension .lst.

You may optionally specify f for the listing file name, or i to list the contents of INCLUDE 
files.

fval specifies the listing file name to use instead of the default.  If a file with this name already 
exists, it is overwritten.  If the file can't be overwritten, the compiler aborts.  If the user spec-
ifies a listing file name and more than one source file (possibly using wild cards) then the 
driver diagnoses the error and aborts.

ival is one of the characters of the set [YyNn], where Y and y indicate that include files should 
be included in the listing and N and n indicate that they should not.  By default, include files 
are not included in the listing.

Example
LF95 myprog -lst (i=y)
LF Fortran Express User’s Guide 37



Chapter 2    Developing with LF95
creates the listing file myprog.lst, which lists primary and included source.  Note that 
-xref overrides -lst.

See also
“-[N]XREF [(f=fval[,i=ival])]”

-[NO]MAP filename
Change map file name
Link only.  Default:  create a map file with same name as output file

The -MAP option is used to specify a name for the linker map file.  The linker map file is a 
text file describing the output load image.  The map file contains the following information:

• names of the input object files,
• a list of the segments comprising the program, and
• a list of the public symbols in the program.

By default, the linker produces a map file each time a program is linked.  The default name 
of the map file is the name of the output file, with its extension changed to .MAP.  Any path 
information specifying a directory where the output file is to be placed also applies to the map 
file.

The -MAP option renames or relocates the map file.  The option takes a single argument, 
which is the path and name of the map file to be produced.  If no path information is specified 
in the map file name, then it is placed in the current directory.

The linker can be prevented from producing a map file with the -NOMAP option.  The option 
takes no arguments.  The -NOMAP option is useful to make the linker run faster, since no time 
is spent writing a map file.  The option is also a good way to save disk space, because map 
files can be quite large.

Examples
LF95 moe.obj larry.obj curly.obj -map stooges.nuk

LF95 hello.obj -nomap

-[N]MAXFATALS number
Maximum Number of Fatal Errors
Compile only.  Default:  -maxfatals 50

Specify -maxfatals to limit the number of fatal errors LF95 will generate before aborting.  
If no argument is specified, the driver will abort with an error message.

If -nmaxfatals is specified, no argument is allowed.
38 LF Fortran Express User’s Guide



Compiler and Linker Options
-ML { bc | bd | fc | lf90 | lf95 | msvb | msvc | winapi }
Mixed Language 
Compile and Link.  Default:  -ml lf95

Specify the -ml option if your code calls or is called by code written in another language or 
if your code will call procedures in DLLs created by LF95.   -ml affects name mangling for 
procedure names in DLL_IMPORT, DLL_EXPORT, and ML_EXTERNAL statements.  See 
”Mixed Language Programming”  on page 53 for more information.

Use bc for Borland C++; bd for Borland Delphi; msvb for Microsoft Visual Basic; msvc 
for Microsoft Visual C++; fc for Fujitsu C; LF95 for LF95; LF90 for LF90; and winapi 
for accessing the Windows API directly.

-MLDEFAULT { bc | bd | fc | lf90 | lf95 | msvb | msvc | winapi }
Mixed Language Default
Compile only.  Default:  -mldefault lf95

Specify the -mldefault option to set the default target language name decoration/calling con-
vention for all program units.  Use the -ml option to alternatively affect name mangling only 
for procedure names in DLL_IMPORT, DLL_EXPORT, and ML_EXTERNAL statements.

Use bc for Borland C++; bd for Borland Delphi; msvb for Microsoft Visual Basic; msvc 
for Microsoft Visual C++; fc for Fujitsu C; LF95 for LF95; LF90 for LF90; and winapi 
for accessing the Windows API directly.

-MOD dir1[;dir2 ...]
Module Path
Compile only.  Default:  current directory

Specify -mod dir to instruct the compiler to search the specified directory for previously 
compiled LF95 module files (.MOD).  If source code containing a module is being compiled, 
the module .MOD and .OBJ files will be placed in the first directory specified by dir.  

When a program that uses a module is linked, the module's object file (or library name) must 
be provided on the command line.  See ”Linking Fortran 95 Modules”  on page 49 for more 
information and examples.

Example
LF95 modprog mod.obj othermod.obj -mod ..\mods;..\othermods

In this example, the compiler first searches ..\mods and then searches ..\othermods.  
Any module and module object files produced from modprog.f90 are placed in ..\mods.

-NOLOGO
Linker Banner
Link only.  Default:  show linker logo 

Suppress the LINK version and copyright message.
LF Fortran Express User’s Guide 39



Chapter 2    Developing with LF95
{ -O0 | -O1 | -O2 }
Optimization Level
Compile only.  Default:  -o1

Specify -o0 to perform no optimization.  -o0 is automatically turned on when the -g option 
or the -chk option is specified.  see “-[N]G” on page 35

Specify -o1 to perform optimization of object code.

Specify -o2 to perform additional optimizations. This optimization level implements full 
unrolling of nested loops, loop splitting to promote loop exchange, and array optimizations. 
Use of the -o2 option may significantly impact compilation speed. Use the -unroll option to 
limit the level of loop unrolling.

-O filename
Object Filename
Compile only.  Default:  name of the source file with the extension .OBJ

Specify -o filename to override the default object file name.  The compiler produces an 
object file with the specified name.  If multiple source file names are specified explicitly or 
by wildcards, -o causes the driver to report a fatal error.

-OUT filename
Output Filename
Link only.  Default:  the name of the first object or source file.  

If -out is not specified, the output file is not automatically placed in the current directory.  
By default it is placed in the same directory as the first source or object file listed on the com-
mand line.  

This option takes a single argument, which is the path and name of the output file.  If filename 
contains no path information, the output file is placed in the current directory.

If the file extension .EXE is specified, an executable file will be created.  If no extension is 
specified with the -ndll option (default), the .exe extension is assumed.

If the file extension .dll is specified, a dynamic-link library will be created.  If no extension 
is specified with the -dll option, the .dll extension is assumed.

If the file extension .LIB is specified, and the specified library file does not exist, it will be 
created.  If the specified library already exists, it will be updated.  

Examples
LF95 hello.obj -out d:\LF95\hello.exe
LF95 main.obj -out maintest

-[N]PAUSE
Pause After Program Completion
Compile only.  Default:  -npause
40 LF Fortran Express User’s Guide



Compiler and Linker Options
Specifying -pause will cause the executable program to wait for a keystroke from the user 
at program completion, before returning to the operating system.  This option can be used to 
keep a console window from vanishing at program completion, allowing the user to view the 
final console output.  If -npause is specified, the console window will vanish at program 
completion if the program is invoked from Windows Explorer or the Start menu, or if the 
console is generated by a Windows GUI application.

See also
-WIN and -WINCONSOLE

-[N]PCA
Protect Constant Arguments
Compile only.  Default:  -npca

Specify -pca to prevent invoked subprograms from storing into constants.  The -pca option 
will silently protect constant arguments and does not produce any warnings.

If -pca is specified in conjunction with -chk (a), the action of -chk (a) is overridden by the 
action of -pca.  In this case, no error is generated when a dummy argument that is associated 
with a constant actual argument is assigned a new value in the subprogram.

Example
call sub(5)

print *, 5

end

subroutine sub(i)

i = i + 1

end

This example would print 5 using -pca and 6 using -npca.

-[N]PREFETCH [{ 1 | 2 }]
Generate prefetch optimizations
Compile only.  Default:   -nprefetch

Prefetch optimizations can improve performance on systems which support prefetch instruc-
tions, such as Pentium III and Athlon systems.  

The prefetch 1 option causes prefetch instructions to be generated for arrays in loops.  The 
prefetch 2 option generates optimized prefetch instructions.  Because Pentium 4 chips imple-
ment prefetch in hardware, the use of -prefetch can adversely affect performance on those 
systems.  Performance will be program dependent.  Try each prefetch option (-nprefetch, 
-prefetch 1, or -prefetch 2) to determine which works best with your code.  The 
-prefetch option will be ignored if -o0 or -g are used.

Please note: code generated with -prefetch is not compatible with processors made before the 
Pentium III or Athlon.
LF Fortran Express User’s Guide 41



Chapter 2    Developing with LF95
-[N]PRIVATE
Default Module Accessibility
Compile only.  Default:  -nprivate

Specify -private to change the default accessibility of module entities from PUBLIC to 
PRIVATE (see PUBLIC and PRIVATE statements in the Language Reference).

-[N]QUAD
Quadruple Precision
Compile only.  Default:  -nquad

Specify -quad to extend all double-precision REAL and double-precision COMPLEX vari-
ables, arrays, constants, and functions to 128 bit REAL and COMPLEX respectively.  
Specifying -quad forces -dbl, so using -quad causes the precision of all REAL variables 
to be doubled.  

If you use -quad, all source files (including modules) in a program should be compiled with 
-quad.  Specifying -quad will usually result in significantly slower executables.  All excep-
tions are trapped by default.  This behavior can be overridden using the NDPEXC subroutine 
or the ERRSET service subroutine (see the file ReadMe_Service_Routines.txt).

-[N]SAV
SAVE Local Variables
Compile only.  Default:  -nsav

Specify -sav to save local variables in between subprogram invocations.  -nsav causes 
local variables to be stored on the stack, and their value is not retained in between subpro-
gram invocations.  -sav is equivalent to having a SAVE statement in each subprogram 
except that -sav does not apply to local variables in a recursive function whereas the SAVE 
statement does.  Specifying -sav will cause your executable to run more slowly, especially 
if you have many procedures.  Specifying -nsav may sometimes require more stack space 
than provided by default (see ”-STACK reserve[:commit]”  on page 42).

-[n]SSE2
Optimize using streaming SIMD extensions
Compile only. Default: -nsse2

Specify -sse2 to optimize code using the streaming SIMD (Single Instruction Multiple 
Data)extensions. This option may only be specified if -tp4 is also specified.

-STACK reserve[:commit]
Stack Size
Link only.  Default: -stack 1000000h

The -STACK option specifies the size of the stack area for a program.  The option must be 
followed by a numeric constant that specifies the number of bytes to be allocated to the stack.
42 LF Fortran Express User’s Guide



Compiler and Linker Options
reserve is the maximum size of the stack
commit is the increment used when increasing the stack size during runtime

A space must appear between the option and reserve. 

If a stack segment is already present in the program, then the -STACK option changes the size 
of the existing segment.  The linker will only increase the size of the existing stack area.  If 
an attempt is made to decrease the size of the stack area, the linker issues an error.

LF95 does not allocate local variables on the stack except in these cases:

• Procedures with RECURSIVE keyword
• Procedures with the AUTOMATIC statement/attribute

The LF95 compiler does not have a compiler option to output the required stack size.

A program will not necessarily allocate the maximum amount of stack at the time it is loaded 
into memory.  If it needs more stack during execution, it will dynamically increase the stack. 

If your program exceeds the maximum amount of stack at runtime, increase the stack size 
with -STACK.  Note that some recursive procedures and files with large arrays compiled with 
-nsav can use very large amounts of stack.

Examples
LF95 hello.obj -stack 2000000

LF95 howdy.obj -stack 2000000:10000

-[N]STATICLIB
Static or Dynamic Linking of Fortran Runtime Libraries
Link only.  Default:  -staticlib

Specify -nstaticlib to dynamically link an executable or DLL with the Fortran runtime 
libraries in DLL form.  

Specify -staticlib to statically link the Fortran runtime libraries with your executable or 
DLL.

-[N]STATICLINK
Static Link 
Compile only.  Default: -nstaticlink

Specify -staticlink with -win and -ml to link statically with code produced by another 
supported language system.  See ”Statically linked Fortran and C applications”  on page 58 
for more information.

-[N]STCHK
Stack Overflow Check
Compile only.  Default:  -stchk
LF Fortran Express User’s Guide 43



Chapter 2    Developing with LF95
Specify -nstchk to cause the compiler not to generate code for stack overflow checking.  
Though your program may execute faster, the stack is not protected from growing too large 
and corrupting data.

-[N]SWM msgno

Suppress Warning Message(s)

Compile only.  Default: -nswm

To suppress a particular error message, specify its number after -swm.

Example

-swm 16,32

This example would suppress warning messages 16 and 32.  To suppress all warnings, use 
-nw.

{ -TP | -TPP | -TP4 }
Target Processor

Compile only.  Default:  set on installation

Specify -tp to generate code optimized for the Intel Pentium or Pentium MMX processors, 
or their generic counterparts.

Specify -tpp to generate code optimized for the Intel Pentium Pro, Pentium II, Pentium III, 
or Celeron processors, or their generic counterparts. 

Specify -tp4 to generate code optimized for the Intel Pentium 4 processors. 

Please note: 

Code generated with -tp4 is not compatible with processors made previous to the Pentium 4.

Code generated with -tpp is not compatible with processors made earlier than the Pentium 
Pro.

-[N]TRACE
Location and Call Traceback for Runtime Errors

Compile and Link.  Default:  -trace

The -trace option causes a call traceback with procedure names and line numbers to be gen-
erated with runtime error messages.  
44 LF Fortran Express User’s Guide



Compiler and Linker Options
-[N]TRAP [d][i][o][u]
Trap NDP Exceptions
Compile only.  Default:  -ntrap

The -trap option specifies how each of four numeric data processor (NDP) exceptions will 
be handled at execution time of your program.

Specify -trap with any combination of  d, i, o, and u to instruct the NDP chip to generate 
an interrupt when it detects the specified exception(s) and generate an error message.  At least 
one argument must be specified when the -trap option is used.  

Note that the zero divide exception for two and four byte integers is always handled by hard-
ware, and is not affected by the trap option.

Note that trapping cannot be disabled when -quad is specified, except by using the NDPEXC 
subroutine or the ERRSET service subroutine (see the file ReadMe_Service_Routines.txt).

-[N]UNROLL [(limit)]
Compile only.  Default:  -unroll

Loop unrolling
Specify -unroll (limit) to control the level of loop unrolling.  

limit is a number in the range 2 ≤ limit ≤ 100 enclosed with parenthesis, and denotes the max-
imum level of loop expansion.

If limit is omitted, the value of limit is determined by the compiler. 

Note that -O0 causes -nunroll to be sent to the compiler by default, but this can be overridden 
by specifying -O0 -unroll.

-[N]VARHEAP [(size)]
Compile only.  Default:  -nvarheap

Place local variables on heap
Specify -varheap to cause local variables to be allocated on the heap rather than on the stack.

Table 4: NDP Exceptions

NDP Exception Option Argument

Divide-by-Zero d

Invalid Operation i

Overflow o

Underflow u
LF Fortran Express User’s Guide 45



Chapter 2    Developing with LF95
size is a number greater than 4095 enclosed in parenthesis. It is the minimum variable size in 
bytes that will be placed on the heap.  Variables smaller than size bytes are not placed on the 
heap.

If size is omitted, it defaults to 4096. 

Use the -varheap option when creating programs that have large local arrays.  If you notice 
that increasing the size of a local array causes a stack overflow, using -varheap may alleviate 
this condition.

Note that the -varheap option does not apply to variables having the SAVE attribute, which 
includes initialized variables.

-VERSION
Display Version, Copyright and Registration Information
Disables compile and link.  Default: none

The -version option causes the compiler version, copyright and  registration information 
to be printed.  Any other options specified on the command line are ignored.

-[N]W 
Compiler Warnings
Compile only.  Default:  -w

Specify -nw to suppress compiler warning and informational messages. 

-WARN, -FULLWARN
Linker Warnings
Link only.  Default:  no warnings

The linker detects conditions that can potentially cause run-time problems but are not neces-
sarily errors.  LF95 supports two warning levels:  -warn, and -fullwarn.

-warn enables basic linker warning messages.

-fullwarn provides the maximum level of warning and informational messages. 

-[N]WIDE 
Extend width of fixed source code
Compile only.  Default:  -nwide

Using the -wide option causes the compiler to accept fixed form source code out to column 
255. The default is to accept code out to column 72

-WIN or -WINCONSOLE
Windows
Compile and link.  Default:  -winconsole
46 LF Fortran Express User’s Guide



Compiler and Linker Options
Specifying -winconsole will create a console mode application.  A Windows console will 
be created if the program is invoked from Windows Explorer, a menu selection, or a program 
icon, and it will disappear after program completion unless the -pause option is specified.  
If the program is invoked from the command line of an existing console, all console I/O will 
be performed within that console.

Specifying -win will create a Windows mode application.  Under Windows 9x, console I/O 
is not permitted if the -win option was specified.  Console I/O with -win is allowed if your 
program is running under a newer Windows operating system.  If your program reads from 
or writes to standard output, a console will be created and will disappear upon program 
completion.

See also
-[N]PAUSE

-[N]WO
Warn Obsolescent
Compile only.  Default:  -nwo

Specify -wo to generate warning messages when the compiler encounters obsolescent For-
tran 95 features.

-[N]XREF [(f=fval[,i=ival])]
Cross-Reference Listing
Compile only.  Default:  -nxref

Specify -xref to generate cross-reference information.  This information is shown in the list-
ing file in addition to the information that the -lst option would provide.  Note that -xref 
overrides -lst.  By default, cross reference file names consist of the root of the source file 
name plus the extension .lst.

You may optionally specify f for the listing file name, or i to list the contents of INCLUDE 
files.

fval specifies the listing file name to use instead of the default.  If a file with this name already 
exists, it is overwritten.  If the file can't be overwritten, the compiler aborts.  If the user spec-
ifies a listing file name and more than one source file (possibly using wild cards) then the 
driver diagnoses the error and aborts.

ival is one of the characters of the set [YyNn], where Y and y indicate that include files should 
be included in the listing and N and n indicate that they should not.  By default, include files 
are not included in the listing.

Example
LF95 myprog -xref(i=y)

creates the cross reference file myprog.lst and outputs cross reference information for the 
source file.
LF Fortran Express User’s Guide 47



Chapter 2    Developing with LF95
See also
-[N]LST

-[N]ZERO
Include Variables Initialized to Zero
Compile only.  Default:  -zero

Specifying -zero will cause all variables which have been explicitly initialized to zero to be 
given initialization values in the object file.

Specifying -nzero will cause explicit initializations to zero to not be given initialization val-
ues in the object file, but to be initialized at load time.  This will cause object files created 
with  -nzero to potentially be much smaller.

Note that specifying the -CHK (u) option will diagnose undefined variables that are not 
explicitly initialized or assigned by your Fortran code, even when -zero is specified.

-[N]ZFM
Enable zero flush mode for SSE2 instructions
Compile only.  Default:  -nzfm

Specify -zfm to enable zero flush mode for SSE2 instructions.  This option may only be spec-
ified if -sse2 and -tp4 are also specified.

Note that using -zfm will disable trapping for floating underflow.  If an underflow condition 
occurs during execution of an SSE2 instruction, the affected variable is set to zero.  If this 
behavior presents a problem, use the -nzfm option to guarantee that the underflow exception 
is thrown.

 Linking
Linking an application should always be done under the control of the LF95 driver; it is not 
necessary to separately invoke LINK.EXE.  Linking will occur automatically, as long as the 
-c option is not specified.  Any combination of source, object, library, and resource files can 
be provided on the LF95 command line, and LF95 will first compile files using the Fortran 
or resource compiler, depending on the extension of the specified file, and then invoke the 
linker.

During the link phase, the driver submits object files, object file libraries, and compiled 
resource files to the linker.  The linker reads individual object files and libraries, resolves ref-
erences to external symbols, and writes out a single executable file or dynamic link library.  
The linker can also create a map file containing information about the segments and public 
symbols in the program.
48 LF Fortran Express User’s Guide



Link Environment Variables
Link Environment Variables

LINK

The linker will examine the LINK environment variable, and will use any linker 
options it finds. If any conflicting options are specified on the command line, they 
will override those in the environment variable.

LIB

The linker will examine the LIB environment variable, and will use any path infor-
mation it finds when searching for libraries or object files.

Additional Linker Options
In addition to the link options described in the above section, Microsoft-specific link options 
which are not documented here may be used on the LF95 command line.  These options 
should be specified with a hyphen (-), not a slash (/) and are sent to the linker unmodified.  
The linker is fully documented on Microsoft’s web site at:

http://msdn.microsoft.com

Linking Fortran 95 Modules
An object file that is created when compiling a module is treated like any other object file.  
When linking a program that uses a module, the module’s object file must be provided to the 
linker along with the rest of the program.  This can be done in one of several ways: 

• If the module was already compiled, the object file can be provided along with the 
other filenames that comprise the program at the time the program is linked.

• If several modules are being used, their object files may be placed in a static library, 
and the library name can be supplied when linking.

• The module source can be compiled and linked at the same time as the other source 
files that make up the program.  This can be done by specifying all the source that 
makes up the program on the LF95 command line without specifying the -c option.  
If this is done, the module source files should appear on the command line before any 
source files that use the module, and the executable name should be specified using 
the -out option.

Object File Processing Rules
Object files are processed in the order in which they appear on the command line.  If  an 
object file has no path information, it is searched for first in the current directory, and then in 
any directories listed in the LIB environment variable.
LF Fortran Express User’s Guide 49



Chapter 2    Developing with LF95
Linking Libraries
No special switch is needed to indicate that a library is to be linked, the driver is able to infer 
that the file is a library due to the .lib extension.  A library should be specified by listing the 
library file name with the .lib extension on the command line in the same way that a source 
or object file is specified.

Libraries are searched in the order in which they appear on the LF95 command line.  If mul-
tiple libraries contain the same object, the first object encountered is linked, and any duplicate 
objects in subsequent libraries are ignored.

If a library file is specified without path information, the linker looks for it in the following 
order:

1. In the current working directory
2. In any directories specified with the -LIBPATH option.
3. In any directories specified in the LIB environment variable.

Recommended Option Settings
If an lf95.fig file exists in the current directory, examine its contents to insure that it con-
tains the desired options.  

For debugging, the following option settings will provide an increased level of diagnostic 
ability, both at compile time, and during execution:

  -chk -g -trace -info

The -pca option may be additionally be used to check for corruption of constant arguments. 
If the results are correct with -pca but bad with -npca a constant argument has been 
corrupted.

For further analysis during development, consider specifying any of the following options:

 -ap -chkglobal -f95 -lst -sav -wo -xref

(Note: Specifying -chkglobal or -chk (x) must be used for compilation of all files of the 
program, or incorrect results may occur.)

For production code, we recommend the following option settings:

-nap -nchk -nchkglobal -ndal -ng -o1 -npca -nsav -nstchk 
-ntrace

Use -tp, -tpp, or -tp4 depending on your preferred target processor.

Note
• Use of -tpp will require that the program be run on a Pentium pro processor or later.

• Use of -tp4 will require that the program be run on a Pentium 4 processor or later.
50 LF Fortran Express User’s Guide



Recommended Option Settings
For additional optimization, experiment with the -nprefetch, -prefetch 1 or 
-prefetch 2 options and select the one which provides the best performance.

If the program performs many I/O operations, consider tuning the blocksize with the -block 
option.

Programs may be tuned with the -o2 and the -inline option to increase optimization and to 
inline code and data.

If the target processor is a Pentium III or Athlon, consider experimenting with the 
-nprefetch, -prefetch 1 or -prefetch 2 options to select the one which provides 
the best performance.

If the target processor is a Pentium 4, consider tuning with the -sse2 and -zfm options.

If optimization produces radically different results or causes runtime errors, try compiling 
with -info to see exactly which steps are being taken to optimize.  The -info option also 
generates warnings on sections of code that are unstable and therefore may cause problems 
when optimized.  A common example of such code is an IF statement that compares floating-
point variables for equality.  When optimization seems to alter the results, try using the -ap 
option to preserve arithmetic precision while still retaining some optimization.
LF Fortran Express User’s Guide 51



Chapter 2    Developing with LF95
52 LF Fortran Express User’s Guide



3 Mixed Language 
Programming
Mixed language programming is the process of melding code created by different program-
ming languages into an executable program.  There are two possible ways that this might be 
accomplished: by creating object files with different compilers that are linked into a single 
executable (static linking); or by creating a dynamic link library with one language, and call-
ing procedures from the library using the other language (dynamic linking).  Static linking 
mixes the different language parts into a single executable program which is self contained.  
Dynamic linking keeps the different language parts separate, and results in two separate enti-
ties, a DLL created with one language, and an executable created with the other language.

Regardless of the method chosen to create a mixed language application, two basic problems 
need to be overcome by the programmer in order to be successful:  

• The first problem involves how each language system names its procedures, and how 
names from one language system can be recognized by the other language system.  
Each procedure needs to know how the other is named, so that each can call and be 
called by the other within the execution environment.  If the translation between the 
different naming conventions is not properly done, the programmer will not be able 
to link the different program parts together, because linker errors concerning unre-
solved symbols will occur.  Resolving the naming problem involves declaring any 
Fortran procedure names that are to be called from another language, declaring the 
other language procedure names that will be called in Fortran, and telling LF95 what 
calling convention is being used at compile time with the -ml compiler option.  If a 
DLL is being used, a “translation” between the exported DLL procedures and how 
Fortran declares the procedures is provided in the form of an import library.  

LF95 code that calls or is called by another language makes the name available by 
giving it the DLL_IMPORT, DLL_EXPORT or ML_EXTERNAL attribute.  The 
DLL_IMPORT attribute is used when calling a procedure from a DLL.  The 
DLL_EXPORT attribute is used to make a procedure name externally available when 
creating a Fortran DLL.  The ML_EXTERNAL attribute is used to make a procedure 
from another language available to Fortran or making a Fortran procedure available 
LF Fortran Express User’s Guide 53



Chapter 3    Mixed Language Programming
to be called from another language when static linking.  At compilation time, any 
procedure names having one of these attributes are ‘decorated’ to match the calling 
convention specified by the -ML option.

• Secondly, in order to be useful, the procedures need to be able to pass information 
back and forth in a way that both can understand and utilize.  This involves the pass-
ing of arguments to a subroutine or function, passing a function result between 
language systems, and how basic data types are interpreted by each language system.  
If arguments are not passed or interpreted correctly, the result can be unpredictable, 
and can range from nonsense answers to the program crashing with an “illegal oper-
ation” message.  The arguments passing problem is addressed for each supported 
language system, described in subsequent sections.

Dynamically linked applications
A dynamically linked application consists of two parts: a separately created dynamic link 
library (DLL), and an executable program which references the DLL.  A DLL is a collection 
of subprograms packaged together as an executable file, not a library file.  Even though it is 
in the form of an executable, a DLL cannot run on its own.  The functions and subroutines in 
a DLL are called from a .EXE file that contains a main program.  

With LF95 you can create 32-bit DLLs for use with the language systems in the table below.  
Console I/O in the Fortran code is not recommended in Windows GUI applications, but just 
about everything else that is supported under Windows will work.  Calls can be made from 
Fortran to Fortran, from Fortran to another language, and from another language to Fortran.  
Note that issuing a STOP statement from within a Fortran DLL will cause the entire program 
to terminate.  If you are calling DLL procedures from a language system other than LF95, 
please refer to that language system’s DLL documentation for more information.

Supported language systems
Lahey/Fujitsu Fortran 95 supports DLL calling conventions for the following languages 
systems:
54 LF Fortran Express User’s Guide



Declaring calling conventions
Declaring calling conventions
In order to reference a procedure across a DLL interface, the LF95 compiler must be 
informed of the procedure name to be exported, and given a calling convention for the exter-
nal names in your DLL.  The procedure names that will be externally available are defined 
with the DLL_EXPORT and DLL_IMPORT statements (see “DLL_EXPORT Statement” and 
“DLL_IMPORT Statement” in the LF95 Language Reference).  Please note that procedure 
names appearing in a DLL_EXPORT or DLL_IMPORT statement are case sensitive (unlike the 
Fortran naming convention, which ignores case).  DLL_EXPORT is used to define an exter-
nally available DLL procedure, and DLL_IMPORT is used when referencing a DLL 
procedure.  The calling convention is defined with the use of the -ML compiler option.  You 
cannot mix -ml options in a single invocation of LF95.  If you need to reference DLLs from 
multiple languages you can do so by putting the references in separate source files and com-
piling them separately.  

Table 5: Compiler Support for Lahey DLLs

Language System Version

Lahey/Fujitsu LF95 5.0 and later

Lahey LF90 2.01 and later

Borland C++ 5.0 and later

Borland Delphi 2.0 and later

Microsoft Visual C++ 2.0 and later

Microsoft Visual Basic 4.0 and later
LF Fortran Express User’s Guide 55



Chapter 3    Mixed Language Programming
LF95 can build DLLs callable from Microsoft Visual Basic, however, Microsoft Visual 
Basic does not build DLLs callable by LF95.  Assembly procedures may be called from For-
tran procedures, however the use of DOS interrupts is not supported.  

Building Fortran DLLs
When you create a Fortran DLL, you must indicate the procedures that you want to export 
from the DLL with the DLL_EXPORT attribute.  The procedures may be subroutines or func-
tions.  When mixing languages, the function results must be of type default INTEGER, 
REAL, or LOGICAL.  The case of the name as it appears in the DLL_EXPORT and 
DLL_IMPORT statements is preserved for external resolution except when the -ml lf90 
option is used; within the Fortran code the case is ignored, i.e., Foo is the same as FOO.  Note 
that the compiler allows you to build your DLL from multiple .OBJ files.

Example code
function half(x)

  integer, dll_export :: half ! name is case-sensitive

  integer :: x

  half = x/2

end

The code must be compiled using one of the options shown in Table 6, “-ML Options,” on 
page 56.  When the -dll option specified, a DLL is created and a Microsoft-compatible 
import library is generated.

Example build command
lf95 -dll -win -ml msvc half.f90

Table 6: -ML Options

Option Compiler

-ml lf95 Lahey/Fujitsu Fortran 95

-ml lf90 Lahey Fortran 90

-ml bc Borland C++

-ml bd Borland Delphi

-ml msvc Microsoft Visual C++ 

-ml msvb Microsoft Visual Basic

-ml winapi Windows API functions invoked directly from Fortran 
56 LF Fortran Express User’s Guide



Building Import Libraries
The above command creates the files half.dll and half.lib which are compatible with 
Microsoft Visual C.

Building Import Libraries
A Microsoft-compatible import library is automatically generated whenever LF95 is used to 
create a DLL.  When an LF95 program that calls a DLL is linked, a Microsoft-compatible 
import library must be provided.  Usually, the vendor that supplies the DLL will also provide 
a Microsoft-compatible import library.  Additional information on import libraries can be 
found in Chapter 5, Library Manager under the heading ”Creating import libraries”  on page 
112.

Building import libraries from object files
If the user is building a non Fortran DLL on site for use with LF95, and a Microsoft-compat-
ible import library is not created, an import library can be generated from the object files 
using LIB.EXE.  Doing this entails making a definition file which contains the names of the 
exported procedures, and running  LIB with the following command:

LIB /def:defile.def file1.obj file2.obj /out:implib.lib

Where:
defile.def is the name of the definition file.  Lahey provides a utility “MAKEDEF.EXE” to 
generate definition files given a DLL.  Alternatively, the DUMPBIN utility can be used to list 
exported symbols from the DLL; then the definition file can be created by hand.  Note that 
any export that appears in the definition file must be present in the object file, otherwise an 
unresolved reference will occur when the LIB command is executed.  If this happens, it is 
usually sufficient to remove the unresolved reference from the definition file.

file1.obj and file2.obj are object files that were used to build the DLL.

implib.lib is the name of the import library to be produced.

Building import libraries when no object file is available
Occasionally, the situation occurs when only a DLL is available, without an import library or 
object files.  If the user knows how to call the DLL procedure from Fortran, an import library 
can be generated using a stub program.  A stub program is a skeleton that contains function 
or subroutine statements including any argument calling sequences, argument declarations, 
a DLL_EXPORT statement, and end statement, but no other source code - much like a proce-
dure would appear inside an interface block.  The stub file is compiled to create an LF95 
object file, using an appropriate -ml option, and -c.  Once the stub object file is created, 
the import library can be generated using the instructions in the preceding section: “Building 
import libraries from object files”.  During execution of the LIB command, a warning con-
cerning duplicate symbols may appear, if a non Microsoft convention is used, but it can be 
disregarded.  Note that -ml lf95 should never be used to create import libraries from stubs.  
Code that calls the DLL should be compiled using the same -ml option that was used to com-
pile the stub file.  Note that the definition file that is used when creating the import library 
LF Fortran Express User’s Guide 57



Chapter 3    Mixed Language Programming
should only contain procedure names that appear in the stub file, otherwise unresolved refer-
ences will occur when the LIB command is executed.  An example of creating import 
libraries using stubs appears in the EXAMPLES\MIX_LANG\BD directory.

Building non Microsoft import libraries for Fortran DLLs
If the user wishes to build an import library for a Fortran DLL that is called from a language 
that does not accept Microsoft-compatible import libraries, the 3rd party language will usu-
ally provide a method of generating a compatible import library, such as Borland’s 
IMPLIB.EXE.  In some cases, the 3rd party linker may provide commands that enable DLL 
references to be resolved.  Consult the documentation provided with the 3rd party compiler 
and tools for instructions on resolving references to DLL procedures.

Examples of how to build Fortran callable DLLs from non Fortran languages, and how to 
generate Microsoft compatible import libraries from non Microsoft object files reside in 
directories under the EXAMPLES\MIX_LANG directory.

Delivering Applications with LF95 DLLs
When you deliver applications built with LF95 DLLs, you must include the DLLs and asso-
ciated import libraries you created.  At runtime, all of the DLLs must be available on the path 
or in a directory that Windows checks for DLLs.  

Statically linked Fortran and C applications
Statically linked applications consist of a single executable file that contains all of the exe-
cutable code and static data in the program.  LF95 can link statically with code produced with 
Microsoft Visual C/C++ and Fujitsu C (FCC).  LF95 is also static link compatible with object 
code created with Borland C/C++, but at this time it is not possible to reliably call C runtime 
procedures from Borland C.

Much of the following information is provided courtesy of  Kenneth G. Hamilton --- 7-Oct-
1998.

There are several reasons why you may wish to call a C function from your Fortran code.  For 
example, you may have the C source code for a function that you need, but not want to take 
the time to recode it into Fortran.  Or, you may wish to take advantage of some feature of C, 
such as unsigned integers, that is not available in Fortran.  Additionally, many current oper-
ating systems, including Microsoft Windows, are written in C and the authors have not seen 
fit to document the interface to the system services in any other language.

You should, however, keep in mind that as a consequence of the extensive use of pointer 
arithmetic, C code ultimately cannot be optimized as well as Fortran.  Most examples of fast, 
efficient, C code are the result of a great deal of programmer labor, just as is the case in 
assembly language coding. 
58 LF Fortran Express User’s Guide



Calling Conventions
Building statically linked applications

The information on building a statically linked program is the same as for dynamic linking 
(described above) with the following exceptions:

• Specify the -staticlink and -ml options on the LF95 command line (do not spec-
ify -dll).

• Use ML_EXTERNAL instead of DLL_IMPORT or DLL_EXPORT in your Fortran source 
match the calling conventions of Visual C++ at compile time.  If using Fujitsu C, 
calling conventions can be matched by following the instructions in the section 
”Calling Conventions”  on page 59.  

• You must have a Fortran main program.

• Import libraries are not included on the LF95 command line (import libraries are spe-
cific to DLLs).

• Fortran common blocks are aligned on one-byte boundaries.  To align your C struc-
tures along one-byte boundaries, use the /Zp1 option or the pack pragma with 
Microsoft Visual C++.  Use the -a- option or the option -a- pragma with Borland 
C++.  Note that use of these options should be limited to files or sections of code that 
require one-byte alignment; one-byte alignment can cause slower access to C struc-
ture members.

There are several examples in the following sections.  The source code, to enable you to expe-
rience mixed-language calling, are in subdirectories examples\mix_lang\fcc\ex1, 
ex2, ex3, etc., below your main LF95 directory.  Each one is accompanied by a file called 
GEN.BAT, that will compile and link the sample code.  There are additional examples spe-
cific to compiler type in the  examples\mix_lang\msvc and examples\mix_lang\bc 
directories.

Calling Conventions
When it compiles Fortran source and emits object code, LF95 converts the names of all entry 
points and external references into all lower case letters, and attaches an underscore (_) sym-
bol to both the front and back of each such name.  FCC does not change the case of names, 
but it does add a leading underscore to each one. 

Therefore, if a Fortran program calls a subroutine named "CLOUD", LF95 will generate a 
requirement for an external symbol called "_cloud_".  If the subroutine is written in C, and 
compiled by FCC, then the entry point name must be "cloud_".  (Note the absence of a lead-
ing underscore, which will be added by FCC.)
LF Fortran Express User’s Guide 59



Chapter 3    Mixed Language Programming
Argument Passing
Traditionally, Fortran compilers arrange for arguments to subroutines to be passed by refer-
ence.  This means that the address is passed (pushed on the stack, in the case of PCs) and so 
the called routine has full access to the variable in the caller, and can read or write to that 
location.

C compilers, on the other hand, pass simple (i.e., scalar) variables by value, meaning that the 
current value of that variable is pushed, rather than its address.  The function that is called 
can thus read, but cannot change, the variable in the caller.  More complicated objects, such 
as arrays and structures, are passed by reference by C compilers.  (Confusion over which 
symbols represent values, and which addresses, is a common source of bugs in C programs, 
and so you should check your usage carefully.)

Trying to connect a Fortran caller to a C callee thus requires that one bridge these two con-
ventions.  It is possible to do this either by modifying the Fortran part or the C portion of the 
calling interface.  Since LF95 is a Fortran package, in the examples that follow we will leave 
the Fortran form alone and modify the C side.  This essentially means that C functions should 
be set up so as to expect that all visible arguments are being passed by reference, or "as point-
ers" in the C lingo.

Passing Arrays in C or C++
Because C processes arrays as an array of arrays and Fortran processes arrays as multi-
dimensional arrays, there are some special considerations in processing a Fortran array.  
Excluding a single-dimension array (which is stored the same in C as in Fortran), you will 
need to reverse the indices when accessing a Fortran array in C.  The reason for this is that in 
C, the right-most index varies most quickly and in Fortran the left-most index varies most 
quickly (multi-dimensional).  In an array of arrays, the columns are stored sequentially: row 
1-column 1 is followed by row 1-column 2, etc. In a multi-dimensional array, the rows are 
stored sequentially: row 1-column 1 is followed by row 2-column 1, etc.

Also note that all C arrays start at 0.  We do not recommend that you use a lower dimension 
bound other than zero (0) as your C code will have to modify the indices based on the value 
used.  We strongly recommend that you do not use negative lower and upper dimension 
bounds!

If the subscript ranges are not known at compile time, they can be passed at runtime, but you 
will have to provide the code to scale the indices to access the proper members of the array.

Some sample code may help explain the array differences.  Your Fortran code would look 
like:

subroutine test(real_array)
real :: real_array(0:4,0:5,0:6,0:7,0:8,0:9,0:10)
integer :: i,j,k,l,m,n,o
do o = 0, 10
 do n = 0, 9
  do m = 0, 8
60 LF Fortran Express User’s Guide



Variable Type Correspondence
   do l = 0, 7

    do k = 0, 6

     do j = 0, 5

      do i = 0, 4

       real_array(i,j,k,l,m,n,o) = 12.00

      end do

     end do

    end do

   end do

  end do

 end do

end do

end subroutine test

The equivalent C code would look like:

void test(float real_array[10][9][8][7][6][5][4])

  int i,j,k,l,m,n,o;

  /*

  ** this is what the subscripts would look like on the C side

  */

  for(o = 0; o < 11; o++)

    for(n = 0; n < 10; n++)

      for(m = 0; m < 9; m++)

        for(l = 0; l < 8; l++)

          for(k = 0; k < 7; k++)

            for(j = 0; j < 6; j++)

              for(i = 0; i < 5; i++)

                real_array[o][n][m][l][k][j][i] = 12.000;

  return;

}

On the Fortran side of the call, the array argument must not be dimensioned as an assumed-
shape array.  You should use explicit shape, assumed size, or automatic arrays.  

Variable Type Correspondence
When passing arguments to a subprogram, it is necessary that they match the list of formal 
parameters on the entry point.  The following table shows what various Fortran variable types 
correspond to in C. 
LF Fortran Express User’s Guide 61



Chapter 3    Mixed Language Programming
The C language allows unsigned integers of various lengths.  There is no direct analog of this 
in Fortran, however the unsigned integers that can be returned from C can be stored and 
slightly manipulated in Fortran.  Fortran cannot perform arithmetic on unsigned integers, 
however this is often unnecessary: one of the most common uses for unsigned integers is as 
handles for files, windows, and other objects.

Handles are received, copied, and passed into other routines, but are never subjected to com-
putation.  It is therefore possible to treat a handle as simply an INTEGER of the appropriate 
length and there will be no problem.  If it is necessary to display the value of a handle it can 
be done in hexadecimal (Z) format, with no loss of information. 

Example 1 --- A Simple Subroutine
First, let us look at the simplest example of a Fortran program calling a C subroutine.  The 
following main program defines two integers, I and J, and then calls SUB to add them and 
return the sum.

Table 7: Variable Type Equivalents

Fortran Type Kind No. C Type

INTEGER 1 char

INTEGER 2 int

INTEGER 4 long

REAL 4 float

REAL 8 double

COMPLEX 4 struct{float  xr, xi;}

COMPLEX 8 struct{double xr, xi;}

LOGICAL 1 char

LOGICAL 4 long

CHARACTER 1 (none)
62 LF Fortran Express User’s Guide



Variable Type Correspondence
      PROGRAM MAIN
      integer :: i,j,k
      i = 12
      j = 43
      k = 0
      print *, 'Before: i,j,k=',i,j,k
      call sub(i,j,k)
      print *, 'After:  i,j,k=',i,j,k
      stop
      end

This is the subroutine that performs the addition.

void sub_(i,j,k)
int *i, *j, *k;
{
  *k = *i + *j;
  return;
}

In C, a subroutine is a function of type "void."  As we noted earlier, the name of the subrou-
tine must be in lower case letters, with a trailing underscore.  Since Fortran normally passes 
arguments by reference, the C subroutine must receive them as pointers (hence the "*" in 
front of the variable names).  The type INTEGER variables in Fortran are treated as type "int" 
in C.

Example 2 --- Passing Real Arguments
The situation is the same when floaing point arguments are passed.  In this example, three 
default REAL(KIND=4) arguments are sent to a C subroutine, where they are manipulated.

      PROGRAM FLTMAIN
      x = 2.17
      y = 5.6
      z = 0.0
      print *,' x,y,z=',x,y,z
      call cmult(x,y,z)
      print *,' x,y,z=',x,y,z
      stop
      end

This is the C subroutine, where the REAL(KIND=4) variables are received as pointers to 
variables of type "float."  If the arguments were REAL(KIND=8), then the C side would 
expect them as type "double." 

void cmult_(x,y,z)
float *x, *y, *z;
{
  *z = *x * *y + 2.0;
  return;
}

LF Fortran Express User’s Guide 63



Chapter 3    Mixed Language Programming
Example 3 --- Passing CHARACTER Arguments
Passing type CHARACTER variables poses a higher level of complexity.  Consider the fol-
lowing main program, which assigns a literal string to A, and then calls CHRCOPY to 
duplicate A into B.

      PROGRAM CHRMAIN
      character*20 a, b
      a = 'This is a message'
      b = ' '
      print *, 'a=',a
      print *, 'b=',b
      call chrcopy(a,b)
      print *, 'a=',a
      print *, 'b=',b
      stop
      end

When LF95 passes type CHARACTER arguments to a subroutine, it actually sends both the 
starting address of the string, plus the length (which is passed by value).  The lengths of any 
CHARACTER arguments are treated as hidden arguments to the right of the normal argu-
ment list.

Thus, in the following C subroutine, the argument list consists of four items, even thought we 
could see only two in the Fortran CALL statement.  The first two arguments are the character 
strings, passed by reference so that they appear here as pointers to variables of type "char."  
(Type "char" in C is not a true string variable, but is rather a one-byte integer.)

The third and fourth arguments are the lengths of A and B, passed by value.  We can tell that 
they are being passed by value here because they are not prefixed by asterisks, but just appear 
as plain variables.

#include <string.h>
void chrcopy_(a,b,na,nb)
char *a, *b;
int na, nb;
{
  int nmin;
  nmin = na > nb ? nb : na;
  strncpy(b,a,nmin);
  return;
}

The subroutine first compares the lengths of the two CHARACTER variables, and then 
selects the minimum (in case they are different).  That becomes the number of characters to 
copy from A to B, and the C library routine "strncpy" is used.

Example 4 --- Passing ASCIIZ Arguments
In early Fortran compilers, character strings were stored as arrays of numeric storage loca-
tions, packed several characters to each word and then terminated by a word or partial word 
of zero.  Because different types of computer have different word lengths, this "Hollerith" 
64 LF Fortran Express User’s Guide



Variable Type Correspondence
scheme often led to seriously non-transportable code.  Some computers stored four characters 
per word, while others stored five, six, eight, or ten characters per word and so many routines 
that performed input or output required drastic reworking when moved from one brand of 
computer to another.

When the Basic language was released in the 1970s, it introduced the notion of a special 
"string" data type that was independent of the hardware design.  This was such a good idea 
that it was copied into the 1977 Fortran standard as CHARACTER variables.  

Unfortunately, at the same time that Fortran was copying from Basic, C was copying from 
Fortran and so currently C compilers still expect character strings to be stored as an array of 
numeric storage locations (usually bytes), terminated by a null.  In some cases, you may find 
it preferable to pass CHARACTER variables to C by appending a null, so that it looks like 
the legacy method expected by the C language.  In order to do this, you would change

      CALL CSUB(...,ASTR,...)

into

      CALL CSUB(...,ASTR//CHAR(0),...)

where ASTR is a CHARACTER variable.  In this case, however, the Fortran compiler will 
make a copy of ASTR with the null attached, and pass that.  This means that the subroutine 
will not be able to modify the original string since ASTR//CHAR(0) is an expression rather 
than a variable, but that may well be desirable. 

If you want to allow the subroutine to modify the original string, then you should add the null 
into the CHARACTER variable, as shown in the following example.

      PROGRAM CHRMAIN

      character*20 a, b

      a = 'Original text'//char(0)

      b = ' '

      print *, 'a=',a

      print *, 'b=',b

      call chrcaps(a,b)

      print *, 'a=',a

      print *, 'b=',b

      stop

      end

Here is a C subroutine that returns B as a capitalized version of A, as required by the main 
program.
LF Fortran Express User’s Guide 65



Chapter 3    Mixed Language Programming
void chrcaps_(a,b,na,nb)

char *a, *b;

int na, nb;

{

  char *i, *j;

  for (i = a, j = b; *i != 0; i++, j++) {

    *j = *i;

    if (*j >= 97 && *j <= 122) *j -= 32;

    }

  return;

}

In this case, the copying operation is halted by the appearance of a null (the "*i != 0" clause 
in the "for" statement).  Local pointer variables *i and *j are used instead of the ones that were 
supplied by the caller.

Example 5 --- Accessing COMMON Blocks
When LF95 processes COMMON blocks, it modifies them in the same way as it does entry 
points.  That is to say that a block named /SAND/ will invisibly become a global object 
named "_sand_" and this alteration must be dealt with when performing inter-language call-
ing.  The secret name of blank COMMON is "__BLNK__", with two underscores in front 
and behind. 

Here is an example of a Fortran main program that supplies values to some variables that are 
in COMMON blocks, one blank and one named.

      PROGRAM CMN_MAIN

      integer :: i

      real :: x,y,z

      common /zulu/ x, y

      common z

      i = 12

      x = 4.5

      y = 0.0

      z = 8.1

      print *, 'Before: i,x,y,z=',i,x,y,z

      call ccmn(i)

      print *, 'After: i,x,y,z=',i,x,y,z

      stop

      end

That program calls the following C subroutine: 
66 LF Fortran Express User’s Guide



Variable Type Correspondence
extern struct
{
  float x, y;
} zulu_;

extern struct
{
  float z;
} _BLNK__;

void ccmn_(i)
int *i;
{
  zulu_.y = zulu_.x + (float)(*i);
  _BLNK__.z += zulu_.x;
  return;
}

In order to access the COMMON blocks from C, we must define a pair of structures, and 
declare them outside of the function body so that they acquire the global attribute and can 
connect to the COMMON blocks that the Fortran compiler is going to set up. 

Since C prepends an underscore to the global names, the named common /ZULU/, which is 
called "_zulu_" in the object modules, must be called "zulu_" (no leading underscore) in the 
C code.  Likewise, the blank COMMON, called "__BLNK__" in the object code, is called 
"_BLNK__" (only one leading underscore) in C.

Example 6 --- Functions
Calling a function that is written in C, one that returns a value (as opposed to a subroutine), 
is fairly simple as long as you make sure that the type of the function in C matches what For-
tran expects to receive.

Here is an example of a Fortran main program that calls several C functions, each of a differ-
ent type.  The argument lists are the same for all the functions: two default integers, but the 
return value differs.

      PROGRAM MAIN
      integer :: i,j
      integer(kind=1) :: k1, i1add
      integer(kind=2) :: k2, i2add
      integer(kind=4) :: k4, i4add
      real(kind=4) :: r4, r4add
      real(kind=4) :: r8, r8add
      external :: i1add, i2add, i4add, r4add, r8add
!
      i = 12
      j = 43
      k1 = 0; k2 = 0; k4 = 0
      print *, 'Before: i,j=',i,j
LF Fortran Express User’s Guide 67



Chapter 3    Mixed Language Programming
      k1 = i1add(i,j)
      k2 = i2add(i,j)
      k4 = i4add(i,j)
      print *, 'After:  k1,k2,k4=',k1,k2,k4
      r4 = r4add(i,j)
      r8 = r8add(i,j)
      print *, 'r4,r8=',r4,r8
!
      stop
      end

These are the C functions called by the Fortran main.  Note that the type of variable for a 
function to return is specified in the opening statement, in place of the "void" that was used 
in the earlier subroutines.

char i1add_(i,j)
int *i, *j;
{
  char k;
  k = *i + *j;
  return(k);
}

short i2add_(i,j)
int *i, *j;
{
  short k;
  k = *i - *j;
  return(k);
}

long i4add_(i,j)
int *i, *j;
{
  long k;
  k = *i * *j;
  return(k);
}

float r4add_(i,j)
int *i, *j;
{
  float r;
  r = (float)(*i) + (float)(*j);
  return(r);
}

68 LF Fortran Express User’s Guide



Fortran Calling Fortran DLLs
double r8add_(i,j)

int *i, *j;

{

  double d;

  d = (double)(*i) / (double)(*j);

  return(d);

}

Fortran Calling Fortran DLLs
Even though the same language system is used to create both the DLL and the executable, 
the mixed language rules must be observed.  Create the Fortran DLL as described in ”Build-
ing Fortran DLLs”  on page 56, building with the -ml lf95 compile option:

lf95 source.f90 -win -dll -ml lf95

LF95 builds the DLL source.dll. It also generates a source.lib file containing defini-
tions needed to link to this DLL.

Next build the Fortran Main with:

lf95 main.f90 -win -ml lf95 source.lib

To run the program, the DLL must be in the same directory as the executable, or in a directory 
on the path.

Fortran and C applications

Fortran calling C DLLs
When you create a Fortran procedure that references a C procedure you declare the C proce-
dure name with the DLL_IMPORT attribute in your Fortran code.  The procedure may be a 
subroutine or function.  C functions may only return the Fortran equivalent of default INTE-
GER, REAL, or LOGICAL results. 

Example code:
program main

  implicit none

  real, dll_import :: My_Dll_Routine ! case-sensitive

  real             :: x

  x = My_Dll_Routine()

  write (*,*) x

end program main
LF Fortran Express User’s Guide 69



Chapter 3    Mixed Language Programming
Before building the Fortran main program with LF95, you must have a DLL and import 
library available.  Refer to your C manual for specifics on creating a DLL.  If the C compiler 
does not create a compatible import library (.LIB file) for the DLL, proceed as described 
above, ”Building Import Libraries”  on page 57.

If the DLL was created with Microsoft Visual C++, use the -ml msvc option:

LF95 source.f90 -win -ml msvc -lib dll_src.lib

If the DLL was created with Borland C++, use the -ml bc option:

LF95 source.f90 -win -ml bc -lib dll_src.lib

Where dll_src.lib is the name of the Microsoft compatible import library.  

There are examples of calling C DLLs in the directories below LF95’s EXAMPLES/
MIX_LANG directory.

C Calling Fortran DLLs
Create the Fortran DLL as described in ”Building Fortran DLLs”  on page 56, building with 
the -ml compile option that matches your C compiler.

To compile your Fortran source for use with Microsoft Visual C++, issue the command:

LF95 source.f90 -win -ml msvc -dll

This command will cause a DLL called source.dll to be created, as well as an import 
library called source.lib.

To compile your Fortran source for use with Borland C++, issue the command:

LF95 source.f90 -win -ml bc -dll

The user will need to run Borland’s IMPLIB.EXE to build the import library compatible with 
the Borland linker.  IMPLIB is distributed with the Borland compiler, and is not a part of 
LF95.  

Once you’ve created the DLL and generated the import library, use the C language system to 
link the associated import library (source.lib in the above cases) with your C object code, 
and be sure the DLL is available on your system path. 

Referencing DLL Procedures
Fortran functions are called from C as functions returning a value.

For example, this Fortran function:
70 LF Fortran Express User’s Guide



Passing Data
function dll1(a, a1, i, i1, l, l1)
   integer, dll_export :: DLL1
   real a, a1(10)
   integer i, i1(10)
   logical l, l1(10)
   ...
end function

uses this C prototype:

long foo(long int *i, long int *j);

To reference the above function from your C code, declare it with _stdcall:

long _stdcall foo(long int *i, long int *j);

In C++, use:

extern "C" {long _stdcall foo(long int *i, long int *j); };

For a short example, see LF95’s EXAMPLES\MIX_LANG\MSVC directory (for Microsoft 
Visual C++) or LF95’s EXAMPLES\MIX_LANG\BC directory  (for Borland C++).

Passing Data
The only ways to pass data to or from a DLL are as arguments, function results, or in files. 
LF95 does not support the sharing of data (as with a COMMON block) across the boundaries 
of a DLL.  Arguments may be passed by reference (the default) or by value using either the 
CARG or VAL function.  See ”Argument Passing”  on page 60 for more information.

Microsoft Visual Basic Information

Visual Basic calling Fortran
To create a DLL that will work with Microsoft Visual Basic, take Fortran source (without a 
main program) and indicate the procedures that you want available in the DLL with the 
DLL_EXPORT statement, then invoke the LF95 driver like this:

LF95 source.f90 -win -dll -ml msvb

Running the Visual Basic Demo
1. Compile the VBDEMO.F90 file, located in LF95’s MIX_LANG\MSVB directory, using 

the -dll -win -ml msvb options.

2. Ensure that the resulting VBDEMO.DLL resides in a directory that is on your path.  
Failure to do this will generally result in an “Error loading DLL” message from the 
operating system.
LF Fortran Express User’s Guide 71



Chapter 3    Mixed Language Programming
3. Start Visual Basic and open the VBDEMO.VBP project in LF95’s 
EXAMPLES\MIX_LANG\MSVB directory.

4. Run the demo (F5).

Declaring your Procedure in Visual Basic
In your BASIC code, a procedure’s declaration will be like one of the following examples:

Private Declare Function my_func Lib "my_dll" (ByRef my_arg As 

Long) As Long

Private Declare Sub my_sub Lib "my_dll" (ByRef my_arg As Long)

(see the relevant section below if an item on the argument list is either an array or is character 
datatype).  Note that in the example above, “my_dll” must specify a complete path in order 
to operate within the Visual Basic Environment.

Passing Character Data in Visual Basic
Character arguments are passed as strings with the length of each string appended at the end 
of the argument list.

Character (string) arguments and hidden length arguments must be passed by value, i.e., 
declare the procedure’s arguments (actual and hidden) with the ByVal keyword.  Refer to the 
example VBDEMO program.  The following restrictions apply:

• Character arguments should be declared as CHARACTER(LEN=*).

• Fortran functions returning character data to Visual Basic are not supported.

Passing Arrays in Visual Basic
When passing an array from Microsoft Visual Basic you will need to declare the argument 
as a scalar value in the Basic declaration, and pass the first element of the array as the actual 
argument.  Declare the array dummy argument normally in the Fortran procedure.  Note that 
the default lower bound for arrays in Visual Basic is 0, so you may find it helpful to explicitly 
declare your Fortran arrays with a lower bound of 0 for each dimension, or explicitly declare 
your Basic arrays to have a lower bound of 1 (this can be done at the module or procedure 
level via the Option Base statement).  Note also that arrays of strings cannot be passed from 
Visual Basic to LF95.
72 LF Fortran Express User’s Guide



Borland Delphi Information
Borland Delphi Information

Delphi Calling Fortran
To create a DLL that will work with Borland Delphi, take the Fortran source (without a main 
program) and indicate the procedures that you want available in the DLL with the 
DLL_EXPORT statement, then invoke the LF95 driver like this:

LF95 source.f90 -win -dll -ml bd

Running the Delphi Calling Fortran Demo
1. Compile the BDDEMO2.F90 file located in LF95’s EXAMPLES\MIX_LANG\BD direc-

tory using the -dll, -win, and -ml bd options.

2. Ensure that the resulting BDDEMO2.DLL resides either in the current working direc-
tory, or in a directory that is on your path.  Failure to do this will generally result in 
an “Debugger Kernel Error” message from the operating system.

3. Start Delphi and open the BDDEMO2.DPR project in LF95’s 
EXAMPLES\MIX_LANG\BD directory.

4. Run the demo (F9).

Fortran Calling Delphi DLLs
Before building the Fortran main program with LF95, you must have a DLL and import 
library available.  Refer to your Delphi documentation for the specifics on creating a DLL.  
Because Delphi does not build a .LIB file for the DLL, and does not create compatible object 
files, the stub method must be used to create a Microsoft-compatible import library.  
See”Building import libraries when no object file is available”  on page 57.  An example of 
linking a Fortran program to a Delphi DLL appears in the EXAMPLES\MIX_LANG\BD 
directory.

When you create a Fortran procedure that references a Delphi DLL procedure you declare 
the Delphi procedure name with the DLL_IMPORT attribute in your Fortran code.  The proce-
dure may be a subroutine or function.  Delphi DLL functions may only return the equivalent 
of default INTEGER, REAL, or LOGICAL results. 

Example code:
program main

  implicit none

  real, dll_import :: My_Dll_Routine ! case-sensitive

  real             :: x

  x = My_Dll_Routine()

  write (*,*) x

end program main
LF Fortran Express User’s Guide 73



Chapter 3    Mixed Language Programming
Build the Fortran program using the -ml bd option:

LF95 source.f90 -win -ml bd -lib dll_src.lib

Where dll_src.lib is the name of the Microsoft compatible import library created by the 
stub method.

Running the Fortran Calling Delphi Demo
1. From Delphi, open F95CALLBD.DPR in LF95’s EXAMPLES\MIX_LANG\BD 

directory.

2. Build the DLL by pressing Ctrl-F9.

3. Copy F95CALLBD.DLL to LF95’s EXAMPLES\MIX_LANG\BD directory.

4. Change to LF95’s EXAMPLES\MIX_LANG\BD directory.

5. Run the batch file RUNF95CALLBD.BAT.  This batch file compiles the Fortran stub 
code, generates an import library, and compiles the Fortran main program using the 
newly created import library.

6. The resulting executable, F95CALLBD.EXE is automatically run by the batch file.

Declaring your Procedure in Delphi
In your Delphi code, a procedure’s declaration will be like one of the following examples:

function my_LF95_function(var my_arg: LongInt) : LongInt; 
  stdcall; external ‘my_dll.dll’;
procedure my_LF95_subroutine( var my_arg: Single); stdcall;
  external ‘my_dll.dll’;

 (see the relevant section below if an item on the argument list is either an array or is character 
datatype).  

Passing Character Data in Delphi
Character arguments are passed as strings with the length of each string appended at the end 
of the argument list.

Delphi has two kinds of strings: long strings and short strings, where a long string can contain 
a very large number of characters and its length varies dynamically as needed, and a short 
string has a specified length and may contain up to 255 characters.  If your character argu-
ment is a short string you should  use the var keyword in your procedure’s declaration; omit 
the var keyword if your argument is a long string. Refer to the BDDEMO and BDDEMO2 pro-
grams to see examples for both of these cases.

As of this writing, the following conditions apply:

• Character arguments should be declared as CHARACTER(LEN=*).
74 LF Fortran Express User’s Guide



Passing Arrays in Delphi
• “Long string” character arguments should be treated as INTENT(IN).

• “Short string” character arguments may be treated as INTENT(IN OUT).

• Fortran functions returning CHARACTER data to Delphi are not supported.

Passing Arrays in Delphi
Because Delphi processes multi-dimensional arrays as an array of arrays (like C and C++) 
and Fortran processes arrays as multi-dimensional arrays, there are some special consider-
ations in processing a Fortran array.  Refer to the “Passing Arrays in C or C++” section for 
more information.

Calling Fortran DLL’s from .NET Applications
Programs created using a .NET language dynamically load unmanaged DLL’s at runtime, so 
the DLL name and characteristics must be specified in the managed code.  When creating a 
native Fortran DLL that can be called by a .NET application, compile and link with one of 
the following -ml options: winapi,  msvc, lf95, or fc.  If a version of LF95 prior to v5.7 
is being used, the -ml winapi option should not be specified.  DLLs built with the -ml 
msvb option can be called from VB.NET applications.  DLLs built with the -ml options 
lf90, bc, or bd cannot be called from .NET languages.  

For a DLL compiled and linked with -ml lf95, or no -ml option, the cdecl calling conven-
tion is used.  

For a DLL compiled and linked with -ml winapi, -ml msvc, or -ml fc, the stdcall2 call-
ing convention is used.  

Fortran function results and argument types must be able to map to .NET variable types.

Example code demonstrating calling Fortran DLL’s from .NET languages exist in directories 
under the EXAMPLES\MIX_LANG directory.  These directories all contain .NET in the direc-
tory name.

Calling LF95 DLLs from Microsoft C#
For DLL’s using the cdecl convention, declare the Fortran procedure in the C# code using 
the following syntax:

[DllImport("dll-name.dll", CallingConvention=CallingConvention.Cdecl)]
public static extern return-type procedure-name_ (argument-list); 

For DLL’s using the stdcall2 convention, declare the Fortran procedure in the C# code using 
the following syntax:

[DllImport("dll-name.dll")]
LF Fortran Express User’s Guide 75



Chapter 3    Mixed Language Programming
public static extern return-type procedure-name (argument-list); 

Where:
dll-name.dll is the pathname\file-name of the unmanaged (Win32) DLL.

return-type is "void" if calling a Fortran subroutine, otherwise the C# equivalent of 
the Fortran function return type.

procedure-name is the case-sensitive procedure name.  If the cdecl convention is 
used, a trailing underscore must be appended to the procedure name.

argument-list is a managed code variable list with types mapped to Fortran dummy 
argument types; precede pass-by-reference parameters with "ref".

Calling LF95 DLLs from Microsoft Visual Basic .NET
For DLL’s using the cdecl convention, declare the Fortran procedure in the VB.NET code 
using the following syntax:

Calling a function:
Class ClassName
   <DllImport("dll-name.dll", CallingConvention:=CallingConvention.Cdecl)> _
   Shared Function proc-name_ (arg-list) as return-type
   End Function
End Class

Calling a subroutine:
Class ClassName
   <DllImport("dll-name.dll", CallingConvention:=CallingConvention.Cdecl)> _
   Shared Sub proc-name_ (arg-list)
   End Sub
End Class

For DLLs using the stdcall2 convention, declare the Fortran function in the VB.NET code 
using the following syntax:
76 LF Fortran Express User’s Guide



Calling LF95 DLLs from Microsoft Visual C++ .NET
Calling a function:
Class ClassName
   <DllImport("dll-name.dll", CallingConvention:=CallingConvention.StdCall)> _
   Shared Function proc-name (arg-list) as return-type
   End Function
End Class

Calling a subroutine:
Class ClassName
   <DllImport("dll-name.dll", CallingConvention:=CallingConvention.StdCall)> _
   Shared Sub proc-name (arg-list)
   End Sub
End Class

For DLLs compiled using the -ml msvb option, declare the Fortran function in the VB.NET 
code using the following syntax:

Calling a function:
Class ClassName
   Declare Auto Function proc-name Lib "dll-name.dll" (arg-list) as return-type
   End Function
End Class

Calling a subroutine:
Class ClassName
   Declare Auto Function proc-name Lib "dll-name.dll" (arg-list)
   End Function
End Class

Where:
dll-name.dll is the pathname\file-name of the unmanaged (Win32) DLL.

return-type is the VB.NET equivalent of the Fortran function return type.

proc-name is the case-sensitive procedure name.  If the cdecl convention is used, a 
trailing underscore must be appended to the procedure name.

arg-list is a managed code variable list with types mapped to Fortran dummy 
argument types; precede pass-by-reference parameters with "ByRef".

Calling LF95 DLLs from Microsoft Visual C++ .NET
For DLLs using the cdecl convention, declare the Fortran procedure in the C++ code using 
the following syntax:
LF Fortran Express User’s Guide 77



Chapter 3    Mixed Language Programming
[DllImport("dll-name.dll", CallingConvention=CallingConvention::Cdecl)]
extern "C" return-type procedure-name_ (argument-list);

For DLLs using the stdcall2 convention, declare the Fortran procedure in the C++ code using 
the following syntax:

[DllImport("dll-file-name.dll"]
extern "C" return-type procedure-name (argument-list);

Where:
dll-name.dll is the pathname\file-name of the unmanaged (Win32) DLL.

return-type is "void" if calling a Fortran subroutine, otherwise the C++ equivalent 
of the Fortran function return type.

procedure-name is the case-sensitive procedure name.  If the cdecl convention is 
used, a trailing underscore must be appended to the procedure name.

argument-list is a managed code variable list with types mapped to Fortran dummy 
argument types; precede pass-by-reference parameters with "ref".

Calling the Windows API
LF95 can directly access functions in the Windows API, with some limitations.  You will 
need to have access to Windows API documentation and some knowledge of Windows Pro-
gramming in C or C++ to take full advantage of this functionality, since the API is designed 
for C and C++.

Complete Windows applications can be written with Lahey Fortran 95 without resorting to 
using another language for the user interface.  This might not be the best approach for many 
people, but examining how to do it can boost one's understanding of the issues, and these 
issues can crop up even when creating Windows applications using other approaches.  

An example of this approach can be found in LF95's EXAMPLES\MIX_LANG\WINAPI 
directory, in the files WINDEMO.F90, WINDEMO.RC, WINDOWS.F90, and 
RUNWINDEMO.BAT.

The first step is to compile the file WINDOWS.F90, found in LF95’s SRC directory.  Then 
USE the module WINDOWS_H in any procedure that will call the Windows API. WIN-
DOWS.F90 is a Fortran translation of the standard windows header file WINDOWS.H, 
which contains definitions for various Windows parameters.

Next declare the API function with the DLL_IMPORT attribute in a type statement, for 
example, if you want to call the API function MessageBox: 

     INTEGER, DLL_IMPORT :: MessageBoxA

Names with the DLL_IMPORT declaration are case sensitive. Elsewhere in your Fortran 
program the names of imported procedures are case insensitive.  
78 LF Fortran Express User’s Guide



Calling the Windows API
Here are some more things to consider:

• Compile your code using the -ml winapi, -win, and -nvsw options.
• When calling Windows API procedures from Fortran you will need to have 

DLL_IMPORT statements with the names of all of the API procedures you will use.  
These names are case sensitive and you will need to use the correct case in the 
DLL_IMPORT statement.  Elsewhere in your Fortran program code the case for 
these procedure names does not matter, though it's a good idea for clarity's sake to 
retain the case used in the Windows API.  A good place for these DLL_IMPORT 
statements is in the module you create for your parameter declarations.

• If you have a resource file called MYRC.RC, compile it by adding MYRC.RC to the 
LF95 command line.  You need to include WINDOWS.H (supplied with LF95 in the 
SRC directory) in your resource file.  LF95's driver will call RC.EXE (the resource 
compiler which ships with LF95 and with various other Windows compilers) to cre-
ate MYRC.RES.  This will then be linked with the other objects and libraries you 
specified on the command line.

• Any new item you create with a #define in your resource file needs to be declared as 
an INTEGER parameter in your Fortran source so that it is accessible in the scoping 
unit in which it is referenced.  It is cleanest to put all of these parameter declarations 
in a module.

• Void API functions must be called as subroutines from Fortran and API functions 
which return values must be called as functions from Fortran.

• Many of the API functions you call will need to have the letter 'A' appended to the 
function name.  This calls the ASCII (rather than the Unicode) version of the func-
tion.  If the linker gives you an unresolved external message on an API function you 
think you've declared properly, try appending an 'A' to the name.  It is a good bet that 
API functions that deal with character strings will require the 'A'.

• API function arguments that do not map to Fortran intrinsic types need to be declared 
in your Fortran program.  Declare structure arguments as SEQUENCE derived types. 
Declare pointers (to anything, including strings) as INTEGERs.

• Whenever you pass a numeric argument use CARG.  For example:
call PostQuitMessage(carg(0))

• Whenever you pass a pointer argument use CARG(POINTER(argument)) instead of 
argument.  For example:

type (WNDCLASS):: wc
result=RegisterClassA(carg(pointer(wc))

• Whenever you pass a pointer to CHARACTER, remember that C requires null-ter-
minated strings.  CARG will make a copy of a string and null-terminate it for you. 
However, because a copy is made, the original value cannot be changed by the func-
tion you call.  For example:

result = SendDlgItemMessageA(carg(hwnd),         &
                             carg(IDC_LIST1,     &
                             carg(LB_ADDSTRING), &
                             carg(0),            &
                             carg(string))
LF Fortran Express User’s Guide 79



Chapter 3    Mixed Language Programming
To pass a string you want the function to change, null-terminate the string manually 
and then use CARG of the POINTER.  Note that you can use CHAR(0) to generate 
a null.  For example:

character(len=81) :: mystr ! leave space for trailing null

mystr = trim(mystr(1:80)) // char(0)

call SomeAPIRoutineA(carg(pointer(mystr)))

• Wherever on the right-hand side of a C assignment statement you would use the 
ampersand character to get the address of something, you will need to use POINTER 
in your Fortran program. For example:

wc%lpszClassName = pointer(szClassName)

is equivalent to the C:

wc.lpszClassName = &szClassName;

• Callback procedures, where Windows will be calling a Fortran procedure, must not 
be module procedures or internal procedures.

• To set up a callback procedure, include an interface block defining the callback pro-
cedure and declaring it to be ml_external. Then use the POINTER of the procedure 
name. For example:

interface

   integer function WndProc(hwndByValue,    &

                            messageByValue, &

                            wParamByValue,  &

                            lParamByValue)

      ml_external WndProc

      integer :: hwndbyValue, messageByValue, &

                 wParamByValue, lParamByValue

   end function WndProc

end interface

type(WNDCLASS):: wc

wc%lpfnWndProc = offset(WndProc)

• Arguments to a Fortran callback procedure are values (C passes by value). To make 
these work in your callback procedure, assign the pointer of these values to local 
variables. For example:
80 LF Fortran Express User’s Guide



Calling assembly language procedures
integer function WndProc(hwndByValue,    &

                         messageByValue, &

                         wParamByValue,  &

                         lParamByValue)

   implicit none

   ml_external WndProc

   integer :: hwnd, message, wParam, lParam

   integer :: hwndByValue, messageByValue

   integer :: wParamByValue, lParamByValue

   hwnd = pointer(hwndByValue)

   message = pointer(messageByValue)

   wParam = pointer(wParamByValue)

   lParam = pointer(lParamByValue)

! do not reference the ByValue arguments from here on !

• See windows.f90 in the SRC directory for examples of functions, types, and defi-
nitions for use in Windows API programming.

Calling assembly language procedures
The following information is provided courtesy of Kenneth G. Hamilton, 12-Oct-1998.

LF95 Conventions
This section is intended to assist the experienced assembly language programmer in writing 
subprograms that can be called by LF95-compiled Fortran code.  The examples that follow 
were processed by Microsoft MASM v6.11a, although any recent assembler will likely suf-
fice.  In addition to this information, you should also have on hand appropriate 
documentation for your assembler.  The examples in this write-up can be found in subdirec-
tories EXAMPLES\MIX_LANG\ASSEMBLY\EX1, EX2, EX3, etc.

Each sample program can be compiled and linked by using the GEN.BAT file that accompa-
nies it.

Entry Point Name Mangling
When it compiles Fortran source code, LF95 shifts the names of subroutines and functions 
into lower case letters, and attaches an underscore symbol (_) both before and after each 
name.  As an example, suppose that an LF95 program calls subroutine RAINBOW.  If that 
routine is written in assembly language, then it must have an entry point called _rainbow_ on 
a PROC or LABEL statement, and that name must declared to be a PUBLIC symbol.
LF Fortran Express User’s Guide 81



Chapter 3    Mixed Language Programming
Saved Registers
LF95 requires that subroutines and functions preserve the value of the EBX, ESI, and EDI 
registers.  If any of these registers are used in an assembly-language routine, they can be 
saved by pushing them upon entry, and then popping them before returning.

Argument Passing
LF95 passes numeric and logical arguments by pushing their addresses onto the stack, from 
right to left.  Each address is a four-byte quantity, so that, upon entry to a subprocedure the 
first argument's address is located at ESP+4, the second at ESP+8, the third at ESP+12, and 
so on. (The ESP register itself contains the address that control will return to in the calling 
routine, upon subprogram termination.)

Generally, the best procedure (and this is what LF95 itself does) is to push EBP onto the 
stack, and then move the contents of the ESP register into EBP.  This is often known as the 
‘preamble’ of the routine.  The arguments can then be accessed using EBP instead of ESP, 
and any additional pushing or popping will not result in any confusion about where the argu-
ment addresses are.  Since pushing EBP onto the stack changes the stack pointer by four 
bytes, the first argument's address will be in EBP+8, the second argument's in EBP+12, the 
third's in EBP+16, and these offsets from EBP will not be altered by any local activity involv-
ing the ESP register.

For CHARACTER-valued arguments, the length of the string must also be passed.  This is 
done by treating the lengths of the CHARACTER arguments as though they were extra 
parameters following the normal visible ones, and passing them by value.  The term ‘by 
value’ in this context means that the actual length is pushed, rather then the address of the 
length.  These length parameters are treated as though they were to the right of the actual 
parameters in the call, and so they are actually pushed first, and are at higher offsets relative 
to EBP.

Passing Arguments to Subroutines
It is often easiest to learn a programming method by studying examples, and so we will now 
show and examine several cases in which a Fortran program calls an assembly language 
subprogram.

First, the following main program (ADDMAIN) passes two INTEGER variables to a Fortran 
subroutine (FORADD), where they are added, with their sum being returned as a third 
variable.

Example 1:  Simple Addition.
      PROGRAM ADDMAIN
      integer :: i,j,k,l
      i = 17
      j = 24
      call foradd(i,j,k)
      print *, 'i,j,k=',i,j,k
82 LF Fortran Express User’s Guide



Passing Arguments to Subroutines
      i = 52
      j = 16
      call asmadd(i,j,l)
      print *, 'i,j,l=',i,j,l
      stop
      end
      SUBROUTINE FORADD(II,JJ,KK)
      kk = ii+jj
      return
      end

You should note that ADDMAIN also calls a second subroutine, ASMADD.  Here it is:

             TITLE   ASMADD
             .386
             .MODEL  FLAT
;
_ACODE       SEGMENTPARA USE32 PUBLIC 'CODE'
             ASSUME  CS:_ACODE
             PUBLIC  _asmadd_     ; Entry point name
_asmadd_     PROC    NEAR         ; Start of procedure
             push    ebp          ; Save EBP
             mov     ebp,esp      ; Will use EBP for args
             push    ebx          ; Must save EBX
             mov     eax,[ebp+8]  ; 1st arg addr
             mov     ecx,[ebp+12] ; 2nd arg addr
             mov     edx,[ebp+16] ; 3rd arg addr
             mov     ebx,[eax]    ; 1st arg value
             mov     eax,[ecx]    ; 2nd arg value
             add     eax,ebx      ; Form I+J
             mov     [edx],eax    ; Store into K
             pop     ebx          ; Restore saved EBX
             mov     esp,ebp      ; Restore stack pointer
             pop     ebp          ; Restore base pointer
             ret                  ; Return to caller
_asmadd_     ENDP                 ; End of procedure
_ACODE       ENDS                 ; End of segment
             END

ASMADD is the assembly-language translation of FORADD:  it also takes three variables, 
adds the first two, and returns the result in the third one.  Examining ASMADD, we can see 
that once the preamble is completed, the addresses of the arguments are accessible to the 
assembly-language routine in EBP+8, EBP+12, and EBP+16.  Since the EBX register is used 
in the processing, its contents must be preserved by being pushed onto the stack before it is 
clobbered, and popped off later.

LF95 assumes that the caller will fix the stack, i.e., remove the argument address pointers.  
As a result, the return to the calling routine is accomplished by means of a simple RET 
instruction.  
LF Fortran Express User’s Guide 83



Chapter 3    Mixed Language Programming
Example 2:  Using local data.
Now, let us examine a case in which a subroutine contains some local data.  The main pro-
gram MULMAIN calls two subroutines, FORMUL (written in Fortran), and ASMMUL 
written in assembly language.  Both FORMUL and ASMMUL do the same thing: multiply 
the first argument by 7, add 3, and then return the result as the second argument.  This is the 
Fortran part: 

      PROGRAM MULMAIN
      integer :: i,j,k,l
      i = 5
      call formul(i,j)
      print *, 'i,j=',i,j
      k = 3
      call asmmul(k,l)
      print *, 'k,l=',k,l
      stop
      end
      SUBROUTINE FORMUL(II,JJ)
      jj = 7*ii + 3
      return
      end

 Here is the assembly-language subroutine ASMMUL, with two constants m1 and m2 stored 
in a local data area.

             TITLE   ASMMUL
             .386
             .MODEL  FLAT
;
_ACODE       SEGMENT PARA USE32 PUBLIC 'CODE'
             ASSUME  CS:_ACODE, DS:_ADATA
             PUBLIC  _asmmul_     ; Entry point name
_asmmul_     PROC    NEAR         ; Start of procedure
             push    ebp          ; Save base pointer
             mov     ebp,esp      ; Save stack pointer
             mov     eax,[ebp+8]  ; 1st arg addr
             mov     eax,[eax]    ; 1st arg EAX=I
             mov     ecx, m1      ; 7 into ECX
             mul     ecx          ; 7*I is in EAX
             add     eax, m2      ; 7*I+3 is in EAX
             mov     edx,[ebp+12] ; 2nd arg addr
             mov     [edx],eax    ; Store in 2nd arg (J)
             mov     esp,ebp      ; Restore stack pointer
             pop     ebp          ; Restore base pointer
             ret     
_asmmul_     ENDP
_ACODE       ENDS
;
_ADATA       SEGMENT PARA USE32 PUBLIC 'DATA'
84 LF Fortran Express User’s Guide



Passing Arguments to Subroutines
m1           dd      7
m2           dd      3
_ADATA       ENDS
;
             END

 The two variables are initialized to values of 7 and 3, and are not altered.  Quantities stored 
in this manner could be changed during the course of computation, if required.  Alternatively, 
this routine could have been written with the constants 7 and 3 being coded as immediate data 
in the MOV and ADD instructions that use them.

Example 3:  Using floating-point arithmetic.
Floating point arithmetic is also possible in an assembly language routine that is called from 
an LF95 program.  Here is an example of a main program (FLTMAIN) that calls two func-
tionally-identical subroutines, FORFLT and ASMFLT, which are written in Fortran and 
assembly language, respectively.

      PROGRAM FLTMAIN
      real :: x, y, z
      x = 3.0
      y = 8.5
      call forflt(x,y,z)
      print 20, x,y,z
   20 format (' x,y,z=',3F10.4)
      x = 4.5
      y = 7.1
      call asmflt(x,y,z)
      print 20, x,y,z
      stop
      end
      SUBROUTINE FORFLT(XX,YY,ZZ)
      zz = 3.1*xx + yy + 7.6
      return
      end

 This is the assembly language routine, and we can see that REAL variables are also passed 
as addresses, located in EBP+8, EBP+12, EBP+16, etc.

             TITLE   ASMFLT
             .386
             .MODEL  FLAT
;
_ACODE       SEGMENT PARA USE32 PUBLIC 'CODE'
             ASSUME  CS:_ACODE, DS:_ADATA
             PUBLIC  _asmflt_        ; Entry point name
_asmflt_     PROC    NEAR            ; Start of procedure
             push    ebp             ; Save base pointer
             mov     ebp,esp         ; Save stack pointer
             mov     eax,[ebp+8]     ; Addr X
             mov     ecx,[ebp+12]    ; Addr Y
LF Fortran Express User’s Guide 85



Chapter 3    Mixed Language Programming
             mov     edx,[ebp+16]    ; Addr Z
             fld     dword ptr d1    ; Load 3.1
             fmul    dword ptr [eax] ; 3.1*X
             fadd    dword ptr [ecx] ; 3.1*X+Y
             fadd    dword ptr d2    ; 3.1*X+Y+7.6
             fstp    dword ptr [edx] ; Store into Z
             mov     esp,ebp         ; Restore stack pointer
             pop     ebp             ; Restore base pointer
             ret     
_asmflt_     ENDP
_ACODE       ENDS
;
_ADATA       SEGMENT PARA USE32 PUBLIC 'DATA'
d1           dd      3.1
d2           dd      7.6
_ADATA       ENDS
;
             END

 In assembly language, it is necessary to access the values of the variables using the keywords 
DWORD PTR for REAL(KIND=4) and QWORD PTR for REAL(KIND=8) variables.

Example 4:  Using COMMON blocks.
If it is necessary for an assembly language subroutine to access the contents of a COMMON 
block, then we must find the starting address of that block.  

The starting address of a named COMMON is put in a global variable;  the name of that vari-
able is composed by converting the COMMON block's name to lower case letters, and then 
attaching an underscore before and after the name.  Thus, the starting address of a COMMON 
block that is named ZOOM can be found in the global variable _zoom_ .  The starting address 
of blank COMMON is placed in the global variable __BLNK__.  (Note that there are two 
underscore symbols both before and after the word ``BLNK.'')

In the following example, both blank COMMON and COMMON/RRR/ are passed to a For-
tran subroutine (FORCOM) and its assembly language equivalent (ASMCOM), where some 
minor calculations are performed. 

      PROGRAM CMNMAIN
      common i,j,k
      common /rrr/ x,y,z
      i = 4; j = 17; k = 0
      x = 1.6; y = 3.7; z = 0.0
      call forcom
      print 10, i,j,k
   10 format (' i,j,k=',3I6)
      print 20, x,y,z
   20 format (' x,y,z=',3F10.4)
      i = 4; j = 17; k = 0
      x = 1.6; y = 3.7; z = 0.0
86 LF Fortran Express User’s Guide



Passing Arguments to Subroutines
      call asmcom
      print 10, i,j,k
      print 20, x,y,z
      stop
      end
      SUBROUTINE FORCOM
      common i,j,k
      common /rrr/ x,y,z
      k = 5*i + j
      z = x*y
      return
      end

This is ASMCOM, the assembly language subroutine that manipulates variables in the two 
COMMON blocks. 

             TITLE   ASMCOM
             .386
             .MODEL  FLAT
;
BLNKCOM      STRUCT
i            dword   ?
j            dword   ?
k            dword   ?
BLNKCOM      ENDS
;
             EXTERN   __BLNK__:BLNKCOM
;
RRRCOM       STRUCT
x            real4   ?
y            real4   ?
z            real4   ?
RRRCOM       ENDS
;
             EXTRN   _rrr_:RRRCOM
;
_ACODE       SEGMENTPARA USE32 PUBLIC 'CODE'
             ASSUME  CS:_ACODE, DS:_ADATA
             PUBLIC  _asmcom_        ; Entry point name
_asmcom_     PROC    NEAR            ; Start of procedure
             push    ebp             ; Save EBP
             mov     ebp,esp         ; use EBP for args
             mov     eax, dword ptr __BLNK__.i ; Get I
             mov     ecx, m1         ; Load 5
             mul     ecx             ; Form 5*I
             add     eax, dword ptr __BLNK__.j ; 5*I+J
             mov     dword ptr __BLNK__.k,eax ; Store into K
             fld     dword ptr _rrr_.x ; Load X
             fmul    dword ptr _rrr_.y ; Form X*Y
LF Fortran Express User’s Guide 87



Chapter 3    Mixed Language Programming
             fstp    dword ptr _rrr_.z ; Z=X*Y

             mov     esp,ebp         ; Restore stack pointer

             pop     ebp             ; Restore base pointer

             ret                     ; Return to caller

_asmcom_     ENDP                    ; End of procedure

_ACODE       ENDS                    ; End of segment

;

_ADATA      SEGMENT PARA USE32 PUBLIC 'DATA'

m1           dd      5

_ADATA       ENDS

;

             END

 The starting addresses of the COMMON blocks are obtained by using EXTERN directives 
to connect to the global values.  The individual variables within a COMMON block can then 
be accessed as STRUCTs that are written so as to match the layout of the Fortran code's 
COMMON declarations.  Each COMMON block must consist of a STRUCT definition, plus 
an EXTERN declaration to connect it to the global data object. 

Example 5:  CHARACTER arguments.
Type CHARACTER variables are passed to subroutines as two arguments: the starting 
address of the string, and the string's length.  The two arguments are not, however, pushed 
consecutively onto the stack.  Rather, the address pointer is pushed in the usual order, and 
then after all arguments have been passed, the lengths of any CHARACTER arguments are 
passed by value.

Here is an example of a main program (CHRMAIN), that calls a Fortran subroutine 
(FORCAPS), and its assembly language equivalent (ASMCAPS). Both FORCAPS and 
ASMCAPS take two CHARACTER arguments;  the first argument is converted into all 
upper case letters, and then returned in the second argument.

      PROGRAM CHRMAIN

      character (len=20) :: line1, line2, line3

      line1 = 'This is a message'

      line2 = 'zzzzzzzzzzzzzzzzzzzz'

      line3 = 'aaaaaaaaaaaaaaaaaaaa'

      call forcaps(line1,line2)

      print 20, line1

      print 20, line2

   20 format (1X,A)

      call asmcaps(line1,line3)

      print 20, line1

      print 20, line3

      stop

      end
88 LF Fortran Express User’s Guide



Passing Arguments to Subroutines
      SUBROUTINE FORCAPS(L1,L2)

      character*(*) :: l1, l2

      n = len(l1)       ! Converts all

      do i=1,n          ! chars to caps

        ic = ichar(l1(i:i))

        if (ic.ge.97 .and. ic.le.122) ic = ic-32

        l2(i:i) = char(ic)

      enddo

      return

      end

This is the assembly language string capitalization routine. 

             TITLE   ASMCAPS

             .386

             .MODEL  FLAT

;

_ACODE       SEGMENTPARA USE32 PUBLIC 'CODE'

             ASSUME  CS:_ACODE

             PUBLIC  _asmcaps_    ; Entry point name

_asmcaps_    PROC    NEAR         ; Start of procedure

             push    ebp          ; Save EBP

             mov     ebp,esp      ; Will use EBP for args

             push    esi          ; Must preserve ESI

             push    edi          ; Must preserve EDI

;

             mov     esi,[ebp+8]  ; 1st string addr (L1)

             mov     edi,[ebp+12] ; 2nd string addr (L2)

             mov     ecx,[ebp+16] ; 1st string length

             cmp     ecx, 0       ; Length nonpositive?

             jle     Exit         ; Yes, so return

;

Looper:      mov     al, [esi]    ; Get char from L1

             cmp     al, 97       ; Below "a"?

             jl      PutIt        ; Yes, so no conversion

             cmp     al, 122      ; Above "z"?

             jg      PutIt        ; Yes, so no conversion

             sub     al, 32       ; Change LC to UC

PutIt:       mov     [edi], al    ; Store

             inc     esi          ; Point to next char

             inc     edi          ; Point to next target

             loop    Looper       ; Loop until done

;

LF Fortran Express User’s Guide 89



Chapter 3    Mixed Language Programming
Exit:        pop     edi          ; Restore saved EDI
             pop     esi          ; Restore saved ESI
             mov     esp,ebp      ; Restore stack pointer
             pop     ebp          ; Restore base pointer
             ret                  ; Return to caller
_asmcaps_    ENDP                 ; End of procedure
_ACODE       ENDS                 ; End of segment
             END

 Note that the starting addresses of the arguments are stored in EBP+8 and EBP+12, while 
the lengths of the two CHARACTER variables are in EBP+16 and EBP+20.  In this code, we 
do not make use of the length of the second string, assuming it to be equal to that of the first 
one.

Since we use the ESI and EDI registers in this subroutine, we save their previous values on 
the stack and restore them before returning.

Returning Values from Functions

LF95 Function Conventions
The methods for passing arguments and COMMON blocks to a FUNCTION are identical to 
those described above for a SUBROUTINE.  The only difference in the calling sequence is 
that a FUNCTION returns a value, and the method that is used to send the result back to the 
calling routine depends upon the data type of that value.

INTEGER-valued FUNCTIONs return values using CPU registers, so that the return value 
for one-byte, two-byte, and four-byte functions are returned in AL, AX, and EAX, 
respectively.

Four-byte and eight-byte REAL FUNCTIONs use the top of the floating-point unit stack, 
ST(0) for return of values.  The only difference in the assembly language access of these vari-
able types is that the former require DWORD PTR, while the latter use QWORD PTR when 
loading to and storing from the FPU.  These conventions are summarized in Table 8 on 
page 91.
90 LF Fortran Express User’s Guide



Returning Values from Functions
   

Example 6:  A COMPLEX Function
When an LF95 program calls a COMPLEX-valued function, it first pushes the argument 
addresses onto the stack, and then also pushes the address of a place where the function 
should store its return value.  Thus, after the function preamble (where the contents of ESP 
are stored into EBP), EBP+8 will contain the address of the return buffer, and the normal 
argument pointers will start at EBP+12.

Here is an example of a program that passes a COMPLEX variable to a COMPLEX-valued 
Fortran function CXFFUN that returns two times its argument.

      PROGRAM CXMAIN

      complex :: a, b, c, cxffun, cxafun

      a = (1.0,2.0)

      b = cxffun(a)

      c = cxafun(a)

      print *, 'a=',a

      print *, 'b=',b

      print *, 'c=',c

      stop

      end

Table 8: FUNCTION Return Mechanisms

Function Type Kind No. Location of Return Value

INTEGER 1 AL

INTEGER 2 AX

INTEGER 4 EAX

LOGICAL 1 AL

LOGICAL 4 EAX

REAL 4 ST(0)

REAL 8 ST(0)

COMPLEX 4 Address on stack

COMPLEX 8 Address on stack

CHARACTER all Address & length on stack
LF Fortran Express User’s Guide 91



Chapter 3    Mixed Language Programming
      FUNCTION CXFFUN(A)
      complex :: a, cxffun
      cxffun = a+a
      return
      end

 The above program also calls a COMPLEX-valued assembly language function CXAFUN, 
that performs exactly the same operation as CXFFUN, i.e., it returns double the argument.

             TITLE   CXAFUN
             .386
             .MODEL  FLAT
;
_ACODE       SEGMENT PARA USE32 PUBLIC 'CODE'
             ASSUME  CS:_ACODE
             PUBLIC  _cxafun_        ; Entry point name
_cxafun_     PROC    NEAR            ; Start of procedure
             push    ebp             ; Save EBP
             mov     ebp,esp         ; Will use EBP for args
;
             mov     eax, [ebp+12]   ; Argument address
             fld     dword ptr [eax] ; Get real part
             fadd    dword ptr [eax] ; Double it
             fld     dword ptr [eax+4] ; Get imag part
             fadd    dword ptr [eax+4] ; Double it
;
             mov     eax, [ebp+8]    ; Return buffer address
             fstp    dword ptr [eax+4] ; Store imag part
             fstp    dword ptr [eax] ; Store real part
;
             mov     esp,ebp         ; Restore stack pointer
             pop     ebp             ; Restore base pointer
             ret                     ; Return to caller
_cxafun_     ENDP                    ; End of procedure
_ACODE       ENDS                    ; End of segment
             END

Looking at this function, we can see that the single argument's address is stored in EBP+12.  
That is the address of the real part of the argument, with the imaginary part being stored four 
bytes higher in memory.

Both parts of the argument are copied into the FPU and doubled.  The results are then stored 
into the return buffer, whose address is found at EBP+8.  That is, of course, the address of 
the real part and the imaginary component is stored four bytes higher.

Example 7:  A CHARACTER Function
A somewhat more complicated mechanism is used for CHARACTER-valued functions.  
After the argument information has been pushed on the stack, they are followed by the length 
and starting address of the memory buffer that will accept the result.  As a consequence, the 
92 LF Fortran Express User’s Guide



Returning Values from Functions
return buffer's address can be found in EBP+8, and its length in EBP+12.  The address of the 
first argument is then moved up to EBP+16, and any other arguments follow in the usual 
manner.

Here is a Fortran main program that sets a CHARACTER variable equal to the string 
``Hello,'' and then calls a Fortran function (FFUN) that returns a capitalized form of the 
string.  The program then calls an assembly language function (AFUN) that returns a decap-
italized version.

      PROGRAM CHMAIN
      character*20 a, b, c, ffun, afun
      a = 'Hello'
      b = ffun(a)
      c = afun(b)
      print 20, a, b, c
   20 format (' a = ',A/' b = ',A/' c = ',A)
      stop
      end
      CHARACTER*20 FUNCTION FFUN(A)
      character*(*) a
      n = len(a)
      do i=1,n
        ic = ichar(a(i:i))
        if (ic.ge.97 .and. ic.le.122) ic = ic-32
        ffun(i:i) = char(ic)
      enddo
      return
      end

This is the CHARACTER-valued assembly language function that is used by the program 
above:  

             TITLE   AFUN
             .386
             .MODEL  FLAT
;
_ACODE       SEGMENT PARA USE32 PUBLIC 'CODE'
             ASSUME  CS:_ACODE
             PUBLIC  _afun_       ; Entry point name
_afun_       PROC    NEAR         ; Start of procedure
             push    ebp          ; Save EBP
             mov     ebp,esp      ; Will use EBP for args
             push    esi
             push    edi
;
             mov     edx, [ebp+12]; Length of return buffer
             mov     eax, [ebp+20]; Length of argument
             cmp     edx, eax     ; Which is smaller?
             jg      L10          ; Return buffer
LF Fortran Express User’s Guide 93



Chapter 3    Mixed Language Programming
             mov     ecx, edx     ; Get arg length

             jmp     L20

L10:         mov     ecx, eax     ; Get ret buf length

L20:         cmp     ecx, 0       ; Length nonpositive?

             jle     L90          ; Yes, so return

;

             mov     esi, [ebp+16]; Addr of argument

             mov     edi, [ebp+8] ; Addr of ret buf

L30:         mov     al, [esi]    ; Get char from L1

             cmp     al, 65       ; Below "A"?

             jl      L40          ; Yes, so no conversion

             cmp     al, 90       ; Above "Z"?

             jg      L40          ; Yes, so no conversion

             add     al, 32       ; Change UC to LC

L40:         mov     [edi], al    ; Store

             inc     esi          ; Point to next char

             inc     edi          ; Point to next target

             loop    L30          ; Loop until done

;

L90:         pop     edi          ; Restore saved EDI

             pop     esi

             mov     esp,ebp      ; Restore stack pointer

             pop     ebp          ; Restore base pointer

             ret                  ; Return to caller

_afun_       ENDP                 ; End of procedure

_ACODE       ENDS                 ; End of segment

             END

 The sole argument is passed with its starting address in EBP+16, and its length in EBP+20 
--- remember that if there are several arguments, then the CHARACTER lengths follow the 
entire list of addresses.  The return buffer, the place where the function should store its return 
value is communicated by its starting address (in EBP+8) and length (in EBP+12).
94 LF Fortran Express User’s Guide



4 Command-Line 
Debugging with FDB
FDB is a command-line symbolic source-level debugger for Fortran 95 and assembly pro-
grams.  Before debugging your program you must compile it using the -g option 
(see”Compiler and Linker Options”  on page 29).  The -g option creates an additional file 
with debugging information -- this file has the same name as the executable with the exten-
sion .ydg.  Debugging cannot be performed without the presence of the .ydg file in the same 
directory as the executable file.  FDB cannot be used on LF90 executables.

Starting FDB
To start FDB type:

FDB exefile

Where: exefile is the name of an executable file compiled with the -g option.

Commands
Commands can be abbreviated by entering only the underlined letter or letters in the com-
mand descriptions.  For example, kill can be abbreviated simply k and oncebreak can be 
abbreviated ob.  All commands should be typed in lower case, unless otherwise noted.

Executing and Terminating a Program

run arglist 
Passes the arglist list of arguments to the program at execution time. When arglist is omitted, 
the program is executed using the arguments last specified. If arglist contains an argument 
that starts with "<" or ">", the program is executed after the I/O is redirected.
LF Fortran Express User’s Guide 95



Chapter 4    Command-Line Debugging with FDB
Run 
Executes the program without arguments.  The “R” should be upper case.

kill 
Forces cancellation of the program.

param commandline arglist
Assign the program’s command line argument list a new set of values

param commandline
Display the current list of command line arguments

clear commandline
The argument list is deleted

quit
Ends the debugging session.

Shell Commands

cd dir
Change working directory to dir

pwd
Display the current working directory path

Breakpoints

General Syntax
break [location [? expr]]

Where location corresponds to an address in the program or a line number in a source file, 
and expr corresponds to a conditional expression associated with the breakpoint.  The value 
of location may be specified by one of the following items:

• [’file’] line    specifies line number line in the source file file.  If omitted, file defaults 
to the current file.

• proc [+|- offset]   specifies the line number corresponding to the entry point of func-
tion or subroutine proc plus or minus offset lines.
96 LF Fortran Express User’s Guide



Breakpoints
• [mod@]proc[@inproc]  specifies function or subroutine proc in current scoping unit, 
or  internal procedure inproc within proc, or procedure proc contained in module 
mod.

• *addr   specifies a physical address (default radix is hexadecimal).
• If location is omitted, it defaults to the current line of code

The conditional expression expr can be constructed of program variables, typedef elements, 
and constants, along with the following operators:

Minus unary operator (-)
Plus unary operator (+)
Assignment statement (=)
Scalar relational operator (<, <=, ==, /=, >, >=, .LT., .LE., .EQ., .NE., .GT., .GE.)
Logical operator (.NOT., .AND., .OR., .EQV., .NEQV.)

break [ ’file’ ] line
Sets a breakpoint at the line number line in the source file file. If omitted, file defaults to the 
current file.  Note that the “apostrophes” in ‘file‘, above, are the standard apostrophe charac-
ter (ascii 39).

break [ ’file’ ] funcname
Sets a breakpoint at the entry point of the function funcname in the source file file. If omitted, 
file defaults to the current file.  Note that the “apostrophes” in ‘file‘, above, are the standard 
apostrophe character (ascii 39).

break *addr
Sets a breakpoint at address addr.

break
Sets a breakpoint at the current line.

breakon [#n]
Enables the breakpoint number n.  If #n is omitted, all breakpoints are enabled.  Note that the 
"#" symbol is required.

breakoff [#n]
Disables, but does not remove, the breakpoint number n.  If #n is omitted, all breakpoints are 
disabled.  Note that the "#" symbol is required.

condition #n expr
Associate conditional expression expr with the breakpoint whose serial number is n. Note 
that the “#” symbol is required.
LF Fortran Express User’s Guide 97



Chapter 4    Command-Line Debugging with FDB
condition #n
Remove any condition associated with the breakpoint whose serial number is n.  Note that 
the “#” symbol is required.

oncebreak
Sets a temporary breakpoint that is deleted after the program is stopped at the breakpoint 
once. OnceBreak in other regards, including arguments, works like Break.

regularbreak "regex"
Set a breakpoint at the beginning of all functions or procedures with a name matching regular 
expression regex.

delete location
Removes the breakpoint at location location as described in above syntax description.

delete [ ’file’ ] line
Removes the breakpoint for the line number line in the source file specified as file. If omitted, 
file defaults to the current file.  Note that the “apostrophes” in ‘file‘, above, are the standard 
apostrophe character (ascii 39).

delete [ ’file’ ] funcname
Removes the breakpoint for the entry point of the function funcname in the source file file. 
If omitted, file defaults to the current file. Note that the “apostrophes” in ‘file‘, above, are the 
standard apostrophe character (ascii 39).

delete *addr
Removes the breakpoint for the address addr.

delete #n
Removes breakpoint number n.

delete
Removes all breakpoints.

skip #n count
Skips the breakpoint number n count times.

onstop #n cmd[;cmd2;cmd3...;cmdn]
Upon encountering breakpoint n, execute the specified fdb command(s).
98 LF Fortran Express User’s Guide



Controlling Program Execution
show break
B
Displays all breakpoints.  If using the abbreviation “B”, the “B” must be upper case.

Controlling Program Execution

continue [ count ]
Continues program execution until a breakpoint's count reaches count. Then, execution stops. 
If omitted, count defaults to 1 and the execution is interrupted at the next breakpoint. Program 
execution is continued without the program being notified of a signal, even if the program 
was broken by that signal. In this case, program execution is usually interrupted later when 
the program is broken again at the same instruction.

silentcontinue [ count ]
Same as Continue but if a signal breaks a program, the program is notified of that signal when 
program execution is continued.

step [ count ]
Executes the next count lines, including the current line. If omitted, count defaults to 1, and 
only the current line is executed.  If a function or subroutine call is encountered, execution 
“steps into” that procedure.

silentstep [ count ]
Same as Step but if a signal breaks a program, the program is notified of that signal when 
program execution is continued.

stepi  [ count ]
Executes the next count machine language instructions, including the current instruction. If 
omitted, count defaults to 1, and only the current instruction is executed.

silentstepi [ count ]
Same as Stepi but if a signal breaks a program, the program is notified of that signal when 
program execution is continued.

next [ count ]
Executes the next count lines, including the current line, where a function or subroutine call 
is considered to be a line. If omitted, count defaults to 1, and only the current line is executed.  
In other words, if a function or subroutine call is encountered, execution “steps over” that 
procedure.
LF Fortran Express User’s Guide 99



Chapter 4    Command-Line Debugging with FDB
silentnext [ count ]
Same as Next but if a signal breaks a program, the program is notified of that signal when 
program execution is continued.

nexti [ count ]
Executes the next count machine language instructions, including the current instruction, 
where a function call is considered to be an instruction. If omitted, count defaults to 1, and 
only the current instruction is executed.

silentnexti [ count ] or nin [ count ]
Same as Nexti but if a signal breaks a program, the program is notified of that signal when 
program execution is continued.

until
Continues program execution until reaching the next instruction or statement.

until loc
Continues program execution until reaching the location or line loc.

until *addr
Continues program execution until reaching the address addr.

until +|-offset
Continues program execution until reaching the line forward (+) or backward (-) offset lines 
from the current line.

until return
Continues program execution until returning to the calling line of the function that includes 
the current breakpoint.

Displaying Program Stack Information

traceback [n]
Displays subprogram entry points (frames) in the stack, where n is the number of stack 
frames to be processed from the current frame.

frame [#n]
Select stack frame number n. If n is omitted, the current stack frame is selected.  Note that 
the “#” symbol is required.
100 LF Fortran Express User’s Guide



Setting and Displaying Program Variables
upside [n]
Select the stack frame for the procedure n levels up the call chain (down the chain if n is less 
than 0).  The default value of n is 1.

downside [n]
Select the stack frame for the procedure n levels down the call chain (up the chain if n is less 
than 0).  The default value of n is 1.

show args
Display argument information for the procedure corresponding to the currently selected 
frame

show locals
Display local variables for the procedure corresponding to the currently selected frame

show reg [ $r ]
Displays the contents of the register r in the current frame. r cannot be a floating-point reg-
ister. If $r is omitted, the contents of all registers except floating-point registers are displayed.  
Note that the $ symbol is required.

show freg [ $fr ]
Displays the contents of the floating-point register fr in the current frame. If $fr is omitted, 
the contents of all floating-point registers are displayed.  Note that the $ symbol is required.

show regs
Displays the contents of all registers including floating-point registers in the current frame.

show map
Displays the address map.

Setting and Displaying Program Variables

set variable = value
Sets variable to value.

set *addr = value
Sets *addr to value.

set reg = value
Sets reg to value. reg must be a register or a floating-point register.
LF Fortran Express User’s Guide 101



Chapter 4    Command-Line Debugging with FDB
print [ [:F] variable [ = value ] ]
Displays the content of the program variable variable by using the edit format F. If edit for-
mat F is omitted, it is implied based on the type of variable.  variable can be a scalar, array, 
array element, array section, derived type, derived type element, or common block. F can 
have any of the following values:

x hexadecimal
d signed decimal
u unsigned decimal
o octal
f floating-point
c character
s character string
a address of variable

If value is specified, the variable will be set to value. 

If no arguments are specified, the last print command having arguments is repeated.

memprint [:FuN ] addr 
dump [:FuN ] addr 
Displays the content of the memory address addr by using edit format F. u indicates the dis-
play unit, and N indicates the number of units. F can have the same values as were defined 
for the Print command variable F.

If omitted, f defaults to x (hexadecimal).

u can have any of the following values:

b one byte
h two bytes (half word)
w four bytes (word)
l eight bytes (long word/double word)

If u is omitted, it defaults to w (word). If n is omitted, it defaults to 1. Therefore, the two fol-
lowing commands have the same result:

memprint addr
memprint :xw1 addr

Source File Display

show source
Displays the name of the current file.
102 LF Fortran Express User’s Guide



Source File Display
list now
Displays the current line.

list [ next ]
Displays the next 10 lines, including the current line. The current line is changed to the last 
line displayed.

list previous
Displays the last 10 lines, except for the current line. The current line is changed to the last 
line displayed.

list around
Displays the last 5 lines and the next 5 lines, including the current line. The current line is 
changed to the last line displayed.

list [ ’file’ ] num
Changes from the current line of the current file to the line number num of the source file file, 
and displays the next 10 lines, including the new current line. If file is omitted, the current 
file is not changed.

list +|-offset
Displays the line forward (+) or backward (-) offset lines from the current line. The current 
line is changed to the last line displayed.

list [ ’file’ ] top,bot
Displays the source file lines between line number top and line number bot in the source file 
file. If file is omitted, it defaults to the current file. The current line is changed to the last line 
displayed.

list [ func[tion ] funcname
Displays the last 5 lines and the next 5 lines of the entry point of the function funcname.

disas
Displays the current machine language instruction in disassembled form.

disas *addr1 [ ,*addr2 ]
Displays the machine language instructions between address addr1 and address addr2 in dis-
assembled form. If addr2 is omitted, it defaults to the end of the current function that contains 
address addr1.

disas funcname
Displays all instructions of the function funcname in disassembled form.
LF Fortran Express User’s Guide 103



Chapter 4    Command-Line Debugging with FDB
Automatic Display

screen [:F] expr
Displays the value of expression expr according to format F every time the program stops.

screen
Displays the names and values of all expressions set by the screen [:F] expr command above.

unscreen [#n]
Remove automatic display number n (“#” symbol required).  When #n is omitted, all are 
removed.

screenoff [#n]
Deactivate automatic display number n.  When #n is omitted, all are deactivated.

screenon [#n]
Activate automatic display number n.  When #n is omitted, all are activated.

show screen
Displays a numbered list of all expressions set by the screen [:F] expr command above.

Symbols

show function ["regex"]
Display the type and name of all functions or subroutines with a name that matches regular 
expression regex.  When regex is omitted, all procedure names and types are displayed.

show variable ["regex"]
Display the type and name of all variables with a name that matches regular expression regex.  
When regex is omitted, all variable names and types are displayed.

Scripts

alias cmd  "cmd-str"
Assigns the fdb command(s) in cmd-str to alias cmd.

alias [cmd]
show alias [cmd]
display the alias cmd definition.  When cmd is omitted, all the definitions are displayed.
104 LF Fortran Express User’s Guide



Signals
unalias [cmd]
Remove the alias cmd definition.  When cmd is omitted, all the definitions are removed.

Signals

signal sig action
Behavior action is set for signal sig.  Please refer to signal(5) for the name which can be spec-
ified for sig.  The possible values for action are:

stopped    Execution stopped when signal sig encountered
throw      Execution not stopped when signal sig encountered

show signal [sig]
Displays the set response for signal sig.  If sig is omitted, the response for all signals is 
displayed.

Miscellaneous Controls

param listsize num
The number of lines displayed by the list command is set to num.  The initial (default) value 
of num is 10.

param prompt  "str"
str is used as a prompt character string.  The initial (default) value is “fdb*”.  Note that the 
double quotes are required.

param printelements num
Set the number of displayed array elements to num when printing arrays.  The initial (default) 
value is 200.  The minimum value of num is 10.  Setting num to 0 implies no limit.

param prm
Display the value of parameter prm.

Files

show exec
Display the name of the current executable file.
LF Fortran Express User’s Guide 105



Chapter 4    Command-Line Debugging with FDB
param execpath [path]
Add path to the execution file search path.  If path is omitted, the value of the search path is 
displayed.  Note that this search path is comprised of a list of directories separated by 
semicolons.

param srcpath [path]
Add path to the source file search path when searching for procedures, variables, etc.  If path 
is omitted, the value of the search path is displayed.  Note that this search path is comprised 
of a list of directories separated by semicolons.

show source
Display the name of the current source file.

show sources
Display the names of all source files in the program.

Fortran 95 Specific 

breakall mdl
Set a breakpoint in all Fortran procedures (including internal procedures) in module mdl.

breakall func
Set a breakpoint in all internal procedures in procure func.

show ffile
Displays information about the files that are currently open in the Fortran program.

show fopt
Display the runtime options specified at the start of Fortran program execution.

Communicating with fdb

Functions
In a Fortran 95 program, if modules and internal subprograms are used, functions are speci-
fied as the following:

A module subprogram sub defined inside a module module is specified as module@sub.

An entry point ent defined inside a module module is specified as module@ent.
106 LF Fortran Express User’s Guide



Communicating with fdb
An internal subprogram insub defined inside a module subprogram sub within a module mod-
ule is specified as module@sub@insub.

An internal subprogram insub defined inside a subprogram sub is specified as sub@insub.

The name of the top level function, MAIN_, is not needed when specifying a function.

Variables
Variables are specified in fdb in the same manner as they are specified in Fortran 95 or C.

In C, a structure member is specified as variable.member or variable->member if variable 
is a pointer. In Fortran 95, a derived-type (i.e., structure) component is specified as 
variable%member.

In C, an array element is specified as variable[member][member].... In Fortran 95, an array 
element is specified as variable(member,member,...).  Note that in Fortran 95, omission of 
array subscripts implies a reference to the entire array.  Listing of array contents in Fortran 
95 is limited by the printelements parameter  (see ”Miscellaneous Controls”  on page 
105).

Values
Numeric values can be of types integer, real, unsigned octal, or unsigned hexadecimal. Val-
ues of type real can have an exponent, for example 3.14e10.

In a Fortran 95 program, values of type complex, logical, and character are also allowed. Val-
ues of type complex are represented as (real-part,imaginary-part). Character data is 
represented as " character string " (the string is delimited by quotation marks, i.e., ascii 34).

Values of type logical are represented as .t. or .f..

Addresses
Addresses can be represented as unsigned decimal numbers, unsigned octal numbers (which 
must start with 0), or unsigned hexadecimal numbers (which must start with 0x or 0X). The 
following examples show print commands with address specifications.

memprint 1024 (The content of the area addressed by 0x0400 is displayed.)

memprint 01024 (The content of the area addressed by 0x0214 is displayed.)

memprint 0x1024 (The content of the area addressed by 0x1024 is displayed.)

Registers
$BP      Base Pointer
$SP      Stack Pointer
$EIP     Program counter
$EFLAGS  Processor state register
$ST[0-7] Floating-point registers
LF Fortran Express User’s Guide 107



Chapter 4    Command-Line Debugging with FDB
Names
In Fortran 95 programs, a lowercase letter in the name (such as a function name, variable 
name, and so on) is the same as  the corresponding uppercase letter. The main program name 
is MAIN_ and a subprogram name is generated by adding an underscore(_) after the corre-
sponding name specified in the Fortran source program. A common block name is also 
generated by adding an underscore (_) after the corresponding name specified in the Fortran 
source program.
108 LF Fortran Express User’s Guide



5 Library Manager
The Microsoft librarian utility, LIB, can be used to manage library creation and modification, 
extract object files from an existing library, or create import libraries.  These three tasks are 
mutually exclusive, which means that LIB can only be invoked to perform one of these func-
tions at a time.

By default, LIB outputs a file using the name of the first object or library file that is encoun-
tered, giving it the .lib extension.  If a file with this name already exists, it is overwritten.  
The default action can be overridden by using the /out:libname option.

LIB accepts both OMF and COFF format object files.  When an OMF object file is specified, 
LIB changes the format to COFF before creating a library. 

LIB Syntax:
LIB [options] [files]

options is a list of options separated by spaces.  Options begin with a hyphen (-) or 
a slash(/).  They may appear in any order and are processed in the order they are 
encountered.  Arguments to options are denoted by a colon character (:), and there 
cannot be any spaces or tabs between an option and it’s argument.

files is a space separated list of object and library filenames.

Options

/CONVERT
Converts an import library to Visual Studio version 5 format.
LF Fortran Express User’s Guide 109



Chapter 5    Library Manager
/DEF[:filename]
Indicates that an import library is to be created.  filename indicates the name of a definition 
file.  LIB will export procedures that are specified in the EXPORT section a definition file or 
that are specified using the /EXPORT option.

/EXPORT:symbol
Used to specify procedures to be exported when creating an import library.

/EXTRACT:membername
Used to extract the object file membername from a library.

/INCLUDE:symbol
Adds symbol to the symbol table when creating an import library.

/LIBPATH:dir
Sets a path to be searched for library files.  This path overrides a path specified by the LIB 
environment variable.

/LINK50COMPAT
Generates an import library using Visual Studio version 5 format.

/LIST[:filename]
Displays a list of objects in the first library file encountered.  If filename is absent, the output 
is displayed on stdout.  If filename is present, the output is directed to the specified file.

/NODEFAULTLIB[:library]
Do not refer to default libraries when resolving external references.  If library is present, only 
the specified library is removed from the default library list.

/NOLOGO
Suppresses the display of the version and copyright banner.

/OUT:libname
Sets the name of the output library file.

/REMOVE:membername
Removes the object file named membername from the specified library.

/VERBOSE
Displays detailed information about the progress of the LIB session.
110 LF Fortran Express User’s Guide



Response Files
Response Files
It is possible to place commonly used or long LIB command-line parameters in a response 
file.  LIB command-line parameters are entered in a response file in the same manner as they 
would be entered on the command line.  A new line in a response file is treated like a sepa-
rator on the LIB command line.

To invoke the response file, type:

LIB @response-filename

where response-filename is the name of the response file with extension.

Creating and maintaining COFF libraries
The default usage for LIB is to perform library management.  LIB runs in default mode when-
ever the /def or /extract options are not used.  LIB will accept any object files and 
libraries specified on the command line and in a command file, and create a library containing 
the combined contents of the input files.  

Example  1:
lib obj1.obj obj2.obj lib1.lib

In this example, the files obj1.obj obj2.obj and lib1.lib are combined into a library 
called obj1.lib.  If obj1.lib did not exist before this command was invoked, it is cre-
ated.  If obj1.lib did exist before this command was invoked, it’s previous contents are 
overwritten.

Example  2:
lib obj1.obj obj2.obj lib1.lib /out:mylib.lib

In this example, the files obj1.obj obj2.obj and lib1.lib are combined into a library 
called mylib.lib.  If mylib.lib did not exist before this command was invoked, it is 
created.  If mylib.lib did exist before this command was invoked, it’s previous contents 
are overwritten.

Example  3:
lib /remove:obj1.obj mylib.lib

In this example, the object file obj1.obj is removed from the library mylib.lib.

Example  4:
lib mylib.lib obj1.obj 

In this example, the object file obj1.obj is added to the library mylib.lib.
LF Fortran Express User’s Guide 111



Chapter 5    Library Manager
Extracting object files from libraries
When the /extract option is used, LIB extracts an object file from an existing library.  The 
object being extracted is not removed from the library.  To delete an object from a library use 
the /remove option.

Example:
lib /extract:obj1.obj mylib.lib

In this example, the object file obj1.obj is extracted from the library mylib.lib and is 
written to disk.  If a file named obj1.obj previously existed, it is overwritten.

Creating import libraries
When the /def option is specified, LIB is used to generate an import library.  It is usually 
not necessary to use LIB to create an import library, because the import library is automati-
cally generated by LINK whenever a DLL is created.  If the user is creating a DLL with a 3rd 
party language system and an import library is not created, or if the user is provided with a 
DLL by a 3rd party without an import library, one can be generated using LIB /def.  For 
more information on creating import libraries for mixed language applications, see “Building 
Import Libraries” on page 57. 

Two items are needed to generate an import library - a set of definitions and an object file 
containing the exported procedures.  

Definitions may be in the form of a definition file or as arguments to the /EXPORT option.  
A definition file contains exported symbols as they appear in the DLL.  These symbols can 
be listed using DUMPBIN /EXPORTS.  Alternatively, a definition file can be generated from 
a DLL using the MAKEDEF utility.  Note that the definition file that is used when creating the 
import library should only contain procedure names that appear in the object file, otherwise 
unresolved references will occur when the LIB command is executed.  

If the object file that was used to create the DLL is available, an import library can easily be 
created using the object file and a definition file.  

Example:
lib /def:mydll.def dllobj.obj /out:mydll.lib

In this example the file mydll.def contains an EXPORTS header, under which export sym-
bols are listed as they appear when displayed with the DUMPBIN utility.  The file 
dllobj.obj is the object file that was linked to make the DLL.

If no object file is available, a Fortran object file can be created from a Fortran ‘stub’.  All 
that is required is that the user know the calling sequence for the DLL procedure.  A stub pro-
cedure consists of a SUBROUTINE or FUNCTION  statement, an argument list, declarations 
for any dummy arguments, a DLL_EXPORT statement, and an END statement.  Note that the 
stub procedure name appearing in the DLL_EXPORT statement is case-sensitive, and should 
112 LF Fortran Express User’s Guide



Creating import libraries
have the same case as the procedure exported from the DLL.  The stub procedure is compiled 
into an object file using the -c and an appropriate -ml option.  This object file can then be 
used by LIB to create the import library.  When compiling the LF95 program that will call 
the DLL, make sure that the same -ml option is used as for the stub procedure.  Note that -ml 
lf95 is not a valid option when making an import library.

Example stub procedure (called dllsub1.f90):
subroutine dllsub1(a,i,l)
  dllexport :: dllsub1
  real      :: a
  integer   :: i
  logical   :: l
end subroutine

Example definition file (called dllsub1.def):
EXPORTS
dllsub1

Example compile command:
lf95 -c -ml msvc dllsub1.f90

Example LIB command:
lib /def:dllsub1.def dllsub1.obj /out:mydll.lib

The above examples show how to create an import library from a Fortran stub for a DLL 
called mydll.dll, which contains a procedure called dllsub1 having three arguments.  
When compiling the LF95 main program which calls mydll.dll, the -ml msvc option 
must be used.

Note that depending on which target is specified when using the -ml option, LIB may gen-
erate a warning about multiply defined symbols.  This warning can generally be disregarded.

Further examples of creating import libraries using /def and stub procedures exist in direc-
tories under the EXAMPLES\MIX_LANG directory.
LF Fortran Express User’s Guide 113



Chapter 5    Library Manager
114 LF Fortran Express User’s Guide



6 Utility Programs
This chapter documents the following utility programs:

• DUMPBIN.EXE
• EDITBIN.EXE
• HDRSTRIP.F90
• LFSPLIT.EXE
• MAKEDEF.EXE
• SEQUNF.F90
• TRYBLOCK.F90
• UNFSEQ.F90
• WHERE.EXE

DUMPBIN.EXE
DUMPBIN.EXE allows you to display information about COFF object files, libraries of 
COFF object files, executable files, and dynamic-link libraries.  Information can be displayed 
in both hexadecimal and ASCII character formats.

Invoking DUMPBIN
DUMPBIN is invoked from the command prompt using the following syntax:

dumpbin [options] files

DUMPBIN Options
Options are distinguished by using an option specifier, which consists of a leading “/” or “-” 
character, followed by the option name.  Options and filenames may be separated by the 
space or tab characters.  Options and filenames are not case sensitive.  If no options are spec-
ified, the default option is /SUMMARY.  
LF Fortran Express User’s Guide 115



Chapter 6    Utility Programs
Option list
Note that some options for DUMPBIN may not apply to files built with LF95.  Only options 
known to be valid for files built with LF95 are described.

-ALL
Displays everything except disassembly.  Use /RAWDATA:NONE with the /ALL option to 
prevent display of raw binary details. 

-ARCHIVEMEMBERS
Displays information about objects in a library. 

-DEPENDENTS
Displays the name of any DLL needed by an executable or DLL.

-DISASM
Displays code disassembly.

-EXPORTS
Displays all symbols exported by a DLL.

-HEADERS
Displays coff header information.

-IMPORTS
Displays all symbols imported by an executable or DLL.

-LINKERMEMBER[:lev]
Displays public symbols defined in a library.  If the lev argument is 1, display symbols in 
object order, along with their offsets.  If the lev argument is 2, display offsets and index num-
bers of objects, then list the symbols in alphabetical order along with the object index for 
each.  If the lev argument is not present, both outputs are displayed.

-OUT:filename
Sends output to the specified file instead of to the console.

-RAWDATA:option
Displays the raw contents of each section in the file. The option argument controls the format 
of the display, as follows: 

BYTES -  Default setting.  Contents are displayed in hexadecimal bytes, and in ASCII.
SHORTS -  Contents are displayed in hexadecimal words.
LONGS -  Contents are displayed in hexadecimal long words.
NONE -  Display of raw data is suppressed.
number -  Controls the number of values displayed per line.

-RELOCATIONS
Displays any relocations in the object or image.

-SECTION:section
Restricts output to the specified section.
116 LF Fortran Express User’s Guide



EDITBIN.EXE
-SUMMARY
Default option.  Displays minimal information about the file.

-SYMBOLS
Displays the COFF symbol table for an object file or library.

EDITBIN.EXE
EDITBIN.EXE allows you to edit information in COFF object files, libraries of COFF object 
files, executable files, and dynamic-link libraries.  EDITBIN can also be used to convert 
object model format files (OMF) to common object file format (COFF).  To convert from 
OMF to COFF, run EDITBIN with no options.

Invoking EDITBIN
EDITBIN is invoked from the command prompt using the following syntax:

editbin [options] files

EDITBIN Options
Options are distinguished by using an option specifier, which consists of a leading “/” or “-” 
character, followed by the option name.  Options and filenames may be separated by the 
space or tab characters.  Options and filenames are not case sensitive.

Option list
-BIND[:PATH=path]
Sets the addresses of the entry points in the import address table for an executable file or 
DLL.  Use this option to reduce load time of a program.  The optional path argument specifies 
the location of any DLLs.  Separate multiple directories with semicolons.  If path is not spec-
ified, EDITBIN searches the directories specified in the PATH environment variable.  If path 
is specified, EDITBIN ignores the PATH variable. 

-HEAP:reserve[,commit]
Sets the size of the heap in bytes.  Numbers are specified in decimal format.

The reserve argument specifies the total heap allocation in virtual memory.  The default heap 
size is 1MB.  The linker rounds the specified value up to the nearest 4 bytes. 

The optional commit argument specifies the amount of physical memory to allocate at a time.  
Committed virtual memory causes space to be reserved in the paging file.  A larger commit 
value saves time when the application needs more heap space but increases the memory 
requirements and possibly startup time. 

-LARGEADDRESSAWARE
Edits the image to indicate that the application can handle addresses larger than 2 gigabytes.
LF Fortran Express User’s Guide 117



Chapter 6    Utility Programs
-NOLOGO
Suppresses display of the EDITBIN copyright message and version number. 

-REBASE[:modifiers]
Sets the base addresses for the specified files.  Assigns new base addresses in a contiguous 
address space according to the size of each file rounded up to the nearest 64K.  Numbers are 
specified in decimal format.  One or more optional modifiers are separated by a comma: 

BASE=address -  Beginning address for reassigning base addresses to the files.  If BASE 
is not specified, the default starting base address is 0x400000.  If DOWN is used, BASE must 
be specified, and address sets the end of the range of base addresses. 

BASEFILE -  Creates a file named COFFBASE.TXT, which is a text file in the format 
expected by LINK's /BASE option. 

DOWN -  Reassign base addresses downward from an ending address.  Files are 
reassigned in the order specified, with the first file located in the highest possible address 
below the end of the address range.  BASE must be used with DOWN to ensure sufficient 
address space for basing the files.  To determine the address space needed by the specified 
files, run EDITBIN with the /REBASE option on the files and add 64K to the displayed total 
size. 

-RELEASE
Sets the checksum in the header of an executable file.

-SECTION:name[=newname][,properties][,alignment]
Changes the properties of a section, overriding the properties that were set when the object 
file for the section was compiled or linked.  properties and alignment characters are specified 
as a string with no white space.

name is the name of the section to modify.  

newname is the new section name.

properties is a comma separated list of characters.  To negate a property, precede its character 
with an exclamation point (!).  The following properties may be specified:

c -  code
d -  discardable
e -  executable
i -  initialized data
k -  cached virtual memory
m -  link remove
o -  link info
p -  paged virtual memory
r -  read
s -  shared
u -  uninitialized data
w -  write
118 LF Fortran Express User’s Guide



HDRSTRIP.F90
alignment is specified by the character "a" followed by a character to set the size of alignment 
in bytes, as follows:

1 -  1 byte
2 -  2  bytes
4 -  4  bytes
8 -  8 bytes
p -  16 bytes
t -  32 bytes
s -  64 bytes
x -  no alignment

-STACK:reserve[,commit]
Sets the size of the stack in bytes.  Numbers are specified in decimal format.  The /STACK 
option applies only to an executable file.

The reserve argument specifies the total heap allocation in virtual memory.  The default heap 
size is 1MB.  The linker rounds the specified value up to the nearest 4 bytes. 

The optional commit argument specifies the amount of physical memory to allocate at a time.  
Committed virtual memory causes space to be reserved in the paging file.  A larger commit 
value saves time when the application needs more heap space but increases the memory 
requirements and possibly startup time. 

-SUBSYSTEM:system[,major[.minor]]
Edits the image to indicate which subsystem the operating system must invoke for execution.

Tells the operating system how to run the executable file.  system is specified as follows:

CONSOLE -  Used for Win32 character-mode applications.

WINDOWS -  Used for applications that do not require a console.

The optional major and minor version numbers specify the minimum required version of the 
subsystem.

-VERSION:left[,right]
Places a version number into the header of the image.  
left indicates the portion of the version number that appears to the left of the decimal point. 
right indicates the portion of the version number that appears to the right of the decimal point. 

HDRSTRIP.F90
HDRSTRIP.F90 is a Fortran source file that you can compile, link, and execute with LF95.  
It converts LF90 direct-access files to LF95 style.
LF Fortran Express User’s Guide 119



Chapter 6    Utility Programs
LFSPLIT.EXE
Run LFSPLIT.EXE to divide a source file into new separate source files, one for each main 
program, subroutine, function or module.  Each new source file will have a filename of the 
sub-program unit name and the same extension as the original file.

Type lfsplit -help at the command prompt for more details about use of the file splitter.

MAKEDEF.EXE
Use MAKEDEF.EXE to create a definition file listing all exported symbols from a DLL.  The 
definition file is used by LIB.EXE to create an import library.  MAKEDEF accepts a single 
DLL file including the .dll extension as a command line argument, and creates a file with the 
same name having the .def extension.  If a definition file with this name already exists, it is 
overwritten.  MAKEDEF ignores all exported symbols that contain three or more sequential 
underscore characters.  The MAKEDEF utility requires that DUMPBIN.EXE be available in 
a directory on the path.  See “Creating import libraries” on page 112 for instructions on gen-
erating an import library.

SEQUNF.F90
SEQUNF.F90 is a Fortran source file that you can compile, link, and execute with LF95.  It 
converts LF90 unformatted sequential files to LF95 style.

TRYBLK.F90
TRYBLK.F90 is a Fortran source file you can build with LF95.  It tries a range of blocksizes 
and displays an elapsed time for I/O operations with each blocksize.  You can use the results 
to determine an optimum value for your PC to specify in your programs.  Note that a partic-
ular blocksize may not perform as well on other PC’s.

UNFSEQ.F90
UNFSEQ.F90 is a program that converts LF95 unformatted sequential files to LF90 style.
120 LF Fortran Express User’s Guide



WHERE.EXE
WHERE.EXE
WHERE.EXE can be used to locate files on the path or in directories, and to display the exe 
type, time and size of the file. 

Invoking WHERE
WHERE is invoked with the following syntax:

WHERE [/r dir] [/Qqte] pattern ...

Where:
/r dir     recursively search directories under dir
/Q         display output files in double quotes
/q          quiet mode, exit code of zero indicates file found
/t           display file size and time
/e          display executable type
pattern  is one or more file specifications, with the wildcards, * ?, allowed

If /r is not specified, WHERE searches along the path.  

Examples
where lf95.exe

Searches along the path for all occurrences of LF95.  

where /te /r \windows user32.dll

Recursively searches all directories under \windows for all occurences of USER32.DLL, 
and lists each file size and creation time, and the executable type.
LF Fortran Express User’s Guide 121



Chapter 6    Utility Programs
122 LF Fortran Express User’s Guide



A Programming Hints
This appendix contains information that may help you create better LF95 programs.

Efficiency Considerations
In the majority of cases, the most efficient solution to a programming problem is one that is 
straightforward and natural.  It is seldom worth sacrificing clarity or elegance to make a pro-
gram more efficient.  

The following observations, which may not apply to other implementations, should be con-
sidered in cases where program efficiency is critical:

• One-dimensional arrays are more efficient than two, two are more efficient than 
three, etc.

• Make a direct file record length a power of two.
• Unformatted input/output is faster for numbers.
• Formatted CHARACTER input/output is faster using:

CHARACTER*256 C

than:
CHARACTER*1 C(256)

Side Effects
LF95 arguments are passed to subprograms by address, and the subprograms reference those 
arguments as they are defined in the called subprogram.  Because of the way arguments are 
passed, the following side effects can result:

• Declaring a dummy argument as a different numeric data type than in the calling pro-
gram unit can cause unpredictable results and NDP error aborts.
LF Fortran Express User’s Guide 123



Appendix A    Programming Hints
• Declaring a dummy argument to be larger in the called program unit than in the call-
ing program unit can result in other variables and program code being modified and 
unpredictable behavior.

• If a variable appears twice as an argument in a single CALL statement, then the cor-
responding dummy arguments in the subprogram will refer to the same location.  
Whenever one of those dummy arguments is modified, so is the other.

• Function arguments are passed in the same manner as subroutine arguments, so that 
modifying any dummy argument in a function will also modify the corresponding 
argument in the function invocation:

y = x + f(x)

The result of the preceding statement is undefined if the function f modifies the 
dummy argument x.

File Formats

Formatted Sequential File Format 

Files controlled by formatted sequential input/output statements have an undefined length 
record format.  One Fortran record corresponds to one logical record. The length of the unde-
fined length record depends on the Fortran record to be processed. The max length may be 
assigned in the OPEN statement RECL= specifier. The carriage-return/line-feed sequence 
terminates the logical record. If the $ edit descriptor or \ edit descriptor is specified for the 
format of the formatted sequential output statement, the Fortran record does not include the 
carriage-return/line-feed sequence.

Unformatted Sequential File Format 

Files processed using unformatted sequential input/output statements have a variable length 
record format.  One Fortran record corresponds to one logical record. The length of the vari-
able length record depends on the length of the Fortran record. The length of the Fortran 
record includes 4 bytes added to the beginning and end of the logical record. The max length 
may be assigned in the OPEN statement RECL= specifier. The beginning area is used when 
an unformatted sequential statement is executed. The end area is used when a BACKSPACE 
statement is executed.
124 LF Fortran Express User’s Guide



Direct File Format
Direct File Format 
Files processed by unformatted direct input/output statements have a fixed length record for-
mat, with no header record. One Fortran record can correspond to more than one logical 
record. The record length must be assigned in the OPEN statement RECL= specifier.  If the 
Fortran record terminates within a logical record, the remaining part is padded with binary 
zeros. If the length of the Fortran record exceeds the logical record, the remaining data goes 
into the next record. 

Transparent File Format 
Files opened with ACCESS=”TRANSPARENT” or FORM=”BINARY” are processed as a 
stream of bytes with no record separators.  While any format of file can be processed trans-
parently, you must know its format to process it correctly.

Determine Load Image Size
To determine the load image size of a protected-mode program, add the starting address of 
the last public symbol in the linker map file to the length of that public symbol to get an 
approximate load image memory requirement (not execution memory requirement).

Link Time
Certain code can cause the linker to take longer. For example, using hundreds to thousands 
of named COMMON blocks causes the linker to slow down.  Most of the additional time is 
spent in processing the names themselves because Windows (requires certain ordering rules 
to be followed within the executable itself.

You can reduce the link time by reducing the number of named COMMON blocks  you use.  
Instead of coding:

common /a1/ i

common /a2/ j

common /a3/ k

...

common /a1000/ k1000

code:

common /a/ i,j,k, ..., k1000

Link time may also be reduced by using the -NOMAP option.
LF Fortran Express User’s Guide 125



Appendix A    Programming Hints
Year 2000 compliance
The "Year 2000" problem arises when a computer program uses only two digits to represent 
the current year and assumes that the current century is 1900.  A compiler can look for indi-
cations that this might be occurring in a program and issue a warning, but it cannot foresee 
every occurrence of this problem.  It is ultimately the responsibility of the programmer to cor-
rect the situation by modifying the program. The most likely source of problems for Fortran 
programs is the use of the obsolete DATE() subroutine. Even though LF95 will compile and 
link programs that use DATE(), its use is strongly discouraged; the use of 
DATE_AND_TIME(), which returns a four digit date, is recommended in its place.

LF95 can be  made to issue a warning at runtime whenever a call to DATE() is made. This 
can be accomplished by running a program with the runtime options -Wl,Ry,li for 
example,

myprog.exe -Wl,Ry,li

For more information on runtime options, see “Runtime Options” on page 129. 
126 LF Fortran Express User’s Guide



Limits of Operation.
Limits of Operation.
Table 9: LF95 Limits of Operation

Item Maximum

program size 4 Gigabytes or available memory (includ-
ing virtual memory), whichever is smaller

number of files open concurrently Not limited by LF95 language system.

Length of CHARACER datum 2,147,483,647 bytes

I/O block size 65,000 bytes

I/O record length 2,147,483,647 bytes

I/O file size (except transparent access) 18,446,744,073,709,551,614 bytes

I/O file size (transparent access) 4,294,967,296 bytes

I/O maximum number of records for direct 
access and transparent access files 2,147,483,647

nesting depth of function, array section, 
array element, and substring references 255

nesting depth of DO, CASE, and IF state-
ments 50

nesting depth of implied-DO loops 25

nesting depth of INCLUDE files 16
LF Fortran Express User’s Guide 127



Appendix A    Programming Hints
number of array dimensions 7

array size

The compiler calculates T for each array 
declaration to reduce the number of calcu-
lations needed for array sections or array 
element addresses. The absolute value of 
T obtained by the formula below must not 
exceed 2147483647, and the absolute 
value must not exceed 2147483647 for 
any intermediate calculations:

n: Array dimension number
s: Array element length
l: Lower bound of each dimension
d: Size of each dimension
T: Value calculated for the array declara-
tion

Table 9: LF95 Limits of Operation

Item Maximum

T l1 s li dm 1 s×–
m 2=

i

∏
 
 
 
 

×

 
 
 
 
 

i 2=

n

∑+×=
128 LF Fortran Express User’s Guide



B Runtime Options
The behavior of the LF95 runtime library can be modified at the time of execution by a set 
of commands which are submitted via the command line when invoking the executable pro-
gram, or via shell environment variables.  These runtime options can modify behavior of 
input/output operations, diagnostic reporting, and floating-point operations.  

Runtime options submitted on the command line are returned by the GETCL, GETPARM, 
and GETARG functions.

Command Format
Runtime options and user-defined executable program options may be specified as command 
option arguments of an execution command. The runtime options use functions supported by 
the LF95 runtime library.  Please note that these options are case-sensitive.

The format of runtime options is as follows:

exe_file [/Wl,[runtime options],...] [user-defined program arguments]...

Where exe_file indicates the user’s executable program file.  The string “/Wl,” (or “-Wl,”) 
must precede any runtime options, so they may be identified as such and distinguished from 
user-defined program arguments. Note that it is W followed by a lowercase L (not the number 
one).  Please note also that if an option is specified more than once with different arguments, 
the last occurrence is used.

Command Shell Variable
As an alternative to the command line, the shell variable FORT90L may be used to specify 
runtime options. Any runtime options specified in the command line are combined with those 
specified in FORT90L. The command line arguments take precedence over the correspond-
ing options specified in the shell variable FORT90L.
LF Fortran Express User’s Guide 129



Appendix B    Runtime Options
The following examples show how to use the shell variable FORT90L (the actual meaning 
of each runtime option will be described in the sections below):

Example 1:
Setting the value of  shell variable FORT90L and executing the program as such:

set FORT90L=-Wl,e99,le
a.exe -Wl,m99 /k

has the same effect as the command line

a.exe -Wl,e99,le,m99 /k

The result is that when executing the program a.exe, the runtime options e99, le, and m99, 
and user-defined executable program argument /k are in effect.

Example 2:
When the following command lines are used,

set FORT90L=-Wl,e10
a.exe -Wl,e99

the result is that a.exe is executed with runtime option /e99 is in effect, overriding the option 
e10 set by shell variable FORT90L.

Execution Return Values
The following table lists possible values returned to the operating system by an LF95 execut-
able program upon termination and exit. These correspond to the levels of diagnostic output 
that may be set by various runtime options:

Table 10: Execution Return Values

Return value Status

0 No error or level I (information message)

4 Level W error (warning)

8 Level E error (medium)

12 Level S error (serious)

16 Limit exceeded for level W, E, S error, or a level U 
error (Unrecoverable) was detected

240 Abnormal termination

Other Forcible termination
130 LF Fortran Express User’s Guide



Standard Input and Output
Standard Input and Output
The default unit numbers for standard input, output, and error output for LF95 executable 
programs are as follows, and may be changed to different unit numbers by the appropriate 
runtime options:

Standard input: Unit number 5
Standard output: Unit number 6
Standard error output: Unit number 0

Runtime Options
Runtime options may be specified as arguments  on the command line, or in the FORT90L 
shell variable. This section explains the format and functions of the runtime options. Please 
note that all runtime options are case-sensitive.

The runtime option format is as follows:

/Wl [,Cunit] [,M] [,Q] [,Re] [,Rm:file] [,Tunit] [,a]  [,dnum] [,enum] [,gnum] [,i] 
[,lelvl] [,munit] [,n][,punit] [,q] [,runit] [,u] [,x]

When runtime options are specified, the string “/Wl” (where l is lowercase L) is required at 
the beginning of the options list, and the options must be separated by commas. If the same 
runtime option is specified more than once with different arguments, the last occurrence is 
used.

Example:
a.exe /Wl,a,p10,x

Description of Options

C or C[unit] 
The C option specifies how to process an unformatted file of IBM370-format floating-point 
data using an unformatted input/output statement. When the C option is specified, the data of 
an unformatted file associated with the specified unit number is regarded as IBM370-format 
floating-point data in an unformatted input/output statement. The optional argument  unit 
specifies an integer from 0 to 2147483647 as the unit number. If optional argument unit is 
omitted, the C option is valid for all unit numbers connected to unformatted files. When the 
specified unit number is connected to a formatted file, the option is ignored for the file. When 
the C option is not specified, the data of an unformatted file associated with unit number unit 
is regarded as IEEE-format floating-point data in an unformatted input-output statement.
LF Fortran Express User’s Guide 131



Appendix B    Runtime Options
Example: 
a.exe /Wl,C10

M
The M option specifies whether to output the diagnostic message (jwe0147i-w) when bits of 
the mantissa are lost during conversion of IBM370-IEEE-format floating-point data.  If the 
M option is specified, a diagnostic message is output if conversion of IBM370-IEEE-format 
floating-point data results in bits of the mantissa being lost.  When the M option is omitted, 
the diagnostic message (jwe0147i-w) is not output.

Example:
a.exe /Wl,M

Q
The Q option suppresses padding of an input field with blanks when a formatted input state-
ment is used to read a Fortran record. This option applies to cases where the field width 
needed in a formatted input statement is longer than the length of the Fortran record and the 
file was not opened with and OPEN statement. The result is the same as if the PAD= specifier 
in an OPEN statement is set to NO. If the Q option is omitted, the input record is padded with 
blanks. The result is the same as when the PAD= specifier in an OPEN statement is set to 
YES or when the PAD= specifier is omitted.

Example:
a.exe /Wl,Q

Re
Disables the runtime error handler. Traceback, error summaries, user control of errors by 
ERRSET and ERRSAV, and execution of user code for error correction are suppressed. The 
standard correction is processed if an error occurs.

Example: 
a.exe /Wl,Re

Rm: filename
The Rm option saves the following output items to the file specified by the filename 
argument:

• Messages issued by PAUSE or STOP statements
• Runtime library diagnostic messages
• Traceback map
• Error summary
132 LF Fortran Express User’s Guide



Description of Options
Example:
a.exe /Wl,Rm:errors.txt

Ry
Enforces Y2K compliance at runtime by generating an i-level (information) diagnostic when-
ever code is encountered which may cause problems after the year 2000A.D. Must be used 
in conjunction with li option in order to view diagnostic output.

Example: 
a.exe /Wl,Ry,li

T or T[u_no] 
Big endian integer data, logical data, and IEEE floating-point data is transferred in an unfor-
matted input/output statement. The optional argument u_no is a unit number, valued between 
0 and 2147483647, connected with an unformatted file. If u_no is omitted, T takes effect for 
all unit numbers. If both T and Tu_no are specified, then T takes effect for all unit numbers.

Example:
a.exe /Wl,T10

a
When the a option is specified, an abend is executed forcibly following normal program ter-
mination. This processing is executed immediately before closing external files.

Example:
a.exe /Wl,a

d[num] 1
The d option determines the size of the input/output work area used by a direct access input/
output statement. The d option improves input/output performance when data is read from or 
written to files a record at a time in sequential record-number order. If the d option is speci-
fied, the input/output work area size is used for all units used during execution.

To specify the size of the input/output work area for individual units, specify the number of 
Fortran records in the shell variable FUnnBF where nn is the unit number (see“Shell Vari-
ables for Input/Output” on page 136 for details).  When the d option and shell variable are 
specified at the same time, the d option takes precedence. The optional argument num spec-
ifies the number of Fortran records, in fixed-block format, included in one block. The 
optional argument num must be an integer from 1 to 32767. To obtain the input/output work 
area size, multiply num by the value specified in the RECL= specifier of the OPEN statement. 
If the files are shared by several processes, the number of Fortran records per block must be 
1. If the d option is omitted, the size of the input/output work area is 4K bytes.
LF Fortran Express User’s Guide 133



Appendix B    Runtime Options
Example: 
a.exe /Wl,d10

e[num] 
The e option controls termination based on the total number of execution errors. The option 
argument num, specifies the error limit as an integer from 0 to 32767. When num is greater 
than or equal to 1, execution terminates when the total number of errors reaches the limit. If 
enum is omitted or num is zero, execution is not terminated based on the error limit. However, 
program execution still terminates if the Fortran system error limit is reached.

Example: 
a.exe /Wl,e10

gnum
The g option sets the size of the input/output work area used by a sequential access input/
output statement. This size is set in units of kilobytes for all unit numbers used during exe-
cution. The argument num specifies an integer with a value of 1 or more. If the g option is 
omitted, the size of the input/output work area defaults to 8 kilobytes.

The g option improves input/output performance when a large amount of data is read from 
or written to files by an unformatted sequential access input/output statement. The argument 
num is used as the size of the input/output work area for all units. To avoid using excessive 
memory, specify the size of the input/output work area for individual units by specifying the 
size in the shell variable fuxxbf, where xx is the unit number (see“Shell Variables for Input/
Output” on page 136 for details). When the g option is specified at the same time as the shell 
variable fuxxbf, the g option has precedence.

Example:
a.exe /Wl,g10

i
The i option controls processing of runtime interrupts. When the i option is specified, the For-
tran library is not used to process interrupts. When the i option is not specified, the Fortran 
library is used to process interrupts.  These interrupts are exponent overflow, exponent under-
flow, division check, and integer overflow. If runtime option -i is specified, no exception 
handling is taken.  The u option must not be combined with the i option

Example:
a.exe /Wl,i

lerrlvl   errlvl: { i | w | e | s }
The l option (lowercase L) controls the output of diagnostic messages during execution. The 
optional argument errlvl, specifies the lowest error level, i (informational), w (warning), e 
(medium), or s (serious), for which diagnostic messages are to be output. If the l option is not 
specified, diagnostic messages are output for error levels w, e, and s. However, messages 
beyond the print limit are not printed.
134 LF Fortran Express User’s Guide



Description of Options
i
The li option outputs diagnostic messages for all error levels.

w
The lw option outputs diagnostic messages for error levels w, e, s, and u.

e
The le option outputs diagnostic messages for error levels e, s, and u.

s
The ls option outputs diagnostic messages for error levels s and u.

Example: 
a.exe /Wl,le

mu_no
The m option connects the specified unit number u_no to the standard error output file where 
diagnostic messages are to be written. Argument u_no is an integer from 0 to  2147483647. 
If the m option is omitted, unit number 0, the system default, is connected to the standard 
error output file. See “Shell Variables for Input/Output” on page 136 for further details.

Example:
a.exe /Wl,m10

n
The n option controls whether prompt messages are sent to standard input. When the n option 
is specified, prompt messages are output when data is to be entered from standard input using 
formatted sequential READ statements, including list-directed and namelist statements. If 
the n option is omitted, prompt messages are not generated when data is to be entered from 
standard input using a formatted sequential READ statement.

Example: 
a.exe /Wl,n

pu_no 
The p option connects the unit number  u_no to the standard output file, where u_no is an 
integer ranging from 0 to 2147483647. If the p option is omitted, unit number 6, the system 
default, is connected to the standard output file.  See “Shell Variables for Input/Output” on 
page 136 for further details.

Example: 
a.exe /Wl,p10

q
The q option specifies whether to capitalize the E, EN, ES, D, Q, G, L, and Z edit output char-
acters produced by formatted output statements. This option also specifies whether to 
capitalize the alphabetic characters in the character constants used by the inquiry specifier 
(excluding the NAME specifier) in the INQUIRE statement. If the q option is specified, the 
LF Fortran Express User’s Guide 135



Appendix B    Runtime Options
characters appear in uppercase letters. If the q option is omitted, the characters appear in low-
ercase letters. If compiler option -nfix is in effect, the characters appear in uppercase letters 
so the q option is not required.

Example:
a.exe /Wl,q

ru_no 
The r option connects the unit number u_no to the standard input file during execution, where 
u_no is an integer ranging from 0 to 2147483647. If the r option is omitted, unit number 5, 
the system default, is connected to the standard input file.  See “Shell Variables for Input/
Output” on page 136 for further details.

Example: 
a.exe /Wl,r10

u
The u option controls floating point underflow interrupt processing. If the u option is speci-
fied, the system performs floating point underflow interrupt processing. The system may 
output diagnostic message jwe0012i-e during execution. If the u option is omitted, the system 
ignores floating point underflow interrupts and continues processing. The i option must not 
be combined with the u option.

Example: 
a.exe /Wl,u

x
The x option determines whether blanks in numeric edited input data are ignored or treated 
as zeros. If the x option is specified, blanks are changed to zeros during numeric editing with 
formatted sequential input statements for which no OPEN statement has been executed. The 
result is the same as when the BLANK= specifier in an OPEN statement is set to zero. If the 
x option is omitted, blanks in the input field are treated as null and ignored. The result is the 
same as if the BLANK= specifier in an OPEN statement is set to NULL or if the BLANK= 
specifier is omitted.

Example:
a.exe /Wl,x

Shell Variables for Input/Output
This section describes shell variables that control file input/output operations
136 LF Fortran Express User’s Guide



Shell Variables for Input/Output
FUnn = filname
The FUnn shell variable connects units and files. The value nn is a unit number. The value 
filename is a file to be connected to unit number nn.  The standard input and output files 
(FU05 and FU06) and error file (FU00) must not be specified.

The following example shows how to connect myfile.dat to unit number 10 prior to the start 
of execution.

Example:
set FU10=myfile.dat

FUnnBF = size
The FUnnBF shell variable specifies the size of the input/output work area used by a sequen-
tial or direct access input/output statement. The value nn in the  FUnnBF shell variable 
specifies the unit number. The size argument used for sequential access input/output state-
ments is in kilobytes; the size argument used for direct access input/output statements is in 
records. The size argument must be an integer with a value of 1 or more. A size argument 
must be specified for every unit number.

If this shell variable and the g option are omitted, the input/output work area size used by 
sequential access input/output statements defaults to 1 kilobytes. The size argument for direct 
access input/output statements is the number of Fortran records per block in fixed-block for-
mat. The size argument must be an integer from 1 to 32767 that indicates the number of 
Fortran records per block. If this shell variable and the d option are omitted, the area size is 
1K bytes.

Example 1: 

Sequential Access Input/Output Statements.

When sequential access input/output statements are executed for unit number 10, the state-
ments use an input/output work area of 64 kilobytes.

set FU10BF=64

Example 2: 

Direct Access Input/Output Statements.

When direct access input/output statements are executed for unit number 10, the number of 
Fortran records included in one block is 50. The input/output work area size is obtained by 
multiplying 50 by the value specified in the RECL= specifier of the OPEN statement.

set FU10BF=50
LF Fortran Express User’s Guide 137



Appendix B    Runtime Options
138 LF Fortran Express User’s Guide



INDEX
A
a runtime option 133
-ap option, arithmetic precision 29
API, Windows 78

B
-block, blocksize option 30
Borland C++ 55
Borland Delphi 55, 73
breakpoints 96
Building Import Libraries 57

C
C runtime option 131
-c, suppress linking option 30
-chk, checking option 30
-chkglobal, global checking 

option 33
-co, display compiler options 33
command files

compiler 24
LIB 111

-comment, insert comment into 
executable option 33

compiler 22, 28
command files 24
controlling 28
errors 28

Compiler and Linker Options 29
compiler options

description 23
-concc, support carriage control 

characters in console i/o 
option 33

console mode 46

D
d runtime option 133
-dal, deallocate allocatables 

option 33
-dbl, double precision option 34
debugger 21
debugging

with FDB 95
DEMO.F90 18
direct file format 125
disassembly 103
distribution 19
divide-by-zero 45
-dll, create dynamic link library 

option 34
DLLs 22
driver 21
dummy argument 123
DUMPBIN.EXE 115
dynamic link libraries 22

E
e runtime option 134
EDITBIN.EXE 117
efficiency considerations 123
environment variables

FORT90L 129
FUnn 137
FUnnBF 137

errors
compiler 28

F
-f95, standard conformance checking 

option 34
file formats

direct 124
formatted sequential 124
transparent 124
unformatted sequential 124

-file, filename option 34
filenames 22

extensions 22
MOD extension 22
object file 23
output file 23
source file 23

files
HDRSTRIP.F90 119
SEQUNF.F90 120
TRYBLK.F90 120
UNFSEQ.EXE 120

-fix, fixed source-form option 35
Lahey/Fu
formatted sequential file format 124
FORT90L environment variable 129
-fullwarn, detailed linker warnings 

option 46
FUnn environment variable 137
FUnnBF environment variable 137

G
g runtime option 134
-g, debug option 35

H
HDRSTRIP.F90 119
hints

determining load image 
size 125

efficiency considerations 123
file formats 124
performance considerations 125
side effects 123

I
i runtime option 134
-i, include path option 35
Import Libraries 57
-in, IMPLICIT NONE option 36
-info, display informational messages 

option 36
-inline, inline code option 36
installation 3
invalid operation 45
IO_ERROR.TXT 20

L
Lahey Fortran 95 ExpressUser’s 

Guide 20
Lahey Fortran 95 Reference 

Manual 20
LFSPLIT.EXE 120
-li, Lahey intrinsic procedures 

option 37
LIB

command files 111
response files 111
jitsu Fortran 95 User’s Guide 139



Index
-libpath, library path option 37
librarian 21, 22, 109
library

linking libraries 50
manager 109
searching rules 50

license activation 9
limits of operation 127
LINK.EXE 22
linker 22

library searching rules 49
linking libraries 50
linking modules 49
overview 48
undocumented options 49

load image size 125
-long, long integers option 37
-lst, listing option 37

M
M runtime option 132
m runtime option 135
MAKEDEF.EXE 120
-map, create linker map file 

option 38
-maxfatals, maximum fatal errors 

option 38
Microsoft Visual Basic 55, 71
Microsoft Visual C++ 55, 70
-ml, mixed language option 39, 

56
ML_EXTERNAL 59
-mldefault, mixed language 

default option 39
MOD filename extension 22
-mod, module path option 39
modules

linking module object 
files 49

N
n runtime option 135
-nologo, suppress linker banner 

option 39
notational conventions 2

O
-o, object file name option 40
-o0, optimization level zero 
140 Lahey/Fujitsu Fortran 95 Use
option 40
-o1, optimization level one option 40
o2, optimization level 2 option 40
object filenames 23
OpenGL graphics 26
Optimization 40
Option conflicts 24
options

-ap, arithmetic precision 29
-block, blocksize 30
-c, suppress linking 30
-chk, checking 30
-chkglobal, global checking 33
-co, display compiler options 33
-concc, support carriage control 

characters in console i/o 33
-dal, deallocate allocatables 33
-dbl, double precision option 34
-f95, standard conformance 

checking 34
-file, filename 34
-fix, fixed source-form 35
-g, debug 35
-i, include path 35
-in, IMPLICIT NONE 36
-info, display informational 

messages 36
-inline, inline code 36
-li, Lahey intrinsic procedures 37
linker

-comment, insert comment 
into executable 33

-dll, create dynamic link 
library 34

-fullwarn, detailed linker 
warnings 46

-libpath, library path 37
-map, create map file 38
-nologo, suppress linker 

banner 39
-out, output file 40
-stack, set stack size 42
-staticlib, static or dynamic 

runtime libraries 43
undocumented 49
-warn, publish linker 

warnings 46
-long, long integers 37
-lst, listing 37
-maxfatals 38

-ml, mixed language 39
-mldefault, mixed language 

default 39
-mod, module path 39
-o, object file name 40
-o0, optimization level zero 40
-o1, optimization level one 40
-o2, optimization level 2 40
-pause, pause after program 

completion 40
-pca, protect constant 

arguments 41
-prefetch, prefetch optimization 

option 41
-private, module accessiblity 42
-quad, quadruple precision 42
-sav, SAVE local variables 42
-sse2, use streaming SIMD exten-

sions 2 42
-staticlink, mixed language static 

linking 43
-stchk, stack overflow 

checking 43
-swm, suppress warning 

messages 44
-tp, target Pentium 44
-tp4, target Pentium 4 44
-tpp, target Pentium Pro 44
-trace, runtime error 

traceback 44
-trap, trap NDP exceptions 45
--unroll, loop unrolling 45
--varheap, local variable on 

heap 45
-version, display version info 46
-w, publish compiler 

warnings 46
-wide, wide format fixed form 

code 46
-win, create Windows 

application 46
-wo, obsolescent feature 

warning 47
-xref, cross-reference listing 47
-zero, include variables initial-

ized to zero 48
--zfm, zero flash mode for SSE2 

instructions 48
-out, output file option 40
output filenames 23
r’s Guide



Index
overflow 45

P
p runtime option 135
-pause, pause after program 

completion 40
-pca, protect constant arguments 

option 41
preconnected units, standard i/

o 131
-prefetch, prefetch optimization 

option 41
-private, module accessibility 

option 42
program size 127
programming hints 123

Q
Q runtime option 132
q runtime option 135
-quad, quadruple precision 

option 42

R
r runtime option 136
Re runtime option 132
README.TXT 19
README_PORT_56.TXT 19
README_PORT_LF90.TXT 19
README_SERVICE_ROUTINES

.TXT 19
registering 14
Repairing LF95 17
requirements

system 2
Resource Compiler 22
response files

compiler 24
LIB 111

return codes 25
return values, execution 130
Rm runtime option 132
RTERRMSG.TXT 20
runtime options

a 133
C 131
d 133
e 134
g 134
i 134
M 132
m 135
n 135
p 135
Q 132
q 135
r 136
Re 132
Rm 132
Ry 133
T 133
u 136
x 136

runtime options, syntax 131
Ry runtime option 133

S
-sav, SAVE local variables option 42
searching rules

library 50
SEQUNF.F90 120
side effects 123
SIMD 42
source filenames 23
Split utility 120
SSE2 42, 48
-sse2, use streaming SIMD extensions 2 

option 42
-stack, set stack size option 42
standard input/output units 131
static linking 58
-staticlib, static or dynamic Linking of 

Fortran runtime libraries option 43
-staticlink, mixed language static link-

ing option 43
-stchk, stack overflow checking 

option 43
step 99
support services 129
-swm, suppress warning message(s) 

option 44
system requirements 2

T
T runtime option 133
Technical Support 20
-tp, target Pentium option 44
-tp4, target Pentium 4 option 44
-tpp, target Pentium Pro option 44
Lahey/Fu
-trace, runtime error traceback 
option 44

transparent file format 125
-trap, trap NDP exceptions option 45
TRYBLK.F90 120

U
u runtime option 136
underflow 45
unformatted sequential file 

format 124
UNFSEQ.EXE 120
Uninstalling LF95 18
--unroll, loop unrolling option 45

V
--varheap, local variables on heap 

option 45
-version, display version info 46

W
-w, publish compiler warnings 

option 46
-warn, publish linker warnings 

option 46
WHERE.EXE 121
-wide, wide format fixed form 

code 46
-win, create Windows application 

option 46
-winconsole, Windows console-mode 

switch 46
Windows 46
Windows API 78
Windows console-mode 46
-wo, obsolescent feature warning 

option 47

X
x runtime option 136
-xref, cross-reference listing 

option 47

Y
Y2K compliance, Ry runtime 

option 133

Z
-zero, include variables initialized to 
jitsu Fortran 95 User’s Guide 141



Index
zero option 48
--zfm, zero flash mode for SSE2 

instructions option 48
142 Lahey/Fujitsu Fortran 95 Use
r’s Guide


	Getting Started
	Manual Organization
	Notational Conventions
	System Requirements
	Installing Lahey/Fujitsu Fortran 95
	License Activation
	License Activation
	Activation During Installation
	The License Activation Utility Program
	Purchase or Upgrade License
	Activate or Reactivate a License
	Manually Activate a License
	After Activation

	Product Registration
	Maintenance Updates
	Repairing LF95
	Uninstalling LF95
	Building Your First LF95 Program
	Generating the Executable Program
	Running the Program

	What’s Next?
	Other Sources of Information
	Files
	Manuals
	Newsletters
	Lahey Web Page

	Technical Support

	Developing with LF95
	The Development Process
	How the Driver Works
	Running LF95
	Filenames
	Source Filenames
	Object Filenames
	Output Filenames

	Options
	Conflicts Between Options

	Driver Configuration File (LF95.FIG)
	Command Files
	Passing Information
	Return Codes from the Driver
	Creating a Console-Mode Application
	Creating a Windows GUI application
	Creating a 32-bit Windows DLL
	Creating a static library
	OpenGL Graphics Programs
	The OpenGL Libraries
	The f90gl Libraries & Modules
	Example Programs
	Sources of Information

	Controlling Compilation
	Errors in Compilation

	Compiler and Linker Options
	-[N]AP
	-BLOCK blocksize
	-[N]C
	-[N]CHK [([a][,e][,s][,u][,x])]
	-[N]CHKGLOBAL
	-[N]CO
	-COMMENT comment
	-[N]CONCC
	-[N]DAL
	-[N]DBL
	-[N]DLL
	-[N]F95
	-FILE filename
	-[N]FIX
	-[N]G
	-I path1[;path2 ...]
	-[N]IN
	-[N]INFO
	-[N]INLINE [(arg[,arg[,...]])]
	-[N]LI
	-LIBPath dir1[,dir2 ...]
	-[N]LONG
	-[N]LST [(f=fval[,i=ival])]
	-[NO]MAP filename
	-[N]MAXFATALS number
	-ML { bc | bd | fc | lf90 | lf95 | msvb | msvc | winapi }
	-MLDEFAULT { bc | bd | fc | lf90 | lf95 | msvb | msvc | winapi }
	-MOD dir1[;dir2 ...]
	-NOLOGO
	{ -O0 | -O1 | -O2 }
	-O filename
	-OUT filename
	-[N]PAUSE
	-[N]PCA
	-[N]PREFETCH [{ 1 | 2 }]
	-[N]PRIVATE
	-[N]QUAD
	-[N]SAV
	-[n]SSE2
	-STACK reserve[:commit]
	-[N]STATICLIB
	-[N]STATICLINK
	-[N]STCHK
	-[N]SWM msgno
	{ -TP | -TPP | -TP4 }
	-[N]TRACE
	�[N]TRAP [d][i][o][u]
	-[N]UNROLL [(limit)]
	-[N]VARHEAP [(size)]
	-VERSION
	-[N]W
	-WARN, -FULLWARN
	-[N]WIDE
	-WIN or -WINCONSOLE
	-[N]WO
	-[N]XREF [(f=fval[,i=ival])]
	-[N]ZERO
	-[N]ZFM

	Linking
	Link Environment Variables
	Additional Linker Options
	Linking Fortran 95 Modules
	Object File Processing Rules
	Linking Libraries

	Recommended Option Settings

	Mixed Language Programming
	Dynamically linked applications
	Supported language systems
	Declaring calling conventions
	Building Fortran DLLs
	Building Import Libraries
	Delivering Applications with LF95 DLLs

	Statically linked Fortran and C applications
	Calling Conventions
	Argument Passing
	Passing Arrays in C or C++

	Variable Type Correspondence

	Fortran Calling Fortran DLLs
	Fortran and C applications
	Fortran calling C DLLs
	C Calling Fortran DLLs
	Referencing DLL Procedures

	Passing Data

	Microsoft Visual Basic Information
	Visual Basic calling Fortran
	Running the Visual Basic Demo

	Declaring your Procedure in Visual Basic
	Passing Character Data in Visual Basic
	Passing Arrays in Visual Basic

	Borland Delphi Information
	Delphi Calling Fortran
	Running the Delphi Calling Fortran Demo

	Fortran Calling Delphi DLLs
	Running the Fortran Calling Delphi Demo

	Declaring your Procedure in Delphi
	Passing Character Data in Delphi
	Passing Arrays in Delphi

	Calling Fortran DLL’s from .NET Applications
	Calling LF95 DLLs from Microsoft C#
	Calling LF95 DLLs from Microsoft Visual Basic .NET
	Calling LF95 DLLs from Microsoft Visual C++ .NET

	Calling the Windows API
	Calling assembly language procedures
	LF95 Conventions
	Entry Point Name Mangling
	Saved Registers
	Argument Passing

	Passing Arguments to Subroutines
	Returning Values from Functions
	LF95 Function Conventions



	Command-Line Debugging with FDB
	Starting FDB
	Commands
	Executing and Terminating a Program
	Shell Commands
	Breakpoints
	General Syntax

	Controlling Program Execution
	Displaying Program Stack Information
	Setting and Displaying Program Variables
	Source File Display
	Automatic Display
	Symbols
	Scripts
	Signals
	Miscellaneous Controls
	Files
	Fortran 95 Specific
	Communicating with fdb


	Library Manager
	LIB Syntax:
	Options
	/CONVERT
	/DEF[:filename]
	/EXPORT:symbol
	/EXTRACT:membername
	/INCLUDE:symbol
	/LIBPATH:dir
	/LINK50COMPAT
	/LIST[:filename]
	/NODEFAULTLIB[:library]
	/NOLOGO
	/OUT:libname
	/REMOVE:membername
	/VERBOSE

	Response Files
	Creating and maintaining COFF libraries
	Extracting object files from libraries
	Creating import libraries

	Utility Programs
	DUMPBIN.EXE
	Invoking DUMPBIN
	dumpbin [options] files

	DUMPBIN Options
	Option list
	-ALL
	-ARCHIVEMEMBERS
	-DEPENDENTS
	-DISASM
	-EXPORTS
	-HEADERS
	-IMPORTS
	-LINKERMEMBER[:lev]
	-OUT:filename
	-RAWDATA:option
	BYTES - Default setting. Contents are displayed in hexadecimal bytes, and in ASCII.
	SHORTS - Contents are displayed in hexadecimal words.
	LONGS - Contents are displayed in hexadecimal long words.
	NONE - Display of raw data is suppressed.
	-RELOCATIONS
	-SECTION:section
	-SUMMARY
	-SYMBOLS




	EDITBIN.EXE
	Invoking EDITBIN
	editbin [options] files

	EDITBIN Options
	Option list
	-BIND[:PATH=path]
	-HEAP:reserve[,commit]
	-LARGEADDRESSAWARE
	-NOLOGO
	-REBASE[:modifiers]
	-RELEASE
	-SECTION:name[=newname][,properties][,alignment]
	c - code
	d - discardable
	e - executable
	i - initialized data
	k - cached virtual memory
	m - link remove
	o - link info
	p - paged virtual memory
	r - read
	s - shared
	u - uninitialized data
	1 - 1 byte
	2 - 2 bytes
	4 - 4 bytes
	8 - 8 bytes
	p - 16 bytes
	t - 32 bytes
	s - 64 bytes
	-STACK:reserve[,commit]
	-SUBSYSTEM:system[,major[.minor]]
	-VERSION:left[,right]

	Places a version number into the header of the image.
	left indicates the portion of the version number that appears to the left of the decimal point.



	HDRSTRIP.F90
	LFSPLIT.EXE
	MAKEDEF.EXE
	SEQUNF.F90
	TRYBLK.F90
	UNFSEQ.F90
	WHERE.EXE
	Invoking WHERE
	WHERE [/r dir] [/Qqte] pattern ...
	Where:
	Examples




	Programming Hints
	Efficiency Considerations
	Side Effects
	File Formats
	Formatted Sequential File Format
	Unformatted Sequential File Format
	Direct File Format
	Transparent File Format

	Determine Load Image Size
	Link Time
	common /a1/ i
	common /a2/ j
	common /a3/ k
	...

	Year 2000 compliance
	myprog.exe -Wl,Ry,li

	Limits of Operation.
	Table 9: LF95 Limits of Operation


	Runtime Options
	Command Format
	Command Shell Variable
	Example 1:
	set FORT90L=-Wl,e99,le
	a.exe -Wl,m99 /k
	a.exe -Wl,e99,le,m99 /k
	Example 2:

	set FORT90L=-Wl,e10
	a.exe -Wl,e99

	Execution Return Values
	Table 10: Execution Return Values

	Standard Input and Output
	Runtime Options
	/Wl [,Cunit] [,M] [,Q] [,Re] [,Rm:file] [,Tunit] [,a] [,dnum] [,enum] [,gnum] [,i] [,lelvl] [,mun...
	Example:

	a.exe /Wl,a,p10,x
	Description of Options
	C or C[unit]
	Example:
	a.exe /Wl,C10

	M
	Example:
	a.exe /Wl,M

	Q
	Example:
	a.exe /Wl,Q

	Re
	Example:
	a.exe /Wl,Re

	Rm: filename
	Example:
	a.exe /Wl,Rm:errors.txt

	Ry
	Example:

	T or T[u_no]
	Example:
	a.exe /Wl,T10

	a
	Example:
	a.exe /Wl,a

	d[num] 1
	Example:
	a.exe /Wl,d10

	e[num]
	Example:
	a.exe /Wl,e10

	gnum
	Example:
	a.exe /Wl,g10

	i
	Example:
	a.exe /Wl,i

	lerrlvl errlvl: { i | w | e | s }
	i
	w
	e
	s
	Example:
	a.exe /Wl,le

	mu_no
	Example:
	a.exe /Wl,m10

	n
	Example:
	a.exe /Wl,n

	pu_no
	Example:
	a.exe /Wl,p10

	q
	Example:
	a.exe /Wl,q

	ru_no
	Example:
	a.exe /Wl,r10

	u
	Example:
	a.exe /Wl,u

	x
	Example:
	a.exe /Wl,x



	Shell Variables for Input/Output
	FUnn = filname
	Example:
	set FU10=myfile.dat

	FUnnBF = size
	Example 1:
	set FU10BF=64
	Example 2:





