LF Fortran Express
User’s Guide

Revision D

Copyright

Copyright © 1995-2004 L ahey Computer Systems, Inc. All rightsreserved worldwide. Copyright © 1999-2004
FUJITSU, LTD. All rightsreserved. Copyright © 1994-2004 Microsoft Corporation. All rightsreserved. This
manual is protected by federal copyright law. No part of this manual may be copied or distributed, transmitted,
transcribed, stored in aretrieval system, or translated into any human or computer language, in any form or by
any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties.

Trademarks

Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Disclaimer

Lahey Computer Systems, Inc. reserves the right to revise its software and publications with no obligation of
Lahey Computer Systems, Inc. to notify any person or any organization of such revision. In no event shall Lahey
Computer Systems, Inc. be liable for any loss of profit or any other commercial damage, including but not lim-
ited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
865 Tahoe Boulevard
P.O. Box 6091
Incline Village, NV 89450-6091
(775) 831-2500
Fax: (775) 831-8123

http://www.lahey.com

Technical Support
(775) 831-2500 (PRO version only)
support2@lahey.com (all versions)

Table of Contents

Getting Started.........ccooevvvviiieeeiniiiiii, 1
Manual Organizationcccceeerereereeeriereenns 1
Notational Conventions..........ccccceeeeeererennenn 2
System ReqUIremMents..........cceeeeerereeresesiennens 2
Installing Lahey/Fujitsu Fortran 95.................. 3
License ACtVaLiON.......coeeveereeneeree e 9

License ACtiVation.........ccocceereienieneeieenennns 9
Activation During Installation................... 10
The License Activation Utility Program... 11
Purchase or Upgrade License.................... 11
Activate or ReactivateaLicense............... 12
Manually Activate aLicense........cccceevenene 13
After Activation.........ccocevereieieieneeee 13
Product Registrationcccceeeeeveenvneseennns 14
Maintenance Updatesccoceeereeeinencne. 15
Repairing LFO5.......ccov e 17
Uninstalling LFO5........cooooiiiiieeeeeee, 18
Building Y our First LF95 Program............... 18
Generating the Executable Program.......... 18
Running the Programcccccecevvevvreenene. 19
What' S NEXE? ..o 19
Other Sources of Information..............c....... 19
Technical SUPPOIT......cccvvereiiree e 20

Developing with LF95.............ccceinnnnes 21
The Development Process........c.covverrieennen. 21
How the Driver WOrkscccccoevnenecicnenn. 21
RUNNING LF95......cooee e 22

Filenames ... 22
(O] o] {[0] 1S TSRS 23
Driver Configuration File (LF95.FIG) 24
Command Filesccoovvvinvineicie 24
Passing Information............ccccevoeienenenne 24
Return Codes from the Driver 25
Creating a Console-Mode Application...... 25
Creating a Windows GUI application........ 25
Creating a 32-bit Windows DLL................ 25
Creating astatic librarycccccoceeeenienn. 26
OpenGL Graphics Programs.........cc.ccv.... 26
Controlling Compilationccccceeueee. 28

Errorsin Compilationccccevveveevevncennnns 28
Compiler and Linker Options..........cccceerveneene 29
[T 1] o R 48
Link Environment Variables...................... 49
Additional Linker Options.........cc.ccceeeeneee. 49
Linking Fortran 95 Modules...................... 49
Object File Processing Rules..................... 49
Linking Libraries......ccccoevvivvivvievvneseneennnn 50
Recommended Option Settings...........cceveeee. 50
Mixed Language Programming 53
Dynamically linked applications.................... 54
Supported language systems..........ccceeuenee. 54
Declaring calling conventions.................... 55
Building Fortran DLLS.......cccooceieineeinene 56
Building Import Libraries.........c.ccoceienennee. 57

Delivering Applications with LF95 DLLs.58
Statically linked Fortran and C applications..58

Calling Conventions..........cccceveeeveresieniens 59
Argument Passing........occeveerieeenenesenenns 60
Variable Type Correspondence.................. 61
Fortran Calling Fortran DLLS.........ccccceueuue.. 69
Fortran and C applications............ccccceeruennee 69
Fortran calling C DLLS......c.ccceevvvvvvvreenen, 69
C Cdling Fortran DLLS........cccecvvvrvervrnenne 70
Passing Data........cccovvveveeneneseereeneneenennens 71
Microsoft Visual Basic Information............... 71
Visual Basic calling Fortran....................... 71
Declaring your Procedure in Visual Basic.72
Passing Character Datain Visual Basic.....72
Passing Arraysin Visual BasiC.................. 72
Borland Delphi Information..........cccccccveenee. 73
Delphi Calling Fortran..........ccoceeeereeenennene 73
Fortran Calling Delphi DLLS.........ccccccc..... 73
Declaring your Procedure in Delphi 74
Passing Character Datain Delphi 74
Passing Arraysin Delphicccccccevvvennene 75

Calling Fortran DLL’s from .NET Applications
75
Calling LF95 DLLsfrom Microsoft C#75

LF Fortran Express User’s Guide i

Contents

Calling LF95 DLLsfrom Microsoft Visual

BaSIC NET ... 76
Calling LF95 DL Lsfrom Microsoft Visual
CHt NET oo 77
Calling the Windows API.........cccconininnns 78
Calling assembly language procedures......... 81
LF95 Conventions..........ccccoeereenrenennenens 81
Passing Arguments to Subroutines............ 82
Returning Vaues from Functions............. 0

Command-Line Debugging with FDB .95

Starting FDB......cov e 95
COMMEANGS.......coeeeieeririeeree e 95
Executing and Terminating a Program 95
(a1 (0| FF S 95
RUN L 96
Kill e 96
param commandline arglist 96
param commandling.........cc.ccoevvevrerenns 96
clear commandlingccccocovevrninenn. 96
01U 1 96
Shell Commands.........cccoveeenrvinniennenenn 96
CA AN i 96
001V S 96
BreakpointS.......occoeveeeeeveeenesese e 96
break ['file JliN€ ..coeveeereeerceeeiee 97
break ['file’] funcname............c......... 97
break *addr.........cccooveiininieeee 97
Dreak ..o 97
breakon [#n] ..o 97
breakoff [#N].....cocvvviviririneecenece 97
condition #N eXpPr.......c.cceeeeerenenenennn 97
CcoNdition #N.....c.ccveeveniniiineeeeene, 98
ONCEDIEAK ... 98
regularbreak "regex"”.........ccoveriennnenne 98
delete locationccoceeerenenenenienn. 98
delete['file] lin€...cccooeoeriniienienn, 98
delete['file’] funcname..................... 98
delete*addrccocevrenieneniieeeen, 98
delete#N ..o, 98
delete ..o 98
SKiP #N COUNt .o 98
onstop #n cmd[;cmd2;cmd3...;cmdn] .. 98
SNOW DFEak......cccvveieireeieeeieeeeeeiee 99

LF Fortran Express User’'s Guide

Controlling Program Execution................. 99
continue [count] ...coveeeeevenvreveereneenes 99
silentcontinue [count]ccocevereenennee 99
SEEP [COUNE] e 99
silentstep [count]...oceeevvveeveeveerirnenes 99
Stepi [COUNt] oo 99
silentstepi [count J.....ccooevereneneniennee 99
NEXt [CoUNt | .veeeeeeecre e 99
silentnext [count |cccoeeeeerenennennn. 100
NEXti [COUNt] ..ooueeeieeeeireee e 100
silentnexti [count] or nin[count] ...100
UNEH e 100
UNEH TOC et 100
until *addrcccooeveeereireee 100
until +]-offSet......ccooveiiieeeeee 100
UNt FEEUMN. e 100

Displaying Program Stack Information...100
traceback [N] ..coeeveieeeeeeeee 100
frame [#N] oo 100
(U1015To (=1 [o] [101
downside[N] .ceeveeeereeeereeeeeceee e, 101
SNOW @GS e 101
ShOW [OCAIS.....ociieereirieeceeeie 101
Show reg [$r] ..o 101
show freg [$Fr] oo 101
SNOW FEQS ..veveieveesie e seesee e s 101
S 11011V 7= o 101

Setting and Displaying Program Variables...

101
set variable = value.......ccccoceeviinienne 101
set *addr = value......cocooeveeevecrenen, 101
setreg = Value....cooooeeeenenecercnecene, 101
print [[:F] variable[= value]]......... 102
memprint [:FUN] addr.......c..ccccevuennne 102

Source File Displaycocoeeeevrcceinienne 102
SNOW SOUICE.....eeeeeireeeerieiesieiesieienieeens 102
[ISE NOW.c.eviicieree e 103
TS 1 1= S 103
[iSt Previous.ccoeierereeeereeeeeneeene 103
list @aroundccooveeeveeirnineeneeee 103
list ['file'] NUM....oooiiiieeee 103
list +]-OffSEtoeeiie e 103
list ['file'] top,bot......cceveeeeeeeene 103
list [func[tion] funcname.................. 103

Contents

iSBS...ciiviiree e 103
disas*addrl [*addr2]ccceovvnnene. 103
disasfuncname........ccococeveevecneennns 103
Automatic Display.....ccceeveerreeeneresennns 104
screen [(F] expro e 104
SCIEEN. ...ttt eee e s 104
UNSCreen [#N] ..o 104
screenoff [#N] ..o 104
SCrEeNON [#N] .ovveeveeeeeee e 104
SNOW SCrEEN ..o 104
SYMbOIS....ceceeeeececer e 104
show function ["regex"]....cccoeeverernene. 104
show variable["regex"]ccceoeeeenne 104
SCITPES. et e 104
aliascmd "cmd-str ... 104
alias[emd] ..ccoveevere e 104
unaias [emd]ccccoevevivrerenere s 105
5o 7= K 105
signal Sig action.......cccceeeeeveeveneenne 105
Show SIgnal [SIQ] -eeeeeeeeereneererieneeniene 105
Miscellaneous Controls..........ccoceveeeennene 105
param listSize NUM.........cccoeeeverereenne. 105
param prompt "Strccceeeiieennn 105
param printelements num.................. 105
72120 I 01 0 105
FIlES o 105
SNOW EXEC ..ot 105
param execpath [path]ccccoeeunee. 106
param srcpath [path]ccooeevienenne. 106
SNOW SOUICE ... 106
SNOW SOUICES......cvveeeeenerienenienenieneeeens 106
Fortran 95 SpeCifiC.....cccovvvevvvercererenniene 106
breakall mdlccooveveiiiieee 106
breakall funC.......cccovveveiieiciice 106
ShOW fil@.ceiii e 106
SNOW FOPL .o 106
Communicating with fdb............c..c...c..... 106
FUNCLIONS ... 106
Variables......cooovvvviininiineee 107
ValUES ... 107
AdAresses.......coveerereeneeneese e, 107
REQISLErS ... 107
NaMES.....coiiiriee e 108

Library Manager.........ccccoovcvviineeneennnnns 109
(0] 01110 0= 7SS 109
Response Fles.......oooeieeeeeceecee e 111
Creating and maintaining COFF libraries....111
Extracting object filesfrom libraries............ 112
Creating import libraries..........ccccooevevenee 112

Utility Programscccceeeeevevieeeeennnee. 115
DUMPBIN.EXE.....ccccoovvniiirinenseesienens 115

Invoking DUMPBIN.........ccccovvrnireinnnne. 115
DUMPBIN Options........ccccccvvvrrinereennnens 115
EDITBIN.EXE.....cccooviiviirireieeeeeeieenes 117
Invoking EDITBINcccooviirirrincniee, 117
EDITBIN OptionS.....cccccovveeveeerieieriennns 117
HDRSTRIP.FA0.....ccccovviiriereeeeeeieenes 119
LESPLIT.EXE....oioiinrinrinreees e 120
MAKEDEF.EXE......ccccoovvinrinrnneesieee 120
SEQUNF.F0.......coiieiieirieiereeie e sieeens 120
TRYBLK.F0.....ccoiiirrireenirenieeeesieee 120
UNFSEQ.F0......cccovireireieeesee e 120
WHERE.EXE........cccooviiieevee e 121
INnvOkKing WHERE..........cccoevvieviireeienenne 121

Programming Hintsccccceeeeeennne 123
Efficiency Considerations..........cc.ccecvvvereenenn 123
Side EffeCtS...coieeeeereereeeeee e 123
File FOrmMatsSccoovviereeeeeeee e 124

Formatted Sequentia File Format 124
Unformatted Sequential File Format 124
Direct File FOrmat.........cccooveverncnncnnne. 125
Transparent File Format.............cccceevenene. 125
Determine Load Image Size..........ccccceeeenee 125
Link TIMe....covierierirerenee e 125
Y ear 2000 cOmMplianCe.........ccevvvvvervresennnans 126
Limits of Operation.ccccoeveveeenennieenns 127

Runtime OptioNScuevveeviveiiiviiinenenn. 129
Command FOrmat..........ccceeereeneeneceenenieeenne 129
Command Shell Variable..........ccccoevreennnn. 129
Execution Return Values..........c.cccceeveienee. 130
Standard Input and OUtputcccceeeereeene 131
RUNtime OPtioNS........coveeevvirevrseeeeeeenens 131

Description of Options..........ccoceveeeeeenee 131
Shell Variablesfor Input/Output.................. 136

LF Fortran Express User'sGuide il

Contents

iv LF Fortran Express User’s Guide

o Getting Started

L ahey/Fujitsu Fortran 95 (LF95) isaset of softwaretoolsfor devel oping 32-bit Fortran appli-
cations. LF95 isacompleteimplementation of the Fortran 95 standard. Thetoolset includes
acompiler, linker, debugger and librarian.

LF95 includes two manuals: the Express User’s Guide (this book), which describes how to
use the tools; and the Language Reference, which describes the Fortran 95 language.

Manual Organization

Thisbook is organized into six chapters and three appendices.

Chapter 1, Getting Sarted, identifies system requirements, describestheinstallation
process, and takes you through the steps of building of your first program.

Chapter 2, Developing with LF95, describes the devel opment process and the driver
program that controls compilation, linking, the generation of executable programs,
libraries, and DLLs.

Chapter 3, Mixed Language Programming, describes building statically linked and
dynamically linked mixed language applications, and discusses interfacing Fortran
procedures with procedures written with other languages.

Chapter 4, Command-Line Debugging with FDB, describes the command-line
debugger.

Chapter 5, Library Manager, describes command-line operation of the librarian.
Chapter 6, Utility Programs, describes how to use the additional utility programs.

Appendix A, Programming Hints, offers suggestions about programming in Fortran
on the PC with LF95.

Appendix B, Runtime Options, describes options that can be added to your execut-
able’s command line to change program behavior.

LF Fortran Express User’s Guide

1

Chapter 1 Getting Sarted

Notational Conventions

The following conventions are used throughout this manual :

Code and keyst r okes are indicated by courier font.

In syntax descriptions, [brackets] enclose optional items.

Andlipsis, '...", following an item indicates that more items of the same form may appear.
Italics indicate text to be replaced by the programmer.

non italic charactersin syntax descriptions are to be entered exactly as they appear.

A vertical bar separating nonitalic charactersenclosed in curly braces‘{ opt1 | opt2 | opt3}’
indicates a set of possible options, from which oneisto be selected.

System Requirements

e A Pentium series or compatible processor

¢ 32MB of RAM

e 50 MB of available hard disk space for typical installation

* Windows 98, Windows ME, Windows NT 4.0, Windows 2000, or Windows XP.

2 LF Fortran Express User’s Guide

Installing Lahey/Fujitsu Fortran 95

Installing Lahey/Fujitsu Fortran 95

Before starting, review the System Requirements. Administrator rights are required for
installation.

1. Insert disk — Lahey/Fujitsu Fortran Expressv7.1
The following Lahey/Fujitsu Fortran Setup Menu will automatically display when
the CD isinserted in the drive. If the Setup Menu does not display, run
d:\L FSetup.exe, where d: isyour CD drive..

Install Lahey/Fujitsu Fortran Express »¥.1
Yiew Lahey/Fujitzu Fortran ReadMe

E xplore thiz CD

- Online Manuals >>>
- Demo Software >>>

Accessolies »»»

Cloze |

LF Fortran Express User’s Guide

3

Chapter 1 Getting Sarted

2. ChooseInstall Lahey/Fujitsu Fortran Expressv7.1 from the Setup Menu.
a. Thefollowing dialog will appear.

!;:' Lahey/Fuijitsu Fortran ¥7.1 - InstallShield Wizard

Product Serial Number

Enker wour Serial Mumber if vou have purchased this product,
Leave blank toinstall an evaluation wversion,

"Serial Mumber:

< Back I Mext = I Cancel

Enter your serial number if you purchased this product, or leave blank to install the
evaluation version. If you install the evaluation version at thistime, you can convert
it into alicensed version any time after purchase (see Product License Activation).
A serial number is required to receive technical support.

b. Follow the promptsto install this product.

4 LF Fortran Express User's Guide

Installing Lahey/Fujitsu Fortran 95

c. If desired, choose Custom on the Setup Type dialog to change the installation folder
or to add or remove specific features. The following picture showsthe features avail-

able for the Enterprise Edition:

iF;—-f Lahey/Fujitsu Fortran ¥7.1 - InstallShield Wizard

Custom Setup

Select the program Features wou want installed.

Carcpaisr Sysismes L

Click on an icon in the lisk below to change how a Feature is installed.

@ Lahey/Fuijitsu Forbran 95

Install ko
Z:YProgram Files)Lahey-Fujitsu Fortrani»7. 14

= Feablre Descrptiorn

Compiler, tools, libraries, and
documentation For kargeting the
Micrasaft Win3z platFarm

This feature requires OKE on
wour hard drive. It has 3 of 3
subfeatures selected. The
subfeatures require 44ME on
wour hard drive.,

Change. ., |

Iristal|stield
Help Space < Back

I Mexk = I Zancel |

d. Select Finish when setup is complete.

LF Fortran Express User’s Guide

5

Chapter 1 Getting Sarted

e. If you entered a serial number at the beginning of the setup, you will be given the
following choice to activate your license online at thistime:

Online License Activation x|

Do you 'want to activate vour license online?

Druring installation of Lahey/Fujitsu Fortran, you entered a sernial
number which needs to be verified in arder for the license to be
unlocked on thiz computer. Thiz can be done now via paur internet
connection. [pou are not connected to intermet, pleaze do s now,

Alternatively, you can cancel this and call or e-mail Lahey to get
codes to manually unlock vour licenze.

Prezs Proww if wou hawe a network, proxy server.
Prezz Yes to proceed with the onling licenze activation.

Frezz Mo to cancel this operation.

Frosy | Mo |

6 LF Fortran Express User’s Guide

Installing Lahey/Fujitsu Fortran 95

If online license activation is successful, you will be given the choice to register your
product with Lahey online. Y ou can choose to send the registration online, or create
afile with registration information to send to Lahey.

F Lahey/Fujitzu Fortran Product Registration pﬂ

wieleome ta Lahey/Fujitzu Fartran Product Registration.

k. Reqiztered uzers receive free, unlimited technical suppoart via
. - fax ahd e-mail and can choose to receive update notices and
\m -I.
new product announcements.

Press Mest to enter wour registration information. v'ou il
have a choice to either send the information via the lnternet
or to create a file to mail or Fax to Lahey.

Skip Beaiztration |

LF Fortran Express User’s Guide 7

Chapter 1 Getting Sarted

g. Finaly, if online activation was successful, you will be given the choiceto check for
product updates that may be available on Lahey's website.

F Lahey/Fujitzu Fortran Online Update] 5}

Wwielcome to Lahey/Fujitsu Fortran Online Update. This program
will firzt check Lahey's web zite to determing if pour product is
Lp-to-date.

Preszs Mest o retrieve information about available updates from
our web site, Make zure vour [ntermet connechion is active.

i~ Advanced Settings

! Fresz the &dvanced button below to view or change the
| prowy zerver vou are uzing.

Advanced I

LCancel !

The appropriate LF95 directory names are appended to the PATH, LIB, and INCLUDE envi-
ronment variables. The variables are appended, rather than prepended, in order to be less
obtrusive to your current configuration. For the compiler, tools and utilities that are used as
command-line programs, the "L F95 Console Prompt" is available on the Programs menu to
start aconsole command-line with the environment variables optimally set. To to ensure cor-
rect operation of compilers, tools, and utilities in this product, we recommend either using
the LF95 console prompt, or editing the af orementioned environment variables to put the
LF95 directories ahead any others.

If you are using Windows 2000 or XP, your installation is complete. Otherwise, reboot your
system (or log out and log inif using Windows NT) to insure that your system environment
are properly set. Y ou are now ready to build your first program.

8 LF Fortran Express User’s Guide

License Activation

License Activation

By default, the Lahey/Fujitsu Fortran v7.1 product isinstalled with licenses set up to expire
after an evaluation period. To continue using a purchased product, the licenses must be acti-
vated. Activation is done after a product is purchased or upgraded. The License Activation
program cannot be used to purchase a product.

When license activation takes place, it will only be valid on the PC onwhich it was activated.
There are several scenarios that will cause the license to revert to atrial version:

» Thisproduct is copied, moved, or installed on another PC.

» The hardware configuration of the PC is significantly changed.

» The Windows operating system is reinstalled.

» The Windows registry isreverted to a version older than the time of activation.

If you uninstall and reinstall this product on the same PC configuration, it will still be acti-
vated. Contact sales@lahey.com when you need to reactivate your purchased license on a
different PC.

License Activation
Product activation can be accomplished in severa ways:

1. The serial number for a purchased product is entered at the beginning of the Lahey/
Fujitsu Fortran installation, and online activation takes place after theinstallation is
complete.

2. TheLicense Activation program is run and a purchased product's serial number is
entered for online activation.

3. TheLicenseActivation program is run and manual codes are entered after receiving
them from Lahey.

LF Fortran Express User's Guide 9

Chapter 1 Getting Sarted

Activation During Installation
If you entered a serial number at the beginning of the setup, at the end you will be given the
following choice to activate your license online:

Online License Activation ' x|

Do yow want to activate vour license online?

Cning installation of Lahep/Fujitsu Fortran, you entered a zenal
nurnber which needs to be wverified in order for the licenze to be
unlocked on thiz computer. Thiz can be done now via vour internet
connection. [f you are not connected to internet, please do o now,

Alternatively, vou can cancel thiz and call or e-mail Lahey to get
codes to manually unlock vour lizetize.

Presz Prowy if pou hawe a nebwork prosy server.
Press Yes to proceed with the onling license activation.

Prezz Mo to cancel thiz operation.

Priosy | Mo

Before pressing Y es, be sure to press Proxy and enter your proxy addressif you have a net-
work proxy server. When Y esis pressed, the online activation will beinitiated, and you will
be notified whether activation was successful. If successful, your product is ready to use. If
Noispressed, or the online activation fails, you will haveto activate the product by using the
License Activation utility program, as described below.

10 LF Fortran Express User’s Guide

The License Activation Utility Program

The License Activation Utility Program
Select the License Activation shortcut from the Programs menu, under L ahey/Fujitsu Fortran
v7.1, Product Maintenance. The following dialog will appear:

ﬁ Laheyp/Fujitsu Fortran License Activation] ﬂ

Current licensze; M one

Senal Murnber;

—Action

Chooze this option if vou wish to
purchase ar upgrade a product,

o to re-activate your licenze due
to a hardware change.

{+ Purchaze or Upgrade Licenze [Intermet connection required}

Ehoose ths ophio o achivate
WL pLTCH aze

Stat

{ Achivate a Licensze [Intermet connection required)

" tarwaly Activate a License o Have

odes fram Lakel.

Continue | Cloze |

Purchase or Upgrade License

If you have not purchased the product or wish to purchase an upgrade to a new edition,
choose this option and press Continue. Thiswill display aweb page at www.lahey.com with
further instructions for purchasing.

Also, choose this option if you purchased the product and already have a serial number, but
wish to manually activate alicense. The web page contains instructions.

LF Fortran Express User’s Guide 1

Chapter 1 Getting Sarted

Activate or Reactivate a License
If you have a purchased product serial number, choose this option to activate your license
online. Press Continue and this dialog will appear:

Online License Activation i) 5!

E nter your product Sernial Humber;

Frezz Prow if pou have a network prosy
gerver address. Then press 0K to continue
with the online license actiwation.

Priowy Carcel l (8 l

Before pressing Y es, be sure to press Proxy and enter your proxy addressif you have a net-
work proxy server. When you press OK, activation will be attempted over the internet.

12 LF Fortran Express User’s Guide

Manually Activate a License

Manually Activate a License
Thisoption is used for several purposes:

» Onlineactivation is not desired, or not possible.

* Your license needs reactivation, perhaps due to a PC change.
» A gpecia function needs to be performed on your license.

After pressing Continue, the following dialog will appear:

Manual Licenze Aclp

i~ Codes to provide to Lakey—

IJzer Code 1:

Ilzer Code 2

270725313

8935323

i~ Licenze Codes received frarm Lakey

Lizenze Code 1:

License Code 2

Enter your product Serial Mumber:

Cancel |] |

(The User Code numbers above are examples only.)

User Code 1 and User Code 2 are numbers that need to be provided to Lahey Sales or Tech-
nical Support personnel before the License Code(s) can be given to you. Once you receive
the License Code(s), enter them and your serial number in the dialog fields and press OK.

Note that you can press cancel after copying down the User Codes to provide to Lahey, and
rerun the License Activation utility program at alater time to enter the License Codes.

After Activation

When anew activation has taken place, you will be presented with the choices to register
your product with Lahey and to check for available product updates.

LF Fortran Express User’s Guide

13

Chapter 1 Getting Sarted

An upgrade to a new edition can be accomplished using the License Activation utility pro-
gram — the Enterprise edition will be issued a new serial number at time of purchase.

Product Registration

14

Please register your Lahey product. When you activate your product license, you will be
prompted to register. Also, you can initiate the registration program by sel ecting the Product
Registration shortcut from the Program menu, or register at our website, www.lahey.com.

If you move or transfer aLahey product’ s ownership, please let us know.

E Lahey/Fuijitsu Fortran Product Registration _ 5]

Fleaze review the registration information below. Presz Back to
make changes. If you have [nternet acceszs, pou may choose
Send to Lahey, otherwize chooze Save to file to create a file to
mail, e-rail, or fax..

Lahey /Fujitzu Fortran FRODLCT REGISTRATION =
Praduct: Lahey/Fujitzu Fartran w1

Senal Humber: 12345-12345-12345

M anne: John Doe

Oraanizatian: L ahey Computer Suztems, [ne.

E-mail: [diE@lahey. com

Address: 123

™ Save ta file;

Cancel I < Back, Send

b
i C:h . SLahey-Fuijitzu Fortranhe?. 1 \Fegizter. tat Browse. . |

LF Fortran Express User’'s Guide

Maintenance Updates

Maintenance Updates

Maintenance updates for purchased products are made available from Lahey's website. They
comprise bug fixes or enhancements or both for this version of this product. The update pro-
gram applies "patches’ to your files to bring them up-to-date. The maintenance update
version shows as the last two-digits of the version of your compiler. Thisis displayed in the
first line of output when you run the compiler

Any time you want to check the availability of a maintenance update for this version, select
Online Update from the Programs menu, and a program will step you through the updating
process:

F Lahey/Fujitzu Fortran Online Update] 5}

Wwielcome to Lahey/Fujitsu Fortran Online Update. This program
will firzt check Lahey's web zite to determing if pour product is
Lp-to-date.

Preszs Mest o retrieve information about available updates from
our web site, Make zure vour [ntermet connechion is active.

i~ Advanced Settings

! Fresz the &dvanced button below to view or change the
| prowy zerver vou are uzing.

Advanced I

LCancel !

Online Update will first perform a quick check and tell you whether you are up-to-date or if
an update is available. If you choose to install the update, the necessary patch files will be
downloaded and applied. Y ou need to be connected to the Internet to perform the check and
download the files.

To automatically check for updates at regular intervals at startup, pressthe Advanced button
after starting Online Update and enter the interval (in days) in the Check Interval field. An
LF Online Update icon will be added to your Windows Startup folder. At startup, Online

LF Fortran Express User’s Guide 15

Chapter 1 Getting Sarted

16

Update will start only if the specified check interval days have passed since the last time
Online Update was run. Thereafter, to disable automatic checking, set the check interval to 0
(zero) days.

Another way to get the latest maintenance update for thisversion is by going to Lahey'sweb
site at www.lahey.com and navigate to Downloads. There you will find update programsyou
can download, aswell asrelease notes and bug fix descriptions. Once you have downloaded
an update program, you will no longer need an Internet connection. This method is preferred
over Online Update by those who need to update on systems that are not connected to the
Internet, or who want the ability to revert to a previous maintenance version by saving the
update programs.

In general, if you modify the contents of any of the files installed by this product (except
within the Examples directory), that particular file will no longer be valid for updating, and
the update installation program may abort with an error message.

LF Fortran Express User’'s Guide

Repairing LF95

Repairing LF95

The repair program can be found in the Add/Remove Programs applet in the system Control
Panel. Select L ahey/Fujitsu Fortran v7.1 and pressthe Change button. The Windowsinstaller
will launch a program and you will see this dialog:

,.,? Lahey/Fuijitzu Fortran ¥7.1 - InstallShield Wizand

Program Mainkenance

Maodify, repair, ar remove the program, e itag y

Zhange which prograrm Features are installed. This option displays the
Cuskom Selection dialag in which wou can change the way Features are
installed.

Fepair inskallation etrars in the program, This option fixes missing ar
corrupt Files, shorkcuts, and registry entries,

Remove Lahey (Fujiksuy Fortran 7.1 From waur computer,

Back I Mexk = I Cancel

Choosing Modify allows you to change which program features are installed.

Choosing Repair will run through the original installation and fix missing or corrupt files,
shortcuts, and registry entries.

Y ou can aso uninstall the product by choosing Remove.

LF Fortran Express User’s Guide 17

Chapter 1 Getting Sarted

Uninstalling LF95

To completely remove the L ahey/Fujitsu Fortran product install ation, open the Add/Remove
Programs applet in the system Control Panel. Select L ahey/Fujitsu Fortran v7.1 and pressthe
Remove button. Y ou will be prompted to confirm the removal, then the uninstall program
will continue.

Building Your First LF95 Program

18

Building and running a Fortran program with LF95 involves three basic steps:

1. Creating a source file using the Lahey ED development environment or a suitable
non formatting text editor.

2. Generating an executable program using LF95. The LF95 driver automatically com-
piles the source file(s) and links the resulting object file(s) with the runtime library
and other libraries you specify.

3. Running the program.

The following paragraphs take you through steps two and three using the DEMO. F90 source
fileincluded with LF95. For the sake of illustration, we will use the command line interface
to invoke LF95, even though it is a windows application.

Generating the Executable Program

Compiling a sourcefile into an object file and linking that object file with routines from the
runtime library is accomplished using the LF95. EXE driver program.

Open a system command prompt by selecting Start|Programs|L ahey-Fujitsu Fortranv7.1|LF
Console Prompt. From the command prompt, build the demo program by changing to
LF95's EXAMPLES directory (where DEMO. F90 isinstalled), and entering

LF95 denp

This causes the compiler to read the source file DEMO. F90 (the extension. F90 isassumed by
default) and compile it into the object file DEMO. OBJ. Once DEMO. OBJ is created, LF95
invokes the linker to combine necessary routines from the runtime library and produce the
executable program, DEMO. EXE.

LF Fortran Express User’'s Guide

Running the Program

Running the Program
To run the program, type its name at the command prompt:

deno

and press Ent er . The DEMO program begins and a screen similar to the following screen

displays:

Lahey/ Fujitsu LF95 Conpiler

installation test and demonstration program

Copyright(c) 2001
Lahey Computer Systems, Inc.

- factorials

- Fahrenheit to Cel sius conversion

- Carm chael nunbers

- Ramanuj an's series

- Stirling numbers of the 2nd kind

- chi-square quantiles

- Pythagorean triplets

- date_and_time, and other systemcalls
- <stop this progranp

CO~NOUBRWNE

Pl ease select an option by entering the
associ ated nunmber followed by <return>.

Y ou've successfully built and run the Lahey demonstration program.

What's Next?

For a more complete description of the development process and instructions for using
Lahey/Fujitsu Fortran 95, please turn to Chapter 2, Developing with LF95.

Before continuing, however, please read the filesr eadre. t xt anderrat a. t xt. These
contain important last-minute information and changes to the documentation.

Other Sources of Information

Files
README. HTM last-minute information
README_PORT_LF90. TXT information on porting your code from LF90
READMVE_PORT_56. TXT information on porting your code from LF95 v5.x

READVE_SERVI CE_ROUTI NES. TXT POSIX and other service routines

LF Fortran Express User's Guide 19

Chapter 1 Getting Sarted

| O_ ERROR. TXT runtime /O error messages
RTERRVSG. TXT other runtime error messages
Manuals

Lahey/Fujitsu Fortran 95 Language Reference
Lahey/Fujitsu Fortran 95 Express User’s Guide (this document)

Newsletters
The Lahey Fortran Source newsl etter

Lahey Web Page
http://ww. | ahey. com

Technical Support

For the most up to date support information, please visit the support page at L ahey's website:
www.lahey.com.

20 LF Fortran Express User’s Guide

Developing with LF95

This chapter describes how to use Lahey/Fujitsu Fortran 95. It presents an overview of the
development process and describes how to build Fortran applications. LF95 controls com-
pilation, the production of executable programs, static link libraries, and dynamic link
libraries (DLLS).

The Development Process

Developing applications with LF95 involves the following tools:

Driver. Usethedriver (LF95. EXE) to control the creation of object files, libraries, execut-
able programs, and DLLs. LF95. EXE is often referred to as a compiler, but it is actually a
driver that invokesthe appropriate compiler, linker, and other components used to create exe-
cutables, libraries, and other products.

Library Manager. Usethelibrary manager to create, change, and list the contents of object
libraries. See Chapter 5, Library Manager, for instructions on how to use the library
manager.

Debugger For Windows console and GUI applications use FDB to debug your code (See
Chapter 4, Command-Line Debugging with FDB).

The remainder of this chapter focuses on the driver and the processes it controls.

How the Driver Works

Thedriver (LF95. EXE) controlsthe two main processes—compilation and linking—used to
create an executable program. Supplemental processes, like creating static libraries, DLL's,
import libraries and processing Windows resources, are sometimes used depending on
whether you are creating aDLL or a 32-bit Windows program. These processes are per-
formed by the following programs under control of the driver:

LF Fortran Express User’s Guide 21

Chapter 2 Developing with LF95

Compiler. The compiler compiles sourcefilesinto object filesand createsfiles required for
using Fortran 90 modul es and files needed by the linker for creating DLLSs.

Library Manager. LI B. EXE isthe library manager. It can be invoked from the driver or
from the command prompt to create or change static libraries.

Linker. LI NK. EXE isthelinker. The linker combines object files and librariesinto asingle
executable program or dynamic link library. The linker also adds Windows resources, like
icons and cursors, into Windows executables, and createsimport libraries for use with LF95
dynamic link libraries (DLLS).

Resour ce Compiler. RC. EXE isthe resource compiler. It converts Windows resource files
(. RCfiles) to. RESfiles. . RES files can be sent to the linker, or can be converted by
CVTRES. EXE into object files.

Running LF95

22

By default, the LF95 driver program will compile any specified source files and link them
along with any specified object files and libraries into an executable program.

To run the driver, type LF95 followed by alist of one or more file names and optional com-
mand-line options:

LF95 filenames [options]

Thedriver searchesfor the varioustools (the compiler, library manager, linker, and resource
compiler) first in the directory the driver islocated and then, if not found, on the DOS path.

To display the LF95 version number and a summary of valid command-line options, type
LF95 without any command-line options or filenames.

The command line options are discussed later in this chapter.

Filenames

Depending on the extension(s) of the filename(s) specified, the driver will invoke the neces-
sary tools. The extensions. F95,. F90,. FOR, and. F, for example, cause the compiler to be
invoked. The extension . OBJ causesthe linker to be invoked; the extension . RC causes the
resource compiler to be invoked.

Filenames containing spaces must be enclosed in quotes.

Note: the extension. MODis reserved for compiler-generated module files. Do not use this
extension for your Fortran source files.

LF Fortran Express User’'s Guide

Options

Source Filenames
One or more source filenames may be specified, either by name or using the DOS wildcards
* and ?. Filenames must be separated by a space.

Example
LF95 *.f90

If thefilesONE. FQ0, TWO. F90, and THREE. FORwere in the current directory, ONE. F90 and
TWO. F90 would be compiled and linked together, and the executable file, ONE. EXE, would
be created because the driver found ONE. F90 before TWO. F90 in the current directory.
THREE. FORwould not be compiled because its extension does not match the extension spec-
ified on the LF95 command line.

Source filenames are specified asacomplete file name or can be given without an extension,
in which case LF95 supplies the default extension . F90. In the absence of an option speci-
fying otherwise:

. F90 and . F95 specifies interpretation as Fortran 95 free source form.
. FORand . F specify interpretation as Fortran 95 fixed source form.

Source files for agiven invocation of the driver should not mix free form and fixed form. If
fileswith boththe. FORor . Fand. F90 or . F95 appear on the same command line, then all
are assumed to use the source form the driver assumes for the last file specified.

The-fix and - nf i x compiler options can be used to control the assumed extension and
override the interpretation specified by the extension. see®-[N]FIX" on page 35

Object Filenames
The default name for an object fileisthe same as the sourcefile name. By default, the object
fileisplaced in the current directory.

Output Filenames

The default name for the executable file or dynamic link library produced by the driver is
based on thefirst source or object name encountered on the command line. By default, output
files are placed in the same directory as the first file encountered. This may be overridden
by specifying the- QUT option with anew path and name (see* -OUT filename” on page 40).
The default extension for executablefilesis. EXE. Thedefault extension for staticlink librar-
iesis. LI B. The default extension for dynamic link librariesis. dl I .

Options

The driver recognizes one or more |etters preceded by a hyphen (-) as a command-line
option. Y ou may not combine options after ahyphen: for example, - x and - y may not be
entered as- xy.

Some optionstake argumentsin the form of filenames, strings, | etters, or numbers. Y ou must
enter a space between the option and its argument(s).

LF Fortran Express User's Guide 23

Chapter 2 Developing with LF95

24

Example

-i incdir
If an unknown option is detected, the entire text from the beginning of the unknown option
to the beginning of the next option or end of the command line is passed to the linker.

Conflicts Between Options

Command line options are processed from left to right. 1f conflicting options are specified,
the last one specified takes precedence. For example, if the command line contained LF95
foo -g -ng,the-ng option would be used.

Driver Configuration File (LF95.FIG)

In addition to specifying options on the command line, you may specify a default set of
optionsinthefileLF95. FI G. When the driver isinvoked, the optionsin LF95. FI Gare pro-
cessed before those on the command line. Command-line options override thosein

LF95. FI G Thedriver searchesfor LF95. FI Gfirst in the current directory and then, if not
found, in the directory in which the driver islocated.

Command Files

If you have too many options and files to fit on the command line, you can placethem in a
command file. Enter LF95 command line argumentsin acommand file in exactly the same
manner as on the command line. Command files may have as many lines as needed. Lines
beginning with an initial # are comments.

To process acommand file, preface the name of the file with the @character. When LF95
encounters afilename that beginswith @on the command line, it opensthefile and processes
the commandsin it.

Example
LF95 @rycnds

In this example, LF95 reads its commands from the file mycnds.

Command filesmay be used both with other command-line optionsand other command files.
Multiple command files are processed |eft to right in the order they are encountered.

Passing Information

The LF95 driver uses temporary files for sending information between the driver and pro-
cessesit controls. Thesefilesare automatically created using random names and are del eted
when the process is complete.

LF Fortran Express User’'s Guide

Return Codes from the Driver

Return Codes from the Driver

When the LF95 driver receives afailure return code, it aborts the build process. The driver
will return an error code depending on the success of theinvoked tools. If alinker or resource
compiler error occurs, LF95 exitswith the exit code from thefailing tool. Other return codes
arelisted below:

Table 1: Driver Return Codes

Code Condition

0 Successful compilation and link

Compiler or tool failed to run or

1 fatal compilation error occurred
2 Library Manager error

4 Driver error

5 Help requested

Note that there may be overlap between exit codes presented in Table 1 and exit codes passed
through from atool.

Creating a Console-Mode Application
LF95 creates Windows console-mode executables by default, so no options need be
specified.
Example
LF95 MYPROG. F90

Creating a Windows GUI application
To create aWindows GUI application, either with athird-party package (such as Winter-
acter, GINO, or ReaWin) or by calling the Windows API’ sdirectly, specify the- wi n option.
To call the Windows API’ s directly, you must also specify the-m wi napi option (see” -
ML { bc| bd | fc| If90 | If95 | msvb | msvc | winapi }" on page 39 and " Calling the Windows
API” on page 78 for more information). Note that console I/O is not permitted when using
the - wi n option.
Example

LF95 MYPROG. F90 -win

Creating a 32-bit Windows DLL
To create a 32-bit Windows DLL, usethe-dl | option.

LF Fortran Express User's Guide 25

Chapter 2 Developing with LF95

26

Example
LF95 myprog.f90 -dIl -win -m msvc

Inthis exampl e, the source file MYPROG. F90 contains procedureswith DLL_EXPORT state-
ments. The following takes place:

1. MYPROG. F90 iscompiled to create MYyPROG. OBJ.

2. MYPROG 0BJ isautomatically linked with the LF95 runtime library to create
MYPROG. DLL and MYPROG. LI B, the corresponding import library. Calling conven-
tionsin this case are those expected by Microsoft Visual C/C++.

For more information on DLLs, see ” Dynamically linked applications’ on page 54.

Creating a static library
To create astatic library, specify the library name using the - out option.

Example
LF95 mysub.f90 -out nylib.lib

LF95 recognizes that alibrary is requested because of the .lib extension for the output file.
This causes L F95 to invoke the library manager rather than thelinker. If thelibrary specified
with - out does not exist, it is created; if it already exists, it is updated.

OpenGL Graphics Programs

OpenGL isa software interface for applications to generate interactive 2D and 3D computer
graphicsindependent of operating system and hardware operations. Itisessentially a2D/3D
graphicslibrary which was originally developed by Silicon Graphicswith thegoal of creating
an efficient, platform-independent interface for graphical applications (Note: OpenGL isa

trademark of Silicon GraphicsInc.). It isavailable on many Win32 and Unix systems, and
is strong on 3D visualization and animation.

f90gl isapublic domain implementation of the official Fortran 90 bindingsfor OpenGL, con-
sisting of a set of libraries and modules that define the function interfaces. The f90g|
interface was developed by William F. Mitchell of the Mathematical and Computational Sci-
ences Division, National Institute of Standards and Technology, Gaithersburg, in the USA.
For information on f90gl, see the f90gl web page at:

http://math.nist.gov/f90gl

The OpenGL Libraries
To use f90g!/OpenGL you will need three OpenGL DLL'sinstalled in your Windows SY S-
TEM or SYSTEM32 directory:

OPENGL32.DLL
GLU32.DLL
GLUT32.DLL

LF Fortran Express User’'s Guide

OpenGL Graphics Programs

Thefirst two of theselibrariesare astandard part of Windows NT4, 2000, XP, 95(0OSR2), 98
and Me. Many video card manufacturers now also provide accelerated OpenGL support as
part of their video drivers. These drivers may replace the functionality of thesetwo DLL's.

GLUT32.DLL isnot part of the standard Windows distribution. GLUT32.DLL will be
installed in the System or System32 (NT) directory by the installation program.

The f90gl Libraries & Modules

The f90gl interface on the f90gl website is posted in source form only. For many users this
isunsuitable since it requires a C compiler and a certain level of technical expertisein build-
ing the interface. In the case of Lahey LF95, which uses the Microsoft linker, f90gl is best
built using Microsoft Visual C.

This product eliminates the need for C compilers by providing pre-built f90gl modules and
libraries suitable for use with Lahey LF95 5.7 and newer. The sources for f90g| are not
included here since they are not required (as noted, they are available from the f90gl website).

Example Programs

A subset of the f90gl examples are supplied in the LF95 EXAMPLES directory. A Run-
Demos.bat fileisincluded to build and run all of the examples.

Compilation and linking of f90gl programs simply requires that the LF95 LIB directory be
specified in the compiler module path and that the names of the f90ql libraries are specified
for linking. Specify -win to create a Windows program. See the RUNDEM OS.BAT file for
command line examples. These are substantially simplified from the somewhat complex
MF8N?0.BAT equivalents supplied with the f90gl distribution.

Example programs:

» Blender - two rotating objects, one red, one green, which fade in and out, plus some
text.

o Fhitfont - some text

» Fscene - three 3D objectsin red. The right mouse button brings up a menu. Redraw
isreally slow in outline mode on some machines.

* Logo - thef90gdl logo. Rotate with the mouse while holding the left mouse button.
Right mouse button brings up a menu. Middle mouse button selects a new value on
the color bars (rgb diders).

» Maodview - contains amodule for using the mouse and arrow keys to rotate, zoom,
pan and scale. Initially the left button rotates (hold button down while moving
mouse), middle button zoom, arrow keys pan, and right button brings up a menu.

» Olympic - the olympic rings comeflying into position. Restart the animation with the
space bar; terminate with escape.

LF Fortran Express User's Guide 27

Chapter 2 Developing with LF95

28

» Plotfunc - plots afunction of two variables as contours, a surface mesh, or asolid
surface. Uses the modview module. Right button brings up a menu.

e Scube - arotating cube in front of a background. Right mouse button brings up a
menu. There are also keyboard keys for the same functions as on the menu (look for
keyboard in the source code).

» Sphere - ared sphere.

Sources of Information
General inquiries and bug reports regarding f90gl should be sent to:

william.mitchell @nist.gov.
Lahey specific issues should be directed to support2@lahey.com.

OpenGL information can be found at http://www.opengl.org.

Controlling Compilation

During the compilation phase, the driver submits specified source files to the compiler for

compilation and optimization. If the- ¢ (compile only) option is specified, processing will
stop after the compiler runs and modules are created (if necessary). See” -[N]C” on page
30. Otherwise, processing continues with the appropriate action depending on what sort of
output fileis requested.

Errors in Compilation

If the compiler encounters errors or questionabl e code, you may receive any of the following
types of diagnostic messages (aletter precedes each message, indicating its severity):

U:Unrecoverable error messagesindicateit isnot practical to continue
compilation.

S: Serious error messages indicate the compilation will continue, but no object file
will be generated.

W:War ning messages indicate probable programming errors that are not serious
enough to prevent execution. Can be suppressed with the -nw or -swm option.

I :Infor mational messages suggest possible areasfor improvement in your code and
give details of optimizations performed by the compiler. These are normally sup-
pressed, but can be seen by specifying the -info option (see” -[N]INFO” on page
36).

If no unrecoverable or serious errors are detected by the compiler, the DOS ERRORLEVEL is
set to zero (see” Return Codes fromthe Driver” on page 25). Unrecoverable or serious
errors detected by the compiler (improper syntax, for example) terminate the build process,
and the DOS ERRORLEVEL is set to one. An object fileis not created.

LF Fortran Express User’'s Guide

Compiler and Linker Options

Compiler and Linker Options

Y ou can control compilation and linking by using any of the following options. These
options are not case sensitive. Some options apply only to the compilation phase, othersto
the linking phase, and still others (-g and -win) to both phases; thisisindicated next to the
name of the option. If compilation and linking are performed separately (i.e., in separate
command lines), then options that apply to both phases must be included in each command
line.

Compiling and linking can be broken into separate steps using the -c option. Unlessthe-c
option is specified, the LF95 driver will attempt to link and create an executable after the
compilation phase completes. Specifying -c anywhere in the command line will cause the
link phase to be abandoned and all linker options to be ignored.

Note also that linker options may be abbreviated as indicated by the uppercase charactersin
the option name. For example, the- LI BPat h option can be specified aseither - | i bpat h or
-1ibp. Somelinker options require anumber asan argument. By default, all numbersare
assumed to be decimal numbers. A different radix can be specified by appending aradix
specifier to the number. The following table lists the bases and their radix specifiers:

Table 2: Radix Specifiers

Base Radix Specifier Example of 32 in base
2 Borb 10000b
8 Qorq 40q
10 none 32
16 Hor h 20h

The underscore character (‘_") can be used in numbers to make them more readable:
80000000h isthe same as8000_0000h.

-[N]JAP

Arithmetic Precision

Compile only. Default: - nap

Specify - ap to guarantee the consistency of REAL and COMPLEX calculations, regardless

of optimization level; user variables are not assigned to registers. Consider the following
example:

LF Fortran Express User's Guide 29

Chapter 2 Developing with LF95

30

Example
X=S-T
2Y=X-U
3Y=X-U

By default (- nap), during compilation of statement 2, the compiler recognizesthevalue X is
already in aregister and does not cause the value to be reloaded from memory. At statement
3, the value X may or may not already be in aregister, and so the value may or may not be
reloaded accordingly. Becausethe precision of the datum isgreater in aregister than in mem-
ory, adifferencein precision at statements 2 and 3 may occur.

Specify - ap to choose the memory reference for non INTEGER operands; that is, registers
arereloaded. - ap must be specified when testing for the equality of randomly-generated
values.

The default, - nap, allows the compiler to take advantage of the current valuesin registers,
with possibly greater accuracy in low-order bits.

Specifying - ap will usually generate dower executables.

-BLOCK blocksize
Default blocksize
Compile only. Default: 8192 bytes

Default to a specific blocksize for file 1/0 (See the OPEN Statement in the LF95 Language
Reference). blocksize must be a decimal INTEGER constant. Specifying an optimal block-
size can make an enormous improvement in the speed of your executable. The program
TRYBLOCK. F90 in the SRC directory demonstrates how changing blocksize can affect exe-
cution speed. Some experimentation with blocksize in your program is usually necessary to
determine the optimal value.

-[NIC
Suppress Linking
Compile only. Default: - nc

Specify - ¢ to create object (. 0BJ), and, if necessary, module (. MOD) files without creating
an executable. Thisisespecially useful in makefiles, where it is not always desirable to per-
form the entire build process with one invocation of the driver.

-INICHK [([a][., e][. sI[. ul[. xD)]
Checking
Compile only. Default: - nchk

Specify - chk to generate afatal runtime error message when substring and array subscripts
are out of range, when non common variables are accessed before they areinitialized, when
array expression shapes do not match, and when procedure arguments do not match in type,
attributes, size, or shape.

LF Fortran Express User’'s Guide

Compiler and Linker Options

Note: Commas are optional, but are recommended for readability.

Table 3: -chk Arguments

Diagnostic Checking Class Option Argument
Arguments a
Array Expression Shape e
Subscripts S
Undefined variables u
Increased (extra) X

Specifying - chk with no argumentsis equivalent to specifying - chk (a, e, s, u) . Specify
- chk with any combination of a, e, s, u and x to activate the specified diagnostic checking
class.

Specification of the argument x must be used for compilation of all files of the program, or
incorrect results may occur. Do not use with 3rd party compiled modules, objects, or librar-
ies. Specifically, the x argument must be used to compile all USEd modules and to compile
program units which set values within COMMONS. Specifying the argument x will force
undefined variables checking (u), and will increase the level of checking performed by any
other specified arguments.

If -chk () is specified in conjunction with -pca, the action of -chk (a) is overridden by the
action of -pca. Inthis case, no error is generated when a dummy argument that is associated
with a constant actual argument is assigned a new value in the subprogram.

Specifying - chk (u) checksfor undefined variables by initializing them with abit pattern.

If that bit pattern is detected in avariable on the right side of an assignment then chances are
that the variable was uninitialized. Unfortunately, you can get afalse diagnostic if the vari-
able holds avaluethat isthe same asthisbit pattern. This behavior can be turned off by not
using the u argument to the - chk option. The values used with-chk (u) are:

One-byte integer: -117

Two-byte integer: -29813

Four-byte integer: -1953789045

Eight-byte integer: -8391460049216894069

Default real: -5.37508134e-32

Double precision real: -4.696323204354320d-253

Quadruple precision real: -9.0818487627532284154072898964213742q-4043

LF Fortran Express User's Guide 31

Chapter 2 Developing with LF95

32

Default complex: (-5.37508134e-32,-5.37508134¢e-32)

Double precision complex: (-4.696323204354320d-253,-4.696323204354320d-
253)

Quadruple precision complex: (-9.0818487627532284154072898964213742q-
4043, -908184876275322841540728989642137420-4043)

Character : Z'8B’

Specifying - chk adds to the size of a program and causes it to run more slowly, sometimes
as much as an order of magnitude. It forces -t r ace and removes optimization by forcing
- 00. Some of the arguments to the - chk option may severely impact program execution
speed, depending on the source code. Eliminating unneeded options will improve speed.

Example
LF95 nmyprog -chk (a, x)

instructs the compiler to activate increased runtime argument checking and increased unde-
fined variables checking.

The - chk option will not check bounds (s) in the following conditions:

» Thereferenced expression has the POINTER attribute or is a structure one or more
of whose structure components has the POINTER attribute.

» Thereferenced expression is an assumed-shape array.

» Thereferenced expression isan array section with vector subscript.

» Thereferenced variable isa dummy argument corresponding to an actual argument
that is an array section.

» Thereferenced expression isin a masked array assignment.

» Thereferenced expressionisin aFORALL statement or construct.

» Thereferenced expression has the PARAMETER attribute.

e The parent string is ascalar constant.

Undefined variables (u) are not checked if:

» Subscript checking (s) isalso specified, and diagnostic message 0320-w, 0322-w, or
1562-w isissued.

» Thereferenced expression has the POINTER attribute or is a structure variable one
of whose structure components has the POINTER attribute.

» Thereferenced expression has the SAVE attribute.

» Thereferenced expression is an assumed-shape array.

» Thereferenced expression isan array section with a vector subscript.

» A pointer variableis referenced.

» Thereferenced variable isa dummy argument corresponding to an actual argument
that is an array section.

e Thereferenced expression isin a masked array assignment.

» Thereferenced expressionisin aFORALL statement or construct."

LF Fortran Express User’'s Guide

Compiler and Linker Options

-INJCHKGLOBAL
Global Checking
Compile only. Default: - nchkgl obal

Specify - chkgl obal to generate compiler error messages for inter-program-unit diagnos-
tics, and to perform full compile-time and runtime checking.

Theglobal checking will only be performed on the source which is compiled within oneinvo-
cation of the compiler (the command line). For example, the checking will not occur on a

USEd modulewhichisnot compiled at the sametime as the source containing the USE state-
ment, nor will the checking occur on object files or libraries specified on the command line.

Because specifying - chkgl obal forces- chk (x), specification of - chkgl obal must be
used for compilation of all files of the program, or incorrect results may occur. Do not use
with 3rd-party-compiled modules, objects, or libraries. See the description of -chk for more
information.

Global checking diagnostics will not be published in the listing file. Specifying - chkgl o-
bal addsto the size of aprogram and causesit to run more slowly, sometimes as much as an
order of magnitude. It forces-chk (a, e, s, u, x), -trace, and removes optimization by
forcing - 00.

-[N]JCO
Compiler Options
Compile and link. Default: - co

Specify - co to display current settings of compiler options; specify - nco to suppress them.

-COMMENT comment
Insert comment into executable file
Link only. Default: no comment

Specify - comment to insert acomment line into an executable file. If comment contains
space or tab characters, it must be enclosed in double quotes.

-INJCONCC
Support carriage control characters in console I/O
Compile only. Default: -concc

Specify -nconcc to turn off Fortran carriage control processing for console 1/0.
-IN]DAL

Deallocate Allocatables
Compile only. Default: - dal

LF Fortran Express User's Guide 33

Chapter 2 Developing with LF95

34

Specify - dal to deallocate allocated arrays that do not appear in DEALLOCATE or SAVE
statements when a RETURN, STOP, or END statement is encountered in the program unit

containing the allocatable array. Note that - ndal will suppress automatic deallocation for

Fortran 95 files (automatic deallocation is standard behavior in Fortran 95).

-IN]IDBL
Double
Compile only. Default: - ndbl

Specify - dbl to extend all single-precision REAL and single-precision COMPLEX vari-
ables, arrays, constants, and functionsto 64 bit double-precision. If youuse- dbl , all source
files (including modules) in aprogram should be compiled with - dbl . Specifying - dbl may
or may not result in a somewhat slower executable.

-[N]JDLL
Dynamic Link Library
Link only. Default: - ndl |

Specify - dl | to create a 32-bit Windows dynamic link library (for more information, see
" Dynamically linked applications’ on page 54).

-[N]F95
Fortran 95 Conformance
Compile only. Default: - nf 95

Specify - f 95 to generate warnings when the compiler encounters non standard Fortran 95
code.

Notethat - nf 95 allows any intrinsic datatype to be equivalenced to any other intrinsic type.

-FILE filename
Filename
Compile and link. Default: not present

Precede the name of afilewith-fi | e to ensurethedriver will interpret filename asthe name
of afile and not an argument to an option.

Example
On the following command line, bi | | . f 90 is correctly interpreted as a source file:

LF95 -checksum -file bill.f90

On this next command line, bi | | . f 90 isnot recognized as a source file. The driver passes
the unrecognized option, - checksum to the linker and assumes the following string,
“bi I 1. f90", isan argument to the - checksumoption.

LF95 -checksum bill.f90

LF Fortran Express User’'s Guide

Compiler and Linker Options

Onthislast command line, - fi | e isnot necessary. The order of driver arguments allows
unambiguous interpretation:

LF95 bill.f90 -checksum

-[NJFIX
Fixed Source Form
Compile only. Default: -nfix for.f90 and. f 95 files;-fix for.for and.f files

Specify - f i x toinstruct the compiler to interpret sourcefiles as Fortran 90 fixed sourceform
regardless of the file extension. - nf i x instructs the compiler to interpret sourcefiles as For-
tran 90 free source form regardless of the file extension.

Example
LF95 @ob.rsp bill.f90

If the command file BOB. RSP contains- f i x, Bl LL. F90 will beinterpreted as fixed source
form even though it has the free source form extension . F90.

LF95 assumes adefault file extension of . f 90. Specifying - f i x causes LF95 to assume a
default file extension of . f or .

All source files compiled at the same time must be fixed or free. LF95 doesn’t compilefiles
(including I NCLUDE files) that mix both fixed and free source form.

-[N]IG
Debug
Compileand link. Default: - ng

Specify - g to instruct the compiler to generate an expanded symbol table and other informa-
tion for the debugger. - g automatically overrides any optimization option and forces - 00,
no optimizations, so your executable will run more slowly than if one of the higher optimi-
zationlevelswere used. - g isrequired to usethe debugger. Supplemental debug information
is stored in afile having the same name as the executable file with extension .ydg. If thefol-
lowing error message appears during linking

fwdnerg:[error] Terninated abnormally. (signal 11)
It means that the .ydg file was not created (contact Technical Support if this happens).
This option isrequired to debug if a separate link is performed.

-1 pathl[;path2 ...]
Include Path
Compile only. Default: current directory

Instruct the compiler to search the specified path(s) for Fortran | NCLUDE files after searching
the current directory. Separate multiple search paths with asemicolon, not spaces. If aspace
appears as part of a pathname, the entire path must be enclosed in quotes.

LF Fortran Express User's Guide 35

Chapter 2 Developing with LF95

36

Example
LF95 deno -i ..\project2\includes;..\project3\includes

In this example, the compiler first searches the current directory, then searches
..\ project2\includes andfinally . .\ proj ect 3\ii ncl udes for | NCLUDE files speci-
fied in the source file DEMD. F90

-[N]IN
Implicit None
Compile only. Default: - ni n

Specifying - i n is equivalent to including an IMPLICIT NONE statement in each program
unit of your source file: no implicit typing isin effect over the sourcefile.

When - ni n is specified, standard implicit typing rules are in effect.

-[N]JINFO
Display Informational Messages
Compile only. Default: - ni nfo

Specify -i nf o todisplay informational messages at compiletime. Informational messages
include such things as the level of loop unrolling performed, variables declared but never
used, divisions changed to multiplication by reciprocal, etc.

-[NJINLINE [(arg[,arg[,...]])]
Inline Code
Compile only. Default: -ninline

Specify -inline to cause user-defined proceduresto beinserted inline at the point they are ref-
erenced in the calling code. This option only affects code whichisin the same sourcefile as
the calling procedure. Intrinsic functions, modul e proceduresand internal proceduresare not
inlined.

Multiple arguments are separated by commas. At least one argument must be present.

If argisanumber, any user defined procedure with total lines of executable code smaller than
argisinlined. Thisargument may only appear once in the argument list.

If argisanumber with theletter capital “K” appended, arrayswhich have asizelessthanarg
kilobytes areinlined. Inlining arrays can enhance the optimization abilities of the compiler.
This argument may only appear once in the argument list.

If arg is aprocedure name, or comma separated list of procedure names, the named proce-
dures areinlined.

If arg isabsent, all procedures having fewer than 30 lines of code and all local dataare
inlined.

Use of the -inline option may cause long compile times, and may lead to very large
executables.

LF Fortran Express User’'s Guide

Compiler and Linker Options

-[N]LI
Lahey Intrinsic Procedures
Compile only. Default: -1 i

Specify - nl i to avoid recognizing non standard Lahey intrinsic procedures.

-LIBPath dir1[,dir2...]
Library Path
Link only. Default: current directory.

The - LI BPATH option allows specification of one or more directories to be searched for
libraries. Notethat all necessary library files must still be called out in the command line.

Example
LF95 main.obj -libpath d:\nylibs -lib mne.lib

-[NJLONG
Long Integers
Compile only. Default: - nl ong

Specify - | ong to extend all default INTEGER variables, arrays, constants, and functions to
64 bit INTEGER. If you use- | ong, all sourcefiles (including modules) in aprogram should
be compiled with - | ong.

-[NJLST [(f =fval[,i =ival])]
Listing
Compile only. Default: - nl st

Specify - | st to generate alisting file that contains the source program, compiler options,
date and time of compilation, and any compiler diagnostics. The compiler outputsonelisting
file for each compile session. By default, listing file names consist of the root of the first
source file name plus the extension .1st.

Y ou may optionally specify f for thelisting file name, ori to list the contents of INCLUDE
files.

fval specifiesthelisting file nameto useinstead of the default. If afilewith thisnameaready
exigts, it isoverwritten. If the file can't be overwritten, the compiler aborts. If the user spec-
ifies alisting file name and more than one source file (possibly using wild cards) then the
driver diagnoses the error and aborts.

ival isone of the characters of the set [YyNn], where Y andy indicate that include files should
be included in the listing and N and n indicate that they should not. By default, include files
are not included in the listing.

Example
LF95 nyprog -1st (i=y)

LF Fortran Express User's Guide 37

Chapter 2 Developing with LF95

38

createsthelisting file mypr og. | st , which lists primary and included source. Note that
-xref overrides-| st.

See also
“-[NIXREF [(f=fval[,i=ival])]”

-[NO]MAP filename
Change map file name
Link only. Default: create a map file with same name as output file

The - MAP option is used to specify a name for the linker map file. The linker map fileisa
text file describing the output load image. The map file contains the following information:

» names of the input object files,
» alist of the segments comprising the program, and
» alist of the public symbolsin the program.

By default, the linker produces a map file each time a program is linked. The default name
of the map file isthe name of the output file, with its extension changed to . MAP. Any path
information specifying adirectory wherethe output fileisto be placed al so appliesto the map
file.

The - MAP option renames or relocates the map file. The option takes a single argument,
which isthe path and name of the map fileto be produced. If no path information is specified
in the map file name, then it is placed in the current directory.

The linker can be prevented from producing amap file with the - NOVAP option. The option
takesno arguments. The- NOVAP option isuseful to makethelinker run faster, since no time
is spent writing amap file. The option is also agood way to save disk space, because map
files can be quite large.

Examples
LF95 noe.obj larry.obj curly.obj -map stooges. nuk
LF95 hel |l 0. obj -nonmap

-INJIMAXFATALS number
Maximum Number of Fatal Errors
Compile only. Default: - maxf atal s 50

Specify - maxf at al s tolimit the number of fatal errors LF95 will generate before aborting.
If no argument is specified, the driver will abort with an error message.

If - nmaxf at al s is specified, no argument is allowed.

LF Fortran Express User’'s Guide

Compiler and Linker Options

-ML {bc| bd | fc|If90 | I1f95 | msvb | msvc | winapi }
Mixed Language
Compileand Link. Default: -ml 1 f95

Specify the- m option if your code callsor is called by code written in another language or
if your codewill call proceduresin DLLs created by LF95. - m affects name mangling for
procedurenamesinDLL _IMPORT, DLL_EXPORT, andML_EXTERNAL statements. See
" Mixed Language Programming” on page 53 for more information.

Use bc for Borland C++; bd for Borland Delphi; nsvb for Microsoft Visual Basic; nsvc
for Microsoft Visual C++; f ¢ for Fujitsu C; LF95 for LF95; LF90 for LF90; and wi napi
for accessing the Windows API directly.

-MLDEFAULT {bc|bd |fc|If90| If95 | msvb | msvc | winapi }
Mixed Language Default
Compile only. Default: -l default |95

Specify the -mldefault option to set the default target language name decoration/calling con-
vention for all program units. Usethe -ml option to alternatively affect name mangling only
for procedure namesin DLL_IMPORT, DLL_EXPORT, and ML_EXTERNAL statements.

Use bc for Borland C++; bd for Borland Delphi; nsvb for Microsoft Visual Basic; nsvc
for Microsoft Visual C++; f c for Fujitsu C; LF95 for LF95; LF90 for LF90; and wi napi
for accessing the Windows API directly.

-MOD dir1[;dir2..]
Module Path
Compile only. Default: current directory

Specify - mod dir to instruct the compiler to search the specified directory for previousy
compiled LF95 modulefiles (. MOD). If source code containing a moduleis being compiled,
themodule. MOD and . OBJ fileswill be placed in the first directory specified by dir.

When a program that uses a moduleislinked, the modul€e's object file (or library name) must
be provided on the command line. See” Linking Fortran 95 Modules’ on page 49 for more
information and examples.

Example
LF95 nodprog nod. obj ot hernod. obj -nod ..\ nods;..\othernods

In this example, the compiler first searches. . \ nods and then searches. . \ ot her nods.
Any module and modul e object files produced from modpr og. f 90 are placed in . . \ nods.

-NOLOGO
Linker Banner
Link only. Default: show linker logo

Suppress the LINK version and copyright message.

LF Fortran Express User's Guide 39

Chapter 2 Developing with LF95

40

{-00|-01|-02}
Optimization Level
Compile only. Default: - o1

Specify - 00 to perform no optimization. - o0 isautomatically turned on when the - g option
or the - chk option is specified. see“-[N]G” on page 35

Specify - 01 to perform optimization of object code.

Specify -02 to perform additional optimizations. This optimization level implements full
unrolling of nested loops, loop splitting to promote |oop exchange, and array optimizations.
Use of the -02 option may significantly impact compilation speed. Use the -unroll option to
limit the level of loop unrolling.

-O filename
Object Filename
Compile only. Default: name of the source file with the extension . OBJ

Specify - o filename to override the default object file name. The compiler produces an
object file with the specified name. If multiple source file names are specified explicitly or
by wildcards, - 0 causesthe driver to report afatal error.

-OUT filename
Output Filename
Link only. Default: the name of the first object or sourcefile.

If - out isnot specified, the output file is not automatically placed in the current directory.
By default it is placed in the same directory asthefirst source or object filelisted on the com-
mand line.

Thisoption takes asingle argument, which isthe path and name of the output file. If filename
contains no path information, the output file is placed in the current directory.

If the file extension . EXE is specified, an executable file will be created. If no extensionis
specified with the - ndl | option (default), the . exe extension is assumed.

If thefileextension. dl | isspecified, adynamic-link library will be created. If no extension
is specified with the-dl | option, the. dI | extension is assumed.

If thefile extension . LI Bis specified, and the specified library file does not exist, it will be
created. If the specified library already exists, it will be updated.

Examples
LF95 hel l 0. obj -out d:\LF95\hell 0. exe
LF95 mmi n. obj -out naintest

-INJPAUSE
Pause After Program Completion
Compile only. Default: - npause

LF Fortran Express User’'s Guide

Compiler and Linker Options

Specifying - pause will cause the executable program to wait for a keystroke from the user
at program completion, before returning to the operating system. This option can be used to
keep a console window from vanishing at program completion, allowing the user to view the
final console output. If - npause is specified, the console window will vanish at program
completion if the program isinvoked from Windows Explorer or the Start menu, or if the
console is generated by a Windows GUI application.

See also
-WIN and -WINCONSOLE

-[N]JPCA
Protect Constant Arguments
Compile only. Default: - npca

Specify - pca to prevent invoked subprograms from storing into constants. The -pca option
will silently protect constant arguments and does not produce any warnings.

If -pcais specified in conjunction with -chk (@), the action of -chk (a) is overridden by the
action of -pca. Inthis case, no error is generated when a dummy argument that is associated
with a constant actual argument is assighed a new value in the subprogram.

Example
call sub(5)
print *, 5
end
subroutine sub(i)
=i+ 1
end
This example would print 5 using - pca and 6 using - npca.

-INJPREFETCH [{ 1| 2}]
Generate prefetch optimizations
Compile only. Default: - nprefetch

Prefetch optimizations can improve performance on systems which support prefetch instruc-
tions, such as Pentium |11 and Athlon systems.

The prefetch 1 option causes prefetch instructions to be generated for arraysin loops. The
prefetch 2 option generates optimized prefetch instructions. Because Pentium 4 chipsimple-
ment prefetch in hardware, the use of - pr ef et ch can adversely affect performance on those
systems. Performance will be program dependent. Try each prefetch option (- npr ef et ch,
-prefetch 1,or-prefetch 2)todeterminewhich worksbest with your code. The

- pr ef et ch option will be ignored if - 00 or - g are used.

Please note: code generated with -prefetch is not compatible with processors made before the
Pentium 111 or Athlon.

LF Fortran Express User’s Guide 41

Chapter 2 Developing with LF95

42

-IN]JPRIVATE
Default Module Accessibility
Compile only. Default: - nprivate

Specify - pri vat e to change the default accessibility of module entities from PUBLIC to
PRIVATE (see PUBLIC and PRIVATE statements in the L anguage Reference).

-INJQUAD
Quadruple Precision
Compile only. Default: - nquad

Specify - quad to extend all double-precision REAL and double-precision COMPLEX vari-
ables, arrays, constants, and functionsto 128 bit REAL and COMPLEX respectively.
Specifying - quad forces- dbl , sousing - quad causesthe precision of all REAL variables
to be doubled.

If you use - quad, all sourcefiles (including modules) in a program should be compiled with
- quad. Specifying - quad will usually result in significantly slower executables. All excep-
tionsaretrapped by default. Thisbehavior can be overridden using the NDPEXC subroutine
or the ERRSET service subroutine (see the file ReadMe_Service Routines.txt).

-[N]SAV
SAVE Local Variables
Compile only. Default: - nsav

Specify - sav to save local variablesin between subprogram invocations. - nsav causes
local variables to be stored on the stack, and their valueis not retained in between subpro-
gram invocations. - sav isequivalent to having a SAVE statement in each subprogram
except that - sav does not apply to local variablesin arecursive function whereasthe SAVE
statement does. Specifying - sav will cause your executable to run more slowly, especially
if you have many procedures. Specifying - nsav may sometimes require more stack space
than provided by default (see ” -STACK reserve :commit]” on page 42).

-[n]SSE2
Optimize using streaming SIMD extensions
Compile only. Default: - nsse2

Specify -sse2 to optimize code using the streaming SIMD (Single Instruction Multiple
Data)extensions. This option may only be specified if -tp4 is also specified.

-STACK reserve[:commit]
Stack Size
Link only. Default: - st ack 1000000h

The - STACK option specifies the size of the stack areafor a program. The option must be
followed by anumeric constant that specifiesthe number of bytesto be allocated to the stack.

LF Fortran Express User’'s Guide

Compiler and Linker Options

reserve is the maximum size of the stack
commit is the increment used when increasing the stack size during runtime

A space must appear between the option and reserve.

If astack segment isalready present in the program, then the - STACK option changesthe size
of the existing segment. The linker will only increase the size of the existing stack area. If
an attempt is made to decrease the size of the stack area, the linker issues an error.

LF95 does not allocate local variables on the stack except in these cases:

* Procedures with RECURSIVE keyword
* Procedures with the AUTOMATIC statement/attribute

The LF95 compiler does not have a compiler option to output the required stack size.

A program will not necessarily allocate the maximum amount of stack at thetimeitisloaded
into memory. If it needs more stack during execution, it will dynamically increase the stack.

If your program exceeds the maximum amount of stack at runtime, increase the stack size
with - STACK. Notethat somerecursive procedures and fileswith large arrays compiled with
- nsav can use very large amounts of stack.

Examples
LF95 hel | 0. obj -stack 2000000
LF95 howdy. obj -stack 2000000: 10000

-[NJSTATICLIB

Static or Dynamic Linking of Fortran Runtime Libraries
Link only. Default: -staticlib

Specify - nst at i cl i b to dynamically link an executable or DLL with the Fortran runtime
librariesin DLL form.

Specify - st at i cl i b to statically link the Fortran runtime libraries with your executable or
DLL.

-[N]STATICLINK
Static Link
Compile only. Default: - nst aticl i nk

Specify -st at i cl i nk with-wi nand-m tolink statically with code produced by another
supported language system. See” Satically linked Fortran and C applications’ on page 58
for more information.

[NJSTCHK

Stack Overflow Check
Compile only. Default: - st chk

LF Fortran Express User's Guide 43

Chapter 2 Developing with LF95

44

Specify - nst chk to cause the compiler not to generate code for stack overflow checking.
Though your program may execute faster, the stack is not protected from growing too large
and corrupting data.

-[IN]JSWM msgno
Suppress Warning Message(s)
Compile only. Default: - nswm

To suppress a particular error message, specify its number after - swm

Example
-swm 16, 32
This example would suppress warning messages 16 and 32. To suppress all warnings, use

- Nw.

{-TP|-TPP | -TP4}
Target Processor

Compile only. Default: set oninstallation

Specify - t p to generate code optimized for the Intel Pentium or Pentium MM X processors,
or their generic counterparts.

Specify - t pp to generate code optimized for the Intel Pentium Pro, Pentium 11, Pentium 111,
or Celeron processors, or their generic counterparts.

Specify -tp4 to generate code optimized for the Intel Pentium 4 processors.

Please note:

Code generated with -tp4 is not compatible with processors made previous to the Pentium 4.

Code generated with - t pp is not compatible with processors made earlier than the Pentium
Pro.

-INJTRACE
Location and Call Traceback for Runtime Errors

Compileand Link. Default: -trace

The- t r ace option causesacall traceback with procedure names and line numbersto be gen-
erated with runtime error messages.

LF Fortran Express User’'s Guide

Compiler and Linker Options

-INITRAP [d][i][o][u]
Trap NDP Exceptions
Compile only. Default: -ntrap

The- t r ap option specifies how each of four numeric data processor (NDP) exceptions will
be handled at execution time of your program.

Table 4: NDP Exceptions

NDP Exception Option Argument

Divide-by-Zero d

Invalid Operation i

Overflow 0

Underflow u

Specify -t rap with any combination of d, i, o, and u toinstruct the NDP chip to generate
aninterrupt when it detectsthe specified exception(s) and generate an error message. At least
one argument must be specified when the - t r ap option is used.

Note that the zero divide exception for two and four byteintegersis always handled by hard-
ware, and is not affected by the trap option.

Notethat trapping cannot be disabled when - quad is specified, except by usingtheNDPEXC
subroutine or the ERRSET service subroutine (see the file ReadMe_Service Routines.txt).
-[NJUNROLL [(limit)]

Compile only. Default: - unrol |

Loop unrolling
Specify -unroll (limit) to control the level of loop unrolling.

limitisanumber inthe range 2 < limit < 100 enclosed with parenthesis, and denotes the max-
imum level of loop expansion.

If limit is omitted, the value of limit is determined by the compiler.

Note that -O0 causes -nunroll to be sent to the compiler by default, but this can be overridden
by specifying -OO0 -unroll.

-[NJVARHEAP [(size)]

Compile only. Default: - nvar heap

Place local variables on heap
Specify -varheap to cause local variablesto be allocated on the heap rather than on the stack.

LF Fortran Express User’s Guide 45

Chapter 2 Developing with LF95

46

sizeisanumber greater than 4095 enclosed in parenthesis. It isthe minimum variable sizein
bytesthat will be placed on the heap. Variables smaller than size bytes are not placed on the

heap.
If sizeis omitted, it defaults to 4096.
Use the -varheap option when creating programs that have large local arrays. If you notice

that increasing the size of alocal array causes a stack overflow, using -varheap may aleviate
this condition.

Note that the -varheap option does not apply to variables having the SAVE attribute, which
includes initialized variables.

-VERSION
Display Version, Copyright and Registration Information
Disables compile and link. Default: none

The - ver si on option causes the compiler version, copyright and registration information
to be printed. Any other options specified on the command line are ignored.

-INJW
Compiler Warnings
Compile only. Default: - w

Specify - nwto suppress compiler warning and informational messages.

-WARN, -FULLWARN

Linker Warnings
Link only. Default: no warnings

The linker detects conditionsthat can potentially cause run-time problems but are not neces-
sarily errors. LF95 supports two warning levels. -warn, and - f ul | war n.

-war n enables basic linker warning messages.
- f ul I war n provides the maximum level of warning and informational messages.
-INJWIDE

Extend width of fixed source code
Compile only. Default: - nwi de

Using the -wide option causes the compiler to accept fixed form source code out to column
255. The default is to accept code out to column 72

-WIN or -WINCONSOLE
Windows
Compile and link. Default: - wi nconsol e

LF Fortran Express User’'s Guide

Compiler and Linker Options

Specifying - wi nconsol e will create aconsole mode application. A Windows console will
be created if the program isinvoked from Windows Explorer, amenu selection, or aprogram
icon, and it will disappear after program completion unlessthe - pause option is specified.
If the program is invoked from the command line of an existing console, all console 1/0 will
be performed within that console.

Specifying - wi n will create aWindows mode application. Under Windows 9x, console |/O
isnot permitted if the - wi n option was specified. Console I/O with - wi n isalowed if your
program is running under a newer Windows operating system. If your program reads from
or writes to standard output, a console will be created and will disappear upon program
completion.

See also
-[N]JPAUSE

-INJ]WO
Warn Obsolescent
Compile only. Default: - nwo

Specify - wo to generate warning messages when the compiler encounters obsol escent For-
tran 95 features.

-INIXREF [(f =fval[,i =ival])]
Cross-Reference Listing
Compile only. Default: - nxr ef

Specify -xref to generate cross-reference information. Thisinformation is shownin the list-
ing file in addition to the information that the -Ist option would provide. Note that -xref
overrides -Ist. By default, cross reference file names consist of the root of the source file
name plus the extension . | st .

Y ou may optionally specify f for thelisting filename, ori to list the contents of INCLUDE
files.

fval specifiesthelisting file nameto useinstead of the default. If afilewith thisnameaready
exigts, it isoverwritten. If the file can't be overwritten, the compiler aborts. If the user spec-
ifies alisting file name and more than one source file (possibly using wild cards) then the
driver diagnoses the error and aborts.

ival isone of the characters of the set [YyNn], where Y andy indicatethat include files should
be included in the listing and N and n indicate that they should not. By default, include files
are not included in the listing.

Example
LF95 nyprog -xref(i=y)

creates the crossreferencefile nypr og. | st and outputs cross reference information for the
sourcefile.

LF Fortran Express User’s Guide 47

Chapter 2 Developing with LF95

Linking

48

See also
-[N]JLST

-[N]JZERO
Include Variables Initialized to Zero
Compile only. Default: - zero

Specifying - zer o will cause all variableswhich have been explicitly initialized to zero to be
given initialization valuesin the object file.

ues in the object file, but to be initialized at load time. Thiswill cause object files created
with - nzer o to potentially be much smaller.

Note that specifying the -CHK (u) option will diagnose undefined variables that are not
explicitly initialized or assigned by your Fortran code, even when - zer o is specified.

-[N]JZFM
Enable zero flush mode for SSE2 instructions
Compile only. Default: - nzf m

Specify -zfm to enable zero flush mode for SSE2 instructions. This option may only be spec-
ified if -sse2 and -tp4 are also specified.

Note that using -zfm will disable trapping for floating underflow. If an underflow condition
occurs during execution of an SSE2 instruction, the affected variable is set to zero. If this
behavior presents a problem, use the -nzfm option to guarantee that the underflow exception
isthrown.

Linking an application should always be done under the control of the LF95 driver; it is not
necessary to separately invoke LI NK. EXE. Linking will occur automatically, aslong asthe
- c optionisnot specified. Any combination of source, object, library, and resourcefiles can
be provided on the LF95 command line, and LF95 will first compile files using the Fortran
or resource compiler, depending on the extension of the specified file, and then invoke the
linker.

During the link phase, the driver submits object files, object file libraries, and compiled
resourcefilestothelinker. Thelinker readsindividual object filesand libraries, resolves ref-
erences to external symbols, and writes out a single executablefile or dynamic link library.
The linker can also create a map file containing information about the segments and public
symbolsin the program.

LF Fortran Express User’'s Guide

Link Environment Variables

Link Environment Variables

LINK

The linker will examine the LINK environment variable, and will use any linker
optionsit finds. If any conflicting options are specified on the command line, they
will override those in the environment variable.

LIB

The linker will examine the LI1B environment variable, and will use any path infor-
mation it finds when searching for libraries or object files.

Additional Linker Options

In addition to the link options described in the above section, Mi crosoft-specific link options
which are not documented here may be used on the LF95 command line. These options
should be specified with a hyphen (-), not aslash (/) and are sent to the linker unmodified.
Thelinker is fully documented on Microsoft’s web site at:

http://msdn.micr osoft.com

Linking Fortran 95 Modules

An object file that is created when compiling a module is treated like any other object file.
When linking a program that uses amodule, the modul €' s object file must be provided to the
linker along with the rest of the program. This can be done in one of several ways:

 If the module was already compiled, the object file can be provided along with the
other filenames that comprise the program at the time the program is linked.

» If several modules are being used, their object filesmay be placed in astatic library,
and the library name can be supplied when linking.

» The module source can be compiled and linked at the same time as the other source
files that make up the program. This can be done by specifying all the source that
makes up the program on the LF95 command line without specifying the -c option.
If thisisdone, the module sourcefiles should appear on the command line before any
source files that use the module, and the executable name should be specified using
the -out option.

Object File Processing Rules

Object files are processed in the order in which they appear on the command line. If an
object file has no path information, it is searched for first in the current directory, and thenin
any directorieslisted in the LIB environment variable.

LF Fortran Express User's Guide 49

Chapter 2 Developing with LF95

Linking Libraries
No special switch isneeded to indicate that alibrary isto belinked, the driver isableto infer
that thefileisalibrary dueto the .lib extension. A library should be specified by listing the
library file name with the .lib extension on the command linein the same way that a source
or object file is specified.

Libraries are searched in the order in which they appear on the LF95 command line. If mul-
tiplelibraries contain the same object, thefirst object encounteredislinked, and any duplicate
objects in subsequent libraries are ignored.

If alibrary fileis specified without path information, the linker looks for it in the following
order:

1. Inthe current working directory
2. Inany directories specified with the - LI BPATH option.
3. Inany directories specified in the LIB environment variable.

Recommended Option Settings

50

Ifanl f 95. fi g fileexistsin the current directory, examine its contents to insure that it con-
tains the desired options.

For debugging, the following option settings will provide an increased level of diagnostic
ability, both at compile time, and during execution:

-chk -g -trace -info

The - pca option may be additionally be used to check for corruption of constant arguments.
If the results are correct with - pca but bad with - npca aconstant argument has been
corrupted.

For further analysis during development, consider specifying any of the following options:
-ap -chkglobal -f95 -Ist -sav -wo -xref

(Note: Specifying - chkgl obal or-chk (x) must be used for compilation of all files of the
program, or incorrect results may occur.)

For production code, we recommend the following option settings:

-nap -nchk -nchkglobal -ndal -ng -0l -npca -nsav -nstchk
-ntrace

Use-tp, -tpp, or -tp4 depending on your preferred target processor.

Note
* Useof -t pp will requirethat the program be run on aPentium pro processor or later.

» Useof -t p4 will require that the program be run on a Pentium 4 processor or later.

LF Fortran Express User’'s Guide

Recommended Option Settings

For additional optimization, experiment with the - nprefetch, -prefetch 1or
-prefetch 2 optionsand select the one which provides the best performance.

If the program performs many 1/O operations, consider tuning the blocksize with the -block
option.

Programs may be tuned with the -02 and the -inline option to increase optimization and to
inline code and data.

If the target processor is a Pentium I11 or Athlon, consider experimenting with the
-nprefetch, -prefetch 1or-prefetch 2 optionsto select the one which provides
the best performance.

If the target processor is a Pentium 4, consider tuning with the - sse2 and - zf moptions.

If optimization produces radically different results or causes runtime errors, try compiling
with - i nf o to see exactly which steps are being taken to optimize. The- i nf o option also
generates warnings on sections of code that are unstable and therefore may cause problems
when optimized. A common example of such codeisan IF statement that compares floating-
point variables for equality. When optimization seemsto alter the results, try using the - ap
option to preserve arithmetic precision while still retaining some optimization.

LF Fortran Express User’s Guide 51

Chapter 2 Developing with LF95

52 LF Fortran Express User’s Guide

Mixed Language
Programming

Mixed language programming is the process of melding code created by different program-
ming languages into an executable program. There are two possible waysthat this might be
accomplished: by creating object files with different compilersthat are linked into asingle
executable (static linking); or by creating adynamic link library with one language, and call-
ing procedures from the library using the other language (dynamic linking). Static linking
mixes the different language parts into a single executable program which is self contained.
Dynamic linking keeps the different language parts separate, and resultsin two separate enti-
ties, aDLL created with one language, and an executable created with the other language.

Regardiess of the method chosen to create a mixed language application, two basic problems
need to be overcome by the programmer in order to be successful:

Thefirst problem involves how each language system namesits procedures, and how
names from one language system can be recognized by the other language system.
Each procedure needs to know how the other is named, so that each can call and be
called by the other within the execution environment. If the translation between the
different naming conventionsis not properly done, the programmer will not be able
to link the different program parts together, because linker errors concerning unre-
solved symbols will occur. Resolving the naming problem involves declaring any
Fortran procedure names that are to be called from another language, declaring the
other language procedure namesthat will be called in Fortran, and telling L F95 what
calling convention is being used at compile time with the- ml compiler option. If a
DLL isbeing used, a“translation” between the exported DLL procedures and how
Fortran declares the procedures is provided in the form of an import library.

LF95 code that calls or is called by another language makes the name available by
giving it the DLL_| MPORT, DLL_EXPORT or M_._EXTERNAL attribute. The

DLL_I MPORT attribute is used when calling a procedure fromaDLL. The
DLL_EXPORT attribute is used to make a procedure name externally available when
creating aFortran DLL. The M._EXTERNAL attribute is used to make a procedure
from another language available to Fortran or making a Fortran procedure available

LF Fortran Express User’s Guide

53

Chapter 3 Mixed Language Programming

to be called from another language when static linking. At compilation time, any
procedure names having one of these attributes are ‘ decorated’ to match the calling
convention specified by the - ML option.

» Secondly, in order to be useful, the procedures need to be able to pass information
back and forth in away that both can understand and utilize. Thisinvolvesthe pass-
ing of arguments to a subroutine or function, passing a function result between
language systems, and how basic datatypesareinterpreted by each language system.
If arguments are not passed or interpreted correctly, the result can be unpredictable,
and can range from nonsense answers to the program crashing with an “illegal oper-
ation” message. The arguments passing problem is addressed for each supported
language system, described in subsequent sections.

Dynamically linked applications

54

A dynamically linked application consists of two parts: a separately created dynamic link
library (DLL), and an executable program which referencesthe DLL. A DLL isacollection
of subprograms packaged together as an executable file, not alibrary file. Eventhoughitis
intheform of an executable, aDLL cannot run onitsown. The functionsand subroutinesin
aDLL arecalled from a. EXE file that contains a main program.

With LF95 you can create 32-bit DL L sfor use with the language systemsin the tabl e bel ow.
Console /O in the Fortran code is not recommended in Windows GUI applications, but just
about everything else that is supported under Windows will work. Calls can be made from
Fortran to Fortran, from Fortran to another language, and from another language to Fortran.
Note that issuing a STOP statement from within a Fortran DLL will cause the entire program
to terminate. If you are calling DLL procedures from alanguage system other than L F95,
please refer to that language system’s DLL documentation for more information.

Supported language systems

Lahey/Fujitsu Fortran 95 supports DLL calling conventions for the following languages
systems:

LF Fortran Express User’'s Guide

Declaring calling conventions

Table 5: Compiler Support for Lahey DLLs

Language System Version
Lahey/Fujitsu LF95 5.0 and later
Lahey LF90 2.01 and later
Borland C++ 5.0 and later
Borland Delphi 2.0 and later
Microsoft Visual C++ 2.0 and later
Microsoft Visual Basic | 4.0 and later

Declaring calling conventions

In order to reference a procedure across a DLL interface, the LF95 compiler must be
informed of the procedure name to be exported, and given a calling convention for the exter-
nal namesin your DLL. The procedure names that will be externally available are defined
with the DLL_EXPORT and DLL_| MPORT statements (see “DLL_EXPORT Satement” and
“DLL_IMPORT Satement” in the LF95 Language Reference). Please note that procedure
names appearinginaDLL_EXPORT or DLL_| MPORT statement are case sensitive (unlike the
Fortran naming convention, which ignores case). DLL_EXPORT is used to define an exter-
nally available DLL procedure, and DLL_| MPORT is used when referencing a DL L
procedure. The calling convention is defined with the use of the - M. compiler option. You
cannot mix - m optionsin asingleinvocation of LF95. If you need to reference DLLsfrom
multiple languages you can do so by putting the references in separate source files and com-
piling them separately.

LF Fortran Express User’s Guide 55

Chapter 3 Mixed Language Programming

56

Table 6: -ML Options

Option Compiler

-m 195 Lahey/Fujitsu Fortran 95

-m 190 Lahey Fortran 90

-m bc Borland C++

-m bd Borland Delphi

-m nmsvc Microsoft Visual C++

-m nmsvb Microsoft Visual Basic

-m wi napi Windows API functionsinvoked directly from Fortran

LF95 can build DLLs callable from Microsoft Visual Basic, however, Microsoft Visua
Basic does not build DLLscallable by LF95. Assembly procedures may be called from For-
tran procedures, however the use of DOS interrupts is not supported.

Building Fortran DLLs

When you create a Fortran DL L, you must indicate the procedures that you want to export
from the DLL with the DLL_EXPORT attribute. The procedures may be subroutines or func-
tions. When mixing languages, the function results must be of type default INTEGER,
REAL, or LOGICAL. The case of the name asit appearsin the DLL_EXPORT and

DLL_I MPORT statementsis preserved for externa resolution except whenthe-m | f 90
option isused; within the Fortran code the case isignored, i.e., Foo isthe same as FOO. Note
that the compiler allows you to build your DLL from multiple. OBJ files.

Example code
function hal f(x)

integer, dll_export :: half ! nane is case-sensitive
integer :: X
hal f = x/2

end

The code must be compiled using one of the options shown in Table 6, “-ML Options,” on
page 56. Whenthe-dl | option specified, aDLL is created and a Microsoft-compatible
import library is generated.

Example build command
1f95 -dll -win -m nsvc hal f.f90

LF Fortran Express User’'s Guide

Building Import Libraries

The above command createsthefileshal f. dl | andhal f. | i b which are compatiblewith
Microsoft Visual C.

Building Import Libraries

A Microsoft-compatibleimport library is automatically generated whenever LF95 is used to
createaDLL. When an LF95 program that callsaDLL islinked, a Microsoft-compatible
import library must be provided. Usually, the vendor that suppliesthe DLL will aso provide
a Microsoft-compatible import library. Additional information on import libraries can be
found in Chapter 5, Library Manager under theheading” Creatingimport libraries’ onpage
112.

Building import libraries from object files

If the user isbuilding anon Fortran DLL on sitefor use with LF95, and a Microsoft-compat-
ibleimport library is not created, an import library can be generated from the object files
using LI B. EXE. Doing this entails making a definition file which contains the names of the
exported procedures, and running LI B with the following command:

LI B / def: defile.def filel.obj file2.o0bj / out : implib.lib

Where:

defile.def is the name of the definition file. Lahey provides a utility “ MAKEDEF.EXE” to
generate definition filesgivenaDLL. Alternatively, the DUMPBI N utility can be used to list
exported symbols from the DL L ; then the definition file can be created by hand. Note that
any export that appearsin the definition file must be present in the object file, otherwise an
unresolved reference will occur when the LI B command is executed. If this happens, itis
usually sufficient to remove the unresolved reference from the definition file.

filel.obj and file2.obj are object files that were used to build the DLL.
implib.lib is the name of the import library to be produced.

Building import libraries when no object file is available

Occasionaly, the situation occurswhen only aDLL isavailable, without animport library or
object files. If theuser knowshow to call the DLL procedure from Fortran, animport library
can be generated using a stub program. A stub program is a skeleton that contains function
or subroutine statements including any argument calling sequences, argument declarations,
a DLL_EXPORT statement, and end statement, but no other source code - much like a proce-
dure would appear inside an interface block. The stub fileis compiled to create an LF95
object file, using an appropriate- ml option, and-c. Once the stub object file is created,
theimport library can be generated using theinstructionsin the preceding section: “ Building
import libraries from object files’. During execution of the LI B command, a warning con-
cerning duplicate symbols may appear, if a non Microsoft convention is used, but it can be
disregarded. Notethat- m | f 95 should never be usedto createimport librariesfrom stubs.
Codethat callsthe DLL should be compiled using the same- n1 option that was used to com-
pilethe stub file. Note that the definition file that is used when creating the import library

LF Fortran Express User’s Guide 57

Chapter 3 Mixed Language Programming

should only contain procedure names that appear in the stub file, otherwise unresolved refer-
ences will occur when the LI B command is executed. An example of creating import
libraries using stubs appearsin the EXAMPLES\ M X_LANG\ BD directory.

Building non Microsoft import libraries for Fortran DLLs

If the user wishesto build an import library for aFortran DLL that is called from alanguage
that does not accept Microsoft-compatible import libraries, the 3rd party language will usu-
ally provide a method of generating a compatible import library, such as Borland's

| MPLI B. EXE. In some cases, the 3rd party linker may provide commands that enable DLL
references to be resolved. Consult the documentation provided with the 3rd party compiler
and toals for instructions on resolving referencesto DLL procedures.

Examples of how to build Fortran callable DLLs from non Fortran languages, and how to
generate Microsoft compatible import libraries from non Microsoft object filesreside in
directories under the EXAMPLES\ M X_LANG directory.

Delivering Applications with LF95 DLLs

When you deliver applications built with LF95 DLLSs, you must include the DLL s and asso-
ciatedimport librariesyou created. At runtime, all of the DLLsmust be available on the path
or in adirectory that Windows checksfor DLLs.

Statically linked Fortran and C applications

58

Statically linked applications consist of a single executable file that contains all of the exe-
cutable code and static datain the program. LF95 can link statically with code produced with
Microsoft Visual C/C++ and Fujitsu C (FCC). LF95isalso static link compatiblewith object
code created with Borland C/C++, but at thistimeit is not possibleto reliably call C runtime
procedures from Borland C.

Much of the following information is provided courtesy of Kenneth G. Hamilton --- 7-Oct-
1998.

Thereare severa reasonswhy you may wishto call aC function from your Fortran code. For
example, you may have the C source code for a function that you need, but not want to take
thetimeto recodeit into Fortran. Or, you may wish to take advantage of some feature of C,
such as unsigned integers, that is not available in Fortran. Additionally, many current oper-
ating systems, including Microsoft Windows, are written in C and the authors have not seen
fit to document the interface to the system servicesin any other language.

Y ou should, however, keep in mind that as a consequence of the extensive use of pointer
arithmetic, C code ultimately cannot be optimized aswell as Fortran. Most examples of fast,
efficient, C code are the result of agreat deal of programmer labor, just asisthe casein
assembly language coding.

LF Fortran Express User’'s Guide

Calling Conventions

Building statically linked applications

Theinformation on building a statically linked program is the same as for dynamic linking
(described above) with the following exceptions:

» Specifythe-staticlinkand-nl optionsontheLF95 command line (do not spec-
ify -dl1).

e UseM._EXTERNAL instead of DLL_| MPORT or DLL_EXPORT in your Fortran source
match the calling conventions of Visual C++ at compiletime. If using Fujitsu C,
calling conventions can be matched by following the instructions in the section
" Calling Conventions’ on page 59.

e You must have a Fortran main program.

e Import librariesare not included on the L F95 command line (import libraries are spe-
cifictoDLLYS).

» Fortran common blocks are aligned on one-byte boundaries. To align your C struc-
tures along one-byte boundaries, use the/ Zp1 option or the pack pragmawith
Microsoft Visual C++. Usethe- a- optionortheopt i on - a- pragmawith Borland
C++. Notethat use of these options should be limited to files or sections of code that
require one-byte alignment; one-byte alignment can cause slower accessto C struc-
ture members.

Thereareseveral examplesinthefollowing sections. The source code, to enable you to expe-
rience mixed-language calling, are in subdirectories exanpl es\ m x_| ang\ f cc\ ex1,
ex2, ex3, etc., below your main LF95 directory. Each oneisaccompanied by afilecalled
GEN.BAT, that will compile and link the sample code. There are additional examples spe-
cific to compiler typeinthe exanpl es\ m x_| ang\ nsvc and exanpl es\ m x_| ang\ bc
directories.

Calling Conventions

When it compiles Fortran source and emits object code, LF95 convertsthe names of all entry
points and external referencesinto all lower case |etters, and attaches an underscore () sym-
bol to both the front and back of each such name. FCC does not change the case of names,

but it does add a leading underscore to each one.

Therefore, if a Fortran program calls a subroutine named "CLOUD", LF95 will generate a
requirement for an external symbol called” cloud ". If the subroutine is written in C, and
compiled by FCC, then the entry point name must be "cloud ". (Note the absence of alead-
ing underscore, which will be added by FCC.)

LF Fortran Express User's Guide 59

Chapter 3 Mixed Language Programming

60

Argument Passing

Traditionally, Fortran compilers arrange for arguments to subroutines to be passed by refer-
ence. Thismeansthat the addressis passed (pushed on the stack, in the case of PCs) and so
the called routine has full access to the variable in the caller, and can read or write to that
location.

C compilers, on the other hand, passsimple (i.e., scalar) variables by value, meaning that the
current value of that variableis pushed, rather than its address. The function that is called
can thusread, but cannot change, the variablein the caller. More complicated objects, such
as arrays and structures, are passed by reference by C compilers. (Confusion over which
symbols represent values, and which addresses, is acommon source of bugsin C programs,
and so you should check your usage carefully.)

Trying to connect a Fortran caller to a C callee thus requires that one bridge these two con-

ventions. It ispossibleto do this either by modifying the Fortran part or the C portion of the
calinginterface. Since LF95 isa Fortran package, in the examplesthat follow wewill leave
the Fortran form alone and modify the C side. Thisessentially meansthat C functions should
be set up so asto expect that all visible arguments are being passed by reference, or "as point-
ers' in the C lingo.

Passing Arrays in C or C++

Because C processes arrays as an array of arrays and Fortran processes arrays as multi-
dimensiona arrays, there are some special considerations in processing a Fortran array.
Excluding a single-dimension array (which is stored the same in C asin Fortran), you will
need to reverse the indices when accessing aFortran array in C. Thereason for thisisthat in
C, the right-most index varies most quickly and in Fortran the left-most index varies most
quickly (multi-dimensional). Inan array of arrays, the columns are stored sequentially: row
1-column 1 isfollowed by row 1-column 2, etc. In amulti-dimensional array, the rows are
stored sequentially: row 1-column 1 is followed by row 2-column 1, etc.

Also note that all C arrays start at 0. We do not recommend that you use alower dimension
bound other than zero (0) as your C code will have to modify the indices based on the value
used. We strongly recommend that you do not use negative lower and upper dimension
bounds!

If the subscript ranges are not known at compile time, they can be passed at runtime, but you
will have to provide the code to scale the indices to access the proper members of the array.

Some sample code may help explain the array differences. Y our Fortran code would look
like:

subroutine test(real _array)

real :: real _array(0:4,0:5,0:6,0:7,0:8,0:9,0:10)
integer :: i,j,k,1,mn,o
do o =0, 10
don=20, 9
do m=10, 8

LF Fortran Express User’'s Guide

Variable Type Correspondence

doi =0, 4
real _array(i,j,k,I,mn,0) = 12.00
end do
end do
end do
end do
end do
end do
end do
end subroutine test

The equivalent C code would look like:

void test(float real _array[10][9][8]1[7]1[6][5][4])
int i,j,k,I,mn,o;
/*
** this is what the subscripts would | ook |ike on the C side
*/
for(o = 0; o < 11; o++)
for(n = 0; n < 10; n++)
for(m=0;, m< 9; m+)
for(l =0; | <8; |++)
for(k = 0; k < 7; k++)
for(j =0;] <6; j++)
for(i =0; i <5; i++)
real _array[o]l[n][mM[I][k][jI[i] = 12.000
return;

}

On the Fortran side of the call, the array argument must not be dimensioned as an assumed-
shape array. You should use explicit shape, assumed size, or automatic arrays.

Variable Type Correspondence

When passing arguments to a subprogram, it is necessary that they match the list of formal
parameters on the entry point. Thefollowing table showswhat various Fortran variabletypes
correspond to in C.

LF Fortran Express User's Guide 61

Chapter 3 Mixed Language Programming

Table7: Variable Type Equivalents

Fortran Type Kind No. C Type
INTEGER 1 char
INTEGER 2 int
INTEGER 4 long

REAL 4 float
REAL 8 double
COMPLEX 4 struct{ float xr, xi;}
COMPLEX 8 struct{ double xr, xi;}
LOGICAL 1 char
LOGICAL 4 long
CHARACTER 1 (none)

The C language allows unsigned integers of variouslengths. Thereisno direct analog of this
in Fortran, however the unsigned integers that can be returned from C can be stored and
dlightly manipulated in Fortran. Fortran cannot perform arithmetic on unsigned integers,
however thisis often unnecessary: one of the most common uses for unsigned integersis as
handles for files, windows, and other objects.

Handles are received, copied, and passed into other routines, but are never subjected to com-
putation. It istherefore possibleto treat a handle assimply an INTEGER of the appropriate
length and there will be no problem. If itis necessary to display the value of ahandleit can
be done in hexadecimal (Z) format, with no loss of information.

Example 1 --- A Simple Subroutine

First, let uslook at the simplest example of a Fortran program calling a C subroutine. The
following main program defines two integers, | and J, and then calls SUB to add them and
return the sum.

62 LF Fortran Express User’s Guide

Variable Type Correspondence

PROGRAM MAI N

integer :: i,j,k

i =12

j = 43

k =0

print *, ‘'Before: i,j,k=",i,j,k
call sub(i,j,k)

print *, "After: i,j,k=",i,j,k
st op

end

Thisisthe subroutine that performs the addition.

void sub_(i,j,k)
int *i, *j, *k;
{
*Kk o= % o+ %)
return;

}

In C, asubroutine isafunction of type "void." Aswe noted earlier, the name of the subrou-
tine must be in lower case letters, with atrailing underscore. Since Fortran normally passes
arguments by reference, the C subroutine must receive them as pointers (hence the "*" in
front of the variable names). ThetypeINTEGER variablesin Fortran aretreated astype"int"
inC.

Example 2 --- Passing Real Arguments
The situation is the same when floaing point arguments are passed. In this example, three
default REAL (KIND=4) arguments are sent to a C subroutine, where they are manipulated.

PROGRAM FLTNMAI N

X = 2.17
y =5.6
z =0.0

print *' X,y,z=",X,y,2
call cmult(x,y, z)

print *,' x,y,z=",X,Y,2z
stop

end

Thisisthe C subroutine, where the REAL (KIND=4) variables are received as pointersto
variables of type "float." If the arguments were REAL (KIND=8), then the C side would
expect them as type "double.”

void cnult_(x,y, z)
float *x, *y, *z;
{
*Z = *xX * Yy + 2.0;
return;

}

LF Fortran Express User's Guide 63

Chapter 3 Mixed Language Programming

64

Example 3 --- Passing CHARACTER Arguments

Passing type CHARACTER variables poses a higher level of complexity. Consider the fol-
lowing main program, which assigns a literal string to A, and then calls CHRCOPY to
duplicate A into B.

PROGRAM CHRMAI N
character*20 a, b
a = 'This is a nessage'
b=""

print *, 'a=',a
print *, 'b=",b
call chrcopy(a,b)
print *, 'a=',&a
print *, 'b=",b
st op

end

When LF95 passestype CHARACTER arguments to a subroutine, it actually sends both the
starting address of the string, plusthe length (which is passed by value). The lengths of any
CHARACTER arguments are treated as hidden arguments to the right of the normal argu-
ment list.

Thus, in thefollowing C subroutine, the argument list consists of four items, even thought we
could see only two inthe Fortran CALL statement. The first two arguments are the character
strings, passed by reference so that they appear here as pointersto variables of type "char.”
(Type"char" in Cisnot atrue string variable, but is rather a one-byte integer.)

Thethird and fourth arguments are the lengths of A and B, passed by value. We can tell that
they are being passed by value here because they are not prefixed by asterisks, but just appear
asplainvariables.

#include <string. h>
voi d chrcopy_(a, b, na, nb)
char *a, *b;
int na, nb;
{
int nmn;
nmin =mna>nb ? nb: na;
strncpy(b, a, nm n);
return;

}

The subroutine first compares the lengths of the two CHARACTER variables, and then
selects the minimum (in case they are different). That becomes the number of charactersto
copy from A to B, and the C library routine "strncpy” is used.

Example 4 --- Passing ASCIIZ Arguments

In early Fortran compilers, character strings were stored as arrays of numeric storage loca-
tions, packed several characters to each word and then terminated by aword or partial word
of zero. Because different types of computer have different word lengths, this "Hollerith"

LF Fortran Express User’'s Guide

Variable Type Correspondence

scheme often led to seriously non-transportablecode. Some computersstored four characters
per word, while others stored five, six, eight, or ten characters per word and so many routines
that performed input or output required drastic reworking when moved from one brand of
computer to another.

When the Basic language was released in the 1970s, it introduced the notion of a special
"string" data type that was independent of the hardware design. This was such agood idea
that it was copied into the 1977 Fortran standard as CHARACTER variables.

Unfortunately, at the same time that Fortran was copying from Basic, C was copying from

Fortran and so currently C compilers still expect character stringsto be stored as an array of
numeric storage locations (usually bytes), terminated by anull. In some cases, you may find
it preferable to pass CHARACTER variables to C by appending anull, so that it looks like
the legacy method expected by the C language. In order to do this, you would change

CALL CSUB(...,ASTR ...)
into
CALL CSUB(...,ASTR/ /CHAR(O),...)

where ASTR isa CHARACTER variable. In this case, however, the Fortran compiler will

make a copy of ASTR with the null attached, and passthat. This means that the subroutine
will not be able to modify the original string since ASTR//CHAR(O) is an expression rather
than avariable, but that may well be desirable.

If you want to allow the subroutine to modify the original string, then you should add the null
into the CHARACTER variable, as shown in the following example.

PROGRAM CHRMAI N
character*20 a, b

a ="'Oiginal text'//char(0)
b =

print *, 'a=',a

print *, '"b=",b

call chrcaps(a,b)

print *, 'a=',a

print *, '"b=",b

st op

end

Hereisa C subroutine that returns B as a capitalized version of A, as required by the main
program.

LF Fortran Express User's Guide 65

Chapter 3 Mixed Language Programming

voi d chrcaps_(a, b, na, nb)
char *a, *b;

int na, nb;
{
char *i, *j;
for (i =a, j =Db; *i 1=0; i++, j++) {
*j = *j;
if (*j >= 97 && *j <= 122) *j -= 32;
}
return;
}

In this case, the copying operation is halted by the appearance of anull (the"*i !=0" clause
inthe"for" statement). Local pointer variables*i and *j are used instead of the onesthat were
supplied by the caller.

Example 5 --- Accessing COMMON Blocks

When LF95 processes COMMON blocks, it modifies them in the same way as it does entry
points. That isto say that ablock named /SAND/ will invisibly become a global object
named"_sand " and this alteration must be dealt with when performing inter-language call-
ing. The secret name of blank COMMON is"_ BLNK__", with two underscoresin front
and behind.

Hereisan example of aFortran main program that suppliesvaluesto some variables that are
in COMMON blocks, one blank and one named.

PROGRAM CWVN_MAI N
integer :: i

real :: x,y,z
conmon /zulu/ X, y

comon z
i =12

X = 4.5

y =0.0

z =8.1

print *, 'Before: i,x,y,z=",i,X,y,z
call ccmm(i)

print *, '"After: i,x,y,z=",i,X,y,2
st op

end

That program calls the following C subroutine:

66 LF Fortran Express User’s Guide

Variable Type Correspondence

extern struct
{

float x, vy;
} zulu_;

extern struct
{

float z;
} _BLNK__;

void ccrm_(i)

int *i;

{
zulu_.y = zulu_.x + (float)(*i);
BLNK.z += zul u_. x;
return;

}

In order to access the COMMON blocks from C, we must define a pair of structures, and
declare them outside of the function body so that they acquire the global attribute and can
connect to the COMMON blocks that the Fortran compiler is going to set up.

Since C prepends an underscore to the global names, the named common /ZULU/, whichis
called"_zulu " inthe object modules, must be called "zulu_" (no leading underscore) in the
C code. Likewise, the blank COMMON, called " _BLNK__" in the object code, is called
" BLNK__" (only oneleading underscore) in C.

Example 6 --- Functions

Calling afunction that iswritten in C, one that returns a val ue (as opposed to a subroutineg),
isfairly ssimple aslong as you make sure that the type of the function in C matches what For-
tran expectsto receive.

Here is an example of aFortran main program that calls several C functions, each of adiffer-
ent type. The argument lists are the same for al the functions: two default integers, but the
return vaue differs.

PROGRAM MAI N

integer :: i,j

i nteger(kind=1) :: k1, iladd

i nteger(kind=2) :: k2, iZ2add

i nteger (kind=4) :: k4, i4add

real (kind=4) :: r4, r4add

real (kind=4) :: r8, r8add

external :: iladd, i?2add, i4add, r4add, r8add

i 12

j 43

ki =0; k2 =0; k4 =0
print *, 'Before: i,j=",i,]j

LF Fortran Express User's Guide 67

Chapter 3 Mixed Language Programming

k1l i ladd(i,j)

k2 i 2add(i,j)

k4 = idadd(i,j)

print *, 'After: k1,k2,k4=",k1, k2, k4
rd4 = rdadd(i,j)

r8 = r8add(i,j)

print *, 'r4,r8=",r4,r8

st op
end

These are the C functions called by the Fortran main. Note that the type of variable for a
function to return is specified in the opening statement, in place of the "void" that was used
in the earlier subroutines.

char iladd_(i,j)
int *i, *j;
{
char k;
k =*i + *j;
return(k);

}

short i2add_(i,j)
int *i, *j;
{
short k;
kK = *i - *j;
return(k);

}

long idadd_(i,j)
int *i, *j;
{
I ong k;
k = *j * *j;
return(k);

}

float rdadd_(i,j)
int *i, *j;
{

float r;
r = (float)(*i) + (float)(*j);
return(r);

}

68 LF Fortran Express User’s Guide

Fortran Calling Fortran DLLs

doubl e r8add_(i,j)

int *i, *j;

{
doubl e d;
d = (double)(*i) / (double)(*j);
return(d);

}

Fortran Calling Fortran DLLs

Even though the same language system is used to create both the DLL and the executable,
the mixed language rules must be observed. Create the Fortran DLL as described in” Build-
ing Fortran DLLS’ on page 56, building withthe-nm | f 95 compile option:

|1 f95 source.f90 -win -dll -m 1195

LF95 buildsthe DLL sour ce. dl | . It also generatesasour ce. | i b file containing defini-
tions needed to link to this DLL.

Next build the Fortran Main with:
1f95 main.f90 -win -m [f95 source.lib

Torunthe program, the DLL must bein the same directory asthe executable, or in adirectory
on the path.

Fortran and C applications

Fortran calling C DLLs

When you create a Fortran procedure that references a C procedure you declare the C proce-
dure name with the DLL_| MPORT attribute in your Fortran code. The procedure may be a
subroutine or function. C functions may only return the Fortran equivalent of default INTE-
GER, REAL, or LOGICAL results.

Example code:

program nain
implicit none
real, dll _inmport :: My_D I _Routine ! case-sensitive
real TloX
Xx = My_D | _Routine()
wite (*,*) x

end program nain

LF Fortran Express User's Guide 69

Chapter 3 Mixed Language Programming

70

Before building the Fortran main program with LF95, you must have a DLL and import
library available. Refer to your C manual for specificson creatingaDLL. If the C compiler
does not create a compatible import library (. LI B file) for the DLL, proceed as described
above, " Building Import Libraries’ on page 57.

If the DLL was created with Microsoft Visual C++, usethe-m nsvc option:
LF95 source.f90 -win -m nsvc -lib dll_src.lib
If the DLL was created with Borland C++, usethe-nl bc option:
LF95 source.f90 -win -m bc -lib dll_src.lib
Wheredll_src. | i b isthe name of the Microsoft compatible import library.

There are examples of calling C DLLsin the directories below LF95' s EXAMPLES/
M X_LANGdirectory.

C Calling Fortran DLLs

Createthe Fortran DLL asdescribed in” Building Fortran DLLS’” on page 56, building with
the-m compile option that matches your C compiler.

To compile your Fortran source for use with Microsoft Visual C++, issue the command:
LF95 source.f90 -win -m nsvc -dl|

This command will causeaDLL called sour ce. dl | to be created, aswell as an import
library called source. | i b.

To compile your Fortran source for use with Borland C++, issue the command:
LF95 source.f90 -win -m bc -dl|

The user will need to run Borland’s | MPLI B. EXE to build theimport library compatible with
the Borland linker. | MPLI B is distributed with the Borland compiler, and is not a part of
LF95.

Onceyou've created the DLL and generated theimport library, use the C language system to
link the associated import library (sour ce. | i b inthe above cases) with your C object code,
and be sure the DLL is available on your system path.

Referencing DLL Procedures
Fortran functions are called from C as functions returning a value.

For exampl e, this Fortran function:

LF Fortran Express User’'s Guide

Passing Data

function dll1(a, a1, i, i1, I, I1)
integer, dll_export :: DLL1
real a, al(10)
integer i, i1(10)
logical I, 11(10)

end function
uses this C prototype:
long foo(long int *i, long int *j);

To reference the above function from your C code, declare it with _st dcal | :

long _stdcall foo(long int *i, long int *j);
In C++, use:
extern "C'" {long _stdcall foo(long int *i, long int *j); };

For a short example, see LF95's EXAMPLES\ M X_LANG MSVC directory (for Microsoft
Visual C++) or LF95's EXAMPLES\ M X_LANG BCdirectory (for Borland C++).

Passing Data

The only ways to pass datato or from a DLL are as arguments, function results, or in files.
LF95 does not support the sharing of data (aswithaCOMMON block) acrossthe boundaries
of aDLL. Arguments may be passed by reference (the default) or by value using either the
CARG or VAL function. See” Argument Passing” on page 60 for more information.

Microsoft Visual Basic Information

Visual Basic calling Fortran

To createaDLL that will work with Microsoft Visual Basic, take Fortran source (without a
main program) and indicate the procedures that you want available in the DLL with the
DLL_EXPORT statement, then invoke the LF95 driver like this:

LF95 source.f90 -win -dlil -m nsvb

Running the Visual Basic Demo
1. Compilethe VBDEMD. F90 file, located in LF95'sM X_LANG. MSVB directory, using
the-dll -win -m msvb options.

2. Ensure that the resulting VBDEMD. DLL residesin adirectory that ison your path.
Failure to do thiswill generally result in an “Error loading DLL” message from the
operating system.

LF Fortran Express User’s Guide 71

Chapter 3 Mixed Language Programming

72

3. Start Visua Basic and open the VBDEMO. VBP project in LF95's
EXAMPLES\ M X_LANG MBVB directory.

4. Run the demo (F5).

Declaring your Procedure in Visual Basic

In your BASIC code, a procedure’ s declaration will be like one of the following examples:

Private Declare Function ny_func Lib "ny_dlI" (ByRef ny_arg As
Long) As Long

Private Declare Sub nmy_sub Lib "nmy_dlI" (ByRef ny_arg As Long)

(seetherelevant section below if anitem onthe argument list iseither an array or ischaracter
datatype). Notethat inthe example above, “ny_dlI | " must specify acomplete path in order
to operate within the Visual Basic Environment.

Passing Character Data in Visual Basic

Character arguments are passed as strings with the length of each string appended at the end
of the argument list.

Character (string) arguments and hidden length arguments must be passed by value, i.e.,
declarethe procedure’ sarguments (actual and hidden) withthe ByVal keyword. Refer tothe
example VBDEMD program. The following restrictions apply:

» Character arguments should be declared as CHARACTER(LEN=*) .

» Fortran functions returning character datato Visual Basic are not supported.

Passing Arrays in Visual Basic

When passing an array from Microsoft Visua Basic you will need to declare the argument
asascalar value in the Basic declaration, and passthe first element of the array asthe actual
argument. Declare the array dummy argument normally in the Fortran procedure. Note that
the default lower bound for arraysin Visual Basicis0, so you may find it helpful to explicitly
declare your Fortran arrayswith alower bound of 0 for each dimension, or explicitly declare
your Basic arrays to have alower bound of 1 (this can be done at the module or procedure
level viathe Opt i on Base statement). Note alsothat arraysof strings cannot be passed from
Visual Basic to LF95.

LF Fortran Express User’'s Guide

Borland Delphi Information

Borland Delphi Information

Delphi Calling Fortran

TocreateaDLL that will work with Borland Del phi, take the Fortran source (without amain
program) and indicate the procedures that you want available in the DLL with the
DLL_EXPORT statement, then invoke the LF95 driver likethis:

LF95 source.f90 -win -dll -nm bd

Running the Delphi Calling Fortran Demo
1. Compilethe BDDEM®. F90 filelocated in LF95's EXAMPLES\ M X_LANG BD direc-
tory usingthe-dl | ,-wi n,and-m bd options.

2. Ensure that the resulting BDDEMX®2. DLL resides either in the current working direc-
tory, or in adirectory that ison your path. Failureto do thiswill generally resultin
an “Debugger Kernel Error” message from the operating system.

3. Start Delphi and open the BDDEMX2. DPR project in LF95's
EXAMPLES\ M X_LANG BD directory.

4. Run the demo (F9).

Fortran Calling Delphi DLLs

Before building the Fortran main program with LF95, you must have a DLL and import
library available. Refer to your Delphi documentation for the specifics on creatinga DLL.
Because Delphi doesnot builda. LI Bfileforthe DLL, and does not create compatibl e object
files, the stub method must be used to create a Microsoft-compatible import library.

See” Building import libraries when no object fileisavailable’ on page57. An example of
linking a Fortran program to a Delphi DLL appears in the EXAMPLES\ M X_LANG BD
directory.

When you create a Fortran procedure that references a Delphi DLL procedure you declare
the Delphi procedure name with the DLL_I MPORT attributein your Fortran code. The proce-
dure may be a subroutine or function. Delphi DLL functions may only return the equivalent
of default INTEGER, REAL, or LOGICAL results.

Example code:

program nain
implicit none
real, dll _inmport :: My_D I _Routine ! case-sensitive
real TloX
x = My_D | _Routine()
wite (*,*) x

end program nain

LF Fortran Express User's Guide 73

Chapter 3 Mixed Language Programming

74

Build the Fortran program using the- m bd option:

LF95 source.f90 -win -m bd -lib dll_src.lib
Wheredll_src. | i b isthe name of the Microsoft compatible import library created by the
stub method.

Running the Fortran Calling Delphi Demo
1. From Delphi, open FO5CALLBD. DPRin LF95's EXAMPLES\ M X_LANG BD
directory.

Build the DLL by pressing Ctrl - F9.
Copy F95CALLBD. DLL to LF95's EXAMPLES\ M X_LANG\ BD directory.
Change to LF95's EXAMPLES\ M X_LANG BD directory.

a ~ WD

Run the batch file RUNFO5CALLBD. BAT. This batch file compiles the Fortran stub
code, generates an import library, and compiles the Fortran main program using the
newly created import library.

6. Theresulting executable, FO5CALLBD. EXE isautomatically run by the batch file.

Declaring your Procedure in Delphi
In your Delphi code, a procedure’s declaration will be like one of the following examples:

function my_LF95 function(var ny_arg: Longlnt) : Longlnt;
stdcall; external ‘ny_dll.dll";

procedure ny_LF95 subroutine(var my_arg: Single); stdcall;
external ‘ny_dll.dll’;

(seetherelevant section below if anitem on theargument list iseither an array or ischaracter
datatype).

Passing Character Data in Delphi

Character arguments are passed as strings with the length of each string appended at the end
of the argument list.

Delphi hastwo kinds of strings: long strings and short strings, where along string can contain
avery large number of characters and its length varies dynamically as needed, and a short
string has a specified length and may contain up to 255 characters. If your character argu-
ment isashort string you should usethevar keyword in your procedure’ s declaration; omit
thevar keyword if your argument isalong string. Refer to the BDDEMO and BDDEMX? pro-
grams to see examples for both of these cases.

As of thiswriting, the following conditions apply:
» Character arguments should be declared as CHARACTER(LEN=*) .

LF Fortran Express User’'s Guide

Passing Arrays in Delphi

e “Long string” character arguments should be treated as| NTENT(I N) .
e “Short string” character arguments may be treated as| NTENT(1 N OUT) .
» Fortran functions returning CHARACTER data to Delphi are not supported.

Passing Arrays in Delphi

Because Delphi processes multi-dimensional arrays as an array of arrays (like C and C++)

and Fortran processes arrays as multi-dimensional arrays, there are some special consider-

ations in processing a Fortran array. Refer to the “Passing Arraysin C or C++” section for
more information.

Calling Fortran DLL’s from .NET Applications

Programscreated using a.NET language dynamically load unmanaged DLL’sat runtime, so
the DLL name and characteristics must be specified in the managed code. When creating a
native Fortran DLL that can be called by a.NET application, compile and link with one of
thefollowing - M options: wi napi, nsvc,|f95,o0rfc. If aversionof LF95 prior tov5.7
isbeing used, the- ml wi napi option should not be specified. DLLs built with the - m
msvb option can be called from VB.NET applications. DLLs built withthe-m options

| f 90, bc, or bd cannot be called from .NET languages.

For aDLL compiled and linked with-nl | f 95, 0r no- nl option, the cdecl calling conven-
tion is used.

For aDLL compiled and linked with-l wi napi ,-nm nsvc,or-nl fc,thestdcall2 call-
ing convention is used.

Fortran function results and argument types must be able to map to .NET variable types.

Example code demonstrating calling Fortran DLL’sfrom .NET languagesexist indirectories
under the EXAMPLES\ M X_LANG directory. These directoriesall contain. NET in the direc-
tory name.

Calling LF95 DLLs from Microsoft C#

For DLL’s using the cdecl convention, declare the Fortran procedure in the C# code using
the following syntax:

[DllImport("dil-name.dll”, CallingConvention=CallingConvention.Cdecl)]
public static extern return-type procedure-name _ (argument-list);

For DLL’susing the stdcall 2 convention, declare the Fortran procedure in the C# code using
the following syntax:

[Dlmport("dll-name.dll")]

LF Fortran Express User’s Guide 75

Chapter 3 Mixed Language Programming

76

public static extern return-type procedure-name (argument-list);

Where:
dil-name.dll is the pathname\file-name of the unmanaged (Win32) DLL.

return-typeis"void" if calling a Fortran subroutine, otherwise the C# equivalent of
the Fortran function return type.

procedure-name is the case-sensitive procedure name. If the cdecl conventionis
used, atrailing underscore must be appended to the procedure name.

argument-list is amanaged code variable list with types mapped to Fortran dummy
argument types; precede pass-by-reference parameters with "ref".

Calling LF95 DLLs from Microsoft Visual Basic .NET

For DLL’s using the cdecl convention, declare the Fortran procedure in the VB.NET code
using the following syntax:

Calling a function:
Class ClassName
<DIlImport("dll-name.dil", CallingConvention:=CallingConvention.Cdecl)> _
Shared Function proc-name_ (arg-list) as return-type
End Function
End Class

Calling a subroutine:
Class ClassName
<DIlImport("dll-name.dll", CallingConvention:=CallingConvention.Cdecl)> _
Shared Sub proc-name_ (arg-list)
End Sub
End Class

For DLLs using the stdcall2 convention, declare the Fortran function in the VB.NET code
using the following syntax:

LF Fortran Express User’'s Guide

Calling LF95 DLLs from Microsoft Visual C++ .NET

Calling a function:
Class ClassName
<DllImport("dll-name.dll", CallingConvention:=CallingConvention.StdCall)> _
Shared Function proc-name (arg-list) as return-type
End Function
End Class

Calling a subroutine:
Class ClassName
<DlIlImport("dll-name.dll", CallingConvention:=CallingConvention.StdCall)> _
Shared Sub proc-name (arg-list)
End Sub
End Class

For DLLscompiled usingthe- m nsvb option, declare the Fortran functioninthe VB.NET
code using the following syntax:

Calling a function:
Class ClassName
Declare Auto Function proc-name Lib "dll-name.dll" (arg-list) as return-type
End Function
End Class

Calling a subroutine:
Class ClassName
Declare Auto Function proc-name Lib "dll-name.dll" (arg-list)
End Function
End Class

Where:
dil-name.dll is the pathname\file-name of the unmanaged (Win32) DLL.

return-typeisthe VB.NET equivalent of the Fortran function return type.

proc-name is the case-sensitive procedure name. If the cdecl conventionisused, a
trailing underscore must be appended to the procedure name.

arg-list isamanaged code variable list with types mapped to Fortran dummy
argument types; precede pass-by-reference parameters with "ByRef".

Calling LF95 DLLs from Microsoft Visual C++ .NET

For DLL s using the cdecl convention, declare the Fortran procedure in the C++ code using
the following syntax:

LF Fortran Express User’s Guide 77

Chapter 3

Mixed Language Programming

[DllTmport("dll-name.dll", CallingConvention=CallingConvention::Cdecl)]
extern "C" return-type procedure-name_ (argument-list);

For DL Lsusing the stdcall2 convention, declare the Fortran procedure in the C++ code using
the following syntax:

[DllTmport("dil-file-name.dll"]
extern "C" return-type procedure-name (argument-list);

Where:
dil-name.dll is the pathname\file-name of the unmanaged (Win32) DLL.

return-typeis"void" if calling a Fortran subroutine, otherwise the C++ equivalent
of the Fortran function return type.

procedure-name is the case-sensitive procedure name. If the cdecl convention is
used, atrailing underscore must be appended to the procedure name.

argument-list is amanaged code variable list with types mapped to Fortran dummy
argument types; precede pass-by-reference parameters with "ref".

Calling the Windows API

LF95 can directly access functions in the Windows API, with some limitations. Y ou will
need to have access to Windows APl documentation and some knowledge of Windows Pro-
gramming in C or C++ to take full advantage of thisfunctionality, since the API is designed
for C and C++.

Complete Windows applications can be written with Lahey Fortran 95 without resorting to
using another language for the user interface. This might not be the best approach for many
people, but examining how to do it can boost one's understanding of the issues, and these
issues can crop up even when creating Windows applications using other approaches.

An example of this approach can be found in LF95's EXAMPLES\MIX_LANG\WINAPI
directory, in the files WINDEMO.F90, WINDEMO.RC, WINDOWS.F90, and
RUNWINDEMO.BAT.

Thefirst step isto compile the file WINDOWS.F90, found in LF95's SRC directory. Then
USE the module WINDOWS H in any procedure that will call the Windows API. WIN-
DOWS.F90 is a Fortran trangl ation of the standard windows header file WINDOWS.H,
which contains definitions for various Windows parameters.

Next declare the API function with the DLL_IMPORT attribute in a type statement, for
example, if you want to call the API function M essageBox:

I NTEGER, DLL_I MPORT :: MessageBoxA
Nameswith the DLL_IMPORT declaration are case sensitive. Elsewhere in your Fortran
program the names of imported procedures are case insensitive.

78 LF Fortran Express User’s Guide

Calling the Windows API

Here are some more things to consider:

Compile your code using the -ml winapi, -win, and -nvsw options.
When caling Windows APl procedures from Fortran you will need to have
DLL_IMPORT statementswith the names of all of the API proceduresyou will use.
These names are case sensitive and you will need to use the correct case in the
DLL_IMPORT statement. Elsewherein your Fortran program code the case for
these procedure names does not matter, though it's a good idea for clarity's sake to
retain the case used in the Windows API. A good place for these DLL_IMPORT
statementsis in the module you create for your parameter declarations.
If you have aresourcefile called MY RC.RC, compileit by adding MY RC.RC to the
LF95 command line. Y ou need toinclude WINDOWS.H (supplied with LF95inthe
SRC directory) in your resource file. LF95's driver will call RC.EXE (the resource
compiler which shipswith LF95 and with various other Windows compilers) to cre-
ate MYRC.RES. Thiswill then be linked with the other objects and libraries you
specified on the command line.
Any new item you create with a#define in your resource file needsto be declared as
an INTEGER parameter in your Fortran source so that it is accessible in the scoping
unit inwhich it isreferenced. Itiscleanest to put all of these parameter declarations
inamodule.
Void API functions must be called as subroutines from Fortran and API functions
which return values must be called as functions from Fortran.
Many of the API functions you call will need to have the letter ‘A" appended to the
function name. This callsthe ASCII (rather than the Unicode) version of the func-
tion. If thelinker givesyou an unresolved external message on an API function you
think you've declared properly, try appending an 'A' to the name. It isagood bet that
API functions that deal with character strings will require the 'A".
API function argumentsthat do not map to Fortran intrinsic types need to be declared
inyour Fortran program. Declare structure argumentsas SEQUENCE derived types.
Declare pointers (to anything, including strings) as INTEGERS.
Whenever you pass a numeric argument use CARG. For example:

call Post QuitMessage(carg(0))
Whenever you pass apointer argument use CARG(POINTER(argument)) instead of
argument. For example:

type (WNDCLASS):: wc

resul t =Regi st er Gl assA(car g(poi nter(wc))
Whenever you pass a pointer to CHARACTER, remember that C requires null-ter-
minated strings. CARG will make a copy of a string and null-terminate it for you.
However, because a copy is made, the original value cannot be changed by the func-
tionyou call. For example:

result = SendDl gl t emMessageA(car g(hwnd), &
carg(l DC_LI ST1, &
carg(LB_ADDSTRI NG, &
carg(0), &

carg(string))

LF Fortran Express User’s Guide

79

Chapter 3 Mixed Language Programming

80

To pass a string you want the function to change, null-terminate the string manually
and then use CARG of the POINTER. Note that you can use CHAR(O) to generate
anull. For example:

character(len=81) :: nystr ! |eave space for trailing null
nystr = trinm(nystr(1:80)) // char(0)
call SoneAPI Routi neA(carg(pointer(mnmystr)))

Wherever on the right-hand side of a C assignment statement you would use the
ampersand character to get the address of something, you will need to use POINTER
in your Fortran program. For example:

wc% pszC assNanme = poi nter(szC assNane)

is equivalent to the C:

we. | pszC assNanme = &szC assNane;

Callback procedures, where Windows will be calling a Fortran procedure, must not
be module procedures or internal procedures.

To set up acallback procedure, include an interface block defining the callback pro-
cedure and declaring it to be ml_external. Then use the POINTER of the procedure
name. For example:

interface
i nteger function WhdProc(hwndByVal ue, &
nessageByVal ue, &
wPar anByVal ue, &
| Par anByVal ue)
m _external WhdProc
i nteger :: hwndbyVal ue, nessageByVal ue, &
wPar anByVal ue, | Par anByVal ue
end function WhdProc
end interface
t ype(WNDCLASS) : : wc
we% pf nwhdProc = of f set (WhdPr oc)
Argumentsto a Fortran callback procedure are values (C passes by value). To make

these work in your callback procedure, assign the pointer of these valuesto local
variables. For example:

LF Fortran Express User’'s Guide

Calling assembly language procedures

i nteger function WhdProc(hwndByVal ue, &
messageByVal ue, &
wPar anByVal ue, &
| Par amByVal ue)

inmplicit none
m _external WhdProc
i nteger :: hwnd, nessage, wParam | Param
i nteger :: hwndByVal ue, messageByVal ue
i nteger :: wParanByVal ue, | ParanByVal ue
hwnd = poi nt er (hwndByVal ue)
nmessage = poi nter (nessageByVal ue)
wPar am = poi nt er (wPar anByVal ue)
| Par am = poi nter (| Par anByVal ue)
! do not reference the ByVal ue argunments from here on !

» Seewi ndows. f 90 in the SRC directory for examples of functions, types, and defi-
nitions for use in Windows APl programming.

Calling assembly language procedures

The following information is provided courtesy of Kenneth G. Hamilton, 12-Oct-1998.

LF95 Conventions

This section isintended to assist the experienced assembly language programmer in writing
subprograms that can be called by LF95-compiled Fortran code. The examples that follow
were processed by Microsoft MASM v6.114a, although any recent assembler will likely suf-
fice. Inaddition to thisinformation, you should also have on hand appropriate
documentation for your assembler. The examplesin thiswrite-up can be found in subdirec-
tories EXAMPLES\MIX_LANG\ASSEMBLY\EX1, EX2, EX3, €tc.

Each sample program can be compiled and linked by using the GEN.BAT file that accompa-
niesit.

Entry Point Name Mangling

When it compiles Fortran source code, LF95 shifts the names of subroutines and functions
into lower case |etters, and attaches an underscore symbol () both before and after each
name. As an example, suppose that an LF95 program calls subroutine RAINBOW. If that
routineiswritten in assembly language, then it must have an entry point called _rainbow_on
aPROC or LABEL statement, and that name must declared to be a PUBLIC symbol.

LF Fortran Express User's Guide 81

Chapter 3 Mixed Language Programming

82

Saved Registers

LF95 requires that subroutines and functions preserve the value of the EBX, ESI, and EDI
registers. If any of these registers are used in an assembly-language routine, they can be
saved by pushing them upon entry, and then popping them before returning.

Argument Passing

LF95 passes numeric and logical arguments by pushing their addresses onto the stack, from
right to left. Each addressis afour-byte quantity, so that, upon entry to a subprocedure the
first argument's addressis|ocated at ESP+4, the second at ESP+8, the third at ESP+12, and
so on. (The ESP register itself contains the address that control will return to in the calling
routine, upon subprogram termination.)

Generally, the best procedure (and thisis what LF95 itself does) isto push EBP onto the
stack, and then move the contents of the ESP register into EBP. Thisis often known asthe
‘preamble’ of the routine. The arguments can then be accessed using EBP instead of ESP,
and any additional pushing or popping will not result in any confusion about where the argu-
ment addresses are. Since pushing EBP onto the stack changes the stack pointer by four
bytes, the first argument's address will be in EBP+8, the second argument'sin EBP+12, the
third'sin EBP+16, and these offsets from EBP will not be altered by any local activity involv-
ing the ESP register.

For CHARACTER-valued arguments, the length of the string must also be passed. Thisis
done by treating the lengths of the CHARACTER arguments as though they were extra
parameters following the normal visible ones, and passing them by value. The term ‘by
value' in this context means that the actual length is pushed, rather then the address of the
length. These length parameters are treated as though they were to the right of the actual
parametersin the call, and so they are actually pushed first, and are at higher offsetsrelative
to EBP.

Passing Arguments to Subroutines

It is often easiest to learn a programming method by studying examples, and so we will now
show and examine several cases in which a Fortran program calls an assembly language
subprogram.

First, thefollowing main program (ADDMAIN) passestwo INTEGER variablesto aFortran
subroutine (FORADD), where they are added, with their sum being returned as a third
variable.

Example 1: Simple Addition.
PROGRAM ADDMAI N
integer :: i,j,k,l
i =17
j =24
call foradd(i,j,k)
print *, "i,j,k=,i,j,k

LF Fortran Express User’'s Guide

Passing Arguments to Subroutines

i =52

j = 16

call asmadd(i,j,!I)

print * ‘i,j,I=,i,j,I

st op

end

SUBROUTI NE FORADD(| 1, JJ, KK)
kk = ii+j

return

end

Y ou should note that ADDMAIN aso calls asecond subroutine, ASMADD. Hereitis:
TI TLE ASMADD

. 386

. MODEL FLAT
_ACCDE SEGVENTPARA USE32 PUBLI C ' CCDE'

ASSUME CS: _ACCDE

PUBLI C _asnadd_ ; Entry point name
asnmadd PRCC NEAR ; Start of procedure

push ebp ; Save EBP

nov ebp, esp ; WIIl use EBP for args

push ebx ;. Must save EBX

nov eax, [ebp+8] ; 1st arg addr

nov ecx, [ebp+12] ; 2nd arg addr

nov edx, [ebp+16] ; 3rd arg addr

nov ebx, [eax] ; 1st arg val ue

nov eax, [ecx] ; 2nd arg val ue

add eax, ebx o Form | +J

nov [edx], eax ; Store into K

pop ebx ; Restore saved EBX

nov esp, ebp ; Restore stack pointer

pop ebp ; Restore base pointer

ret ; Return to caller
asnadd ENDP ; End of procedure
_ACODE ENDS ; End of segment

END

ASMADD isthe assembly-language translation of FORADD: it also takes three variables,
adds the first two, and returnsthe result in the third one. Examining ASMADD, we can see
that once the preamble is completed, the addresses of the arguments are accessible to the
assembly-languageroutinein EBP+8, EBP+12, and EBP+16. Sincethe EBX register isused
in the processing, its contents must be preserved by being pushed onto the stack beforeitis
clobbered, and popped off later.

LF95 assumes that the caller will fix the stack, i.e., remove the argument address pointers.
As aresult, the return to the calling routine is accomplished by means of asimple RET
instruction.

LF Fortran Express User's Guide 83

Chapter 3 Mixed Language Programming

Example 2: Using local data.

Now, let us examine a case in which a subroutine contains some local data. The main pro-
gram MULMAIN calls two subroutines, FORMUL (written in Fortran), and ASMMUL
written in assembly language. Both FORMUL and ASMMUL do the same thing: multiply
the first argument by 7, add 3, and then return the result as the second argument. Thisisthe

Fortran part:

PROGRAM MULNVAI N

i nt eger
i =5
cal l
print *,
k =3
cal l
print *,
stop

end

i,k

formul (i,j)
L=

i

asmmul (k, 1)
"k, 1=

k|

SUBROUTI NE FORMUL(11, 3J)

ji = 7*ii + 3
return
end

Here isthe assembly-language subroutine ASMMUL, with two constants m1 and m2 stored

inalocal data area

TI TLE
. 386
. MODEL
_ACCDE SEGVENT
ASSUVE
PUBLI C
PROC
push
nov
nov
nov
nov
mul
add

_asnmul _

_asnmul _
_ACODE

_ADATA

84 LF Fortran Express User’s Guide

ASMMUL

FLAT

PARA USE32 PUBLI C ' CODE'

CS: _ACODE, DS:_ADATA

_asnmul _ ; Entry point name
NEAR ; Start of procedure
ebp ; Save base pointer
ebp, esp ; Save stack pointer
eax, [ebp+8] ; 1st arg addr

eax, [eax] 1st arg EAX=l

ecx, ml ;7 into ECX

ecx o 71 is in EAX

eax, ng ; 7*1+3 is in EAX
edx, [ebp+12] ; 2nd arg addr

[edx], eax ; Store in 2nd arg (J)
esp, ebp Restore stack pointer
ebp ; Restore base pointer

PARA USE32 PUBLI C ' DATA

Passing Arguments to Subroutines

il dd 7
n dd 3
_ADATA ENDS

END

Thetwo variables are initialized to values of 7 and 3, and are not altered. Quantities stored
inthis manner could be changed during the course of computation, if required. Alternatively,
thisroutine could have been written with the constants 7 and 3 being coded asimmediate data
inthe MOV and ADD instructions that use them.

Example 3: Using floating-point arithmetic.

Floating point arithmetic is a so possible in an assembly language routine that is called from
an LF95 program. Hereis an example of amain program (FLTMAIN) that calls two func-
tionally-identical subroutines, FORFLT and ASMFLT, which are written in Fortran and
assembly language, respectively.

PROGRAM FLTMAI N

real :: x, vy, z
x = 3.0
y = 8.5

call forflt(x,y,2z)
print 20, X,y,z
20 format (' x,y,z=", 3F10.4)
X = 4.5
y =7.1
call asnflt(x,y,z)
print 20, X,y,z
st op
end
SUBROUTI NE FORFLT(XX, YY, ZZ)
zz = 3.1*xx +yy + 7.6
return
end

Thisisthe assembly language routine, and we can see that REAL variables are al so passed
as addresses, located in EBP+8, EBP+12, EBP+16, €tc.

TITLE ASMFLT

. 386
. MODEL FLAT
_ACCDE SEGVENT PARA USE32 PUBLI C ' CODE'
ASSUME CS: ACODE, DS: ADATA
PUBLIC _asnflt _ ; Entry point name
asnflt PRCC NEAR ; Start of procedure
push ebp ; Save base pointer
nov ebp, esp ; Save stack pointer
nov eax, [ebp+8] ; Addr X
nov ecx, [ebp+12] ; Addr Y

LF Fortran Express User's Guide 85

Chapter 3 Mixed Language Programming

nov edx, [ebp+16] ; Addr Z
fld dword ptr di ; Load 3.1
f mul dword ptr [eax] ; 3.1*X
f add dword ptr [ecx] ; 3.1*X+Y
f add dword ptr d2 ;o 3. 1*X+Y+7.6
fstp dword ptr [edx] ; Store into Z
nov esp, ebp ; Restore stack pointer
pop ebp ; Restore base pointer
ret
_asnflt _ ENDP
_ACCDE ENDS
_ADATA SEGMVENT PARA USE32 PUBLI C ' DATA'
di dd 3.1
d2 dd 7.6
_ADATA ENDS
END

Inassembly language, it is necessary to accessthe values of the variables using the keywords
DWORD PTR for REAL(KIND=4) and QWORD PTR for REAL(KIND=8) variables.

Example 4: Using COMMON blocks.
If it is necessary for an assembly language subroutine to access the contents of a COMMON
block, then we must find the starting address of that block.

The starting address of anamed COMMON isput in aglobal variable; the name of that vari-
ableis composed by converting the COMMON block's name to lower case letters, and then
attaching an underscore before and after the name. Thus, the starting address of aCOMMON
block that isnamed ZOOM can befoundintheglobal variable_zoom_ . Thestarting address
of blank COMMON is placed in the global variable_ BLNK__. (Note that there are two
underscore symbols both before and after the word “"BLNK.")

In the following example, both blank COMMON and COMMON/RRR/ are passed to a For-
tran subroutine (FORCOM) and its assembly language equivalent (ASMCOM), where some
minor calculations are performed.

PROGRAM CIMNVAI N

conmon i,j,k
conmon /rrr/ X,y,z
i =4, j =17, k =0
x =1.6; y =3.7, z =0.0
call forcom
print 10, i,j,k

10 format (' i,j,k=",316)
print 20, X,y,z

20 format (' Xx,y,z=", 3F10.4)
i =4, j =17; k=0
x =1.6;, y =37, z=0.0

86 LF Fortran Express User’s Guide

Passing Arguments to Subroutines

call asntom
print 10, i,j,k
print 20, Xx,y,z
st op

end

SUBROUTI NE FORCOM
conmon i,j,k
conmon /rrr/ X,y,z
k = 5% +j

z = xX*y

return

end

Thisis ASMCOM, the assembly language subroutine that manipulates variablesin the two
COMMON blocks.

TITLE ASMCOM

. 386

. MODEL FLAT
BLNKCOM STRUCT
i dwor d ?
j dword ?
k dword ?
BLNKCOM ENDS

EXTERN _ BLNK__: BLNKCOM
RRRCOM STRUCT
X real 4 ?
y real 4 ?
z real 4 ?
RRRCOM ENDS

EXTRN _rrr_: RRRCOM

_ACODE SEGVENTPARA USE32 PUBLI C ' CCDE'
ASSUME CS: _ACCDE, DS:_ADATA
PUBLI C _asnctom_ ; Entry point nane
asncom PRCC NEAR ; Start of procedure
push ebp ; Save EBP
nov ebp, esp ; use EBP for args
nov eax, dword ptr _ BLNK _.i ; Get |
nov ecx, ml : Load 5
mul ecx ; Form 5%
add eax, dword ptr _ BLNK _.j ; 5*1+J
nov dword ptr _ BLNK _.k,eax ; Store into K
fld dword ptr _rrr_.x ; Load X
f mul dword ptr _rrr_.y ; FormX*Y

LF Fortran Express User's Guide 87

Chapter 3 Mixed Language Programming

fstp dword ptr _rrr_.z ; Z=X*Y

nov esp, ebp ; Restore stack pointer
pop ebp ; Restore base pointer
ret ; Return to caller
asncom ENDP ; End of procedure
_ACODE ENDS ; End of segment
_ADATA SEGVENT PARA USE32 PUBLI C ' DATA
mil dd 5
_ADATA ENDS
END

The starting addresses of the COMMON blocks are obtained by using EXTERN directives
to connect to the global values. Theindividual variables withina COMMON block can then
be accessed as STRUCTSs that are written so as to match the layout of the Fortran code's
COMMON declarations. Each COMMON block must consist of a STRUCT definition, plus
an EXTERN declaration to connect it to the global data object.

Example 5: CHARACTER arguments.

Type CHARACTER variables are passed to subroutines as two arguments: the starting
address of the string, and the string's length. The two arguments are not, however, pushed
consecutively onto the stack. Rather, the address pointer is pushed in the usual order, and
then after all arguments have been passed, the lengths of any CHARACTER arguments are
passed by value.

Here is an example of amain program (CHRMAIN), that calls a Fortran subroutine
(FORCAPS), and its assembly language equivalent (ASMCAPS). Both FORCAPS and
ASMCAPS take two CHARACTER arguments; thefirst argument is converted into all
upper case letters, and then returned in the second argument.

PROGRAM CHRMAI N

character (len=20) :: linel, line2, line3
linel = "This is a nmessage

line2 = 'zzzzzzzzz2zz222222227'

| ine3 = ' aaaaaaaaaaaaaaaaaaaa’

call forcaps(linel,line2)
print 20, linel

print 20, line2

20 format (1X A)

call asntaps(linel,line3)
print 20, linel

print 20, line3

st op

end

88 LF Fortran Express User’s Guide

Passing Arguments to Subroutines

SUBROUTI NE FORCAPS(L1, L2)

character*(*) :: I1, 12
n =len(ll) I Converts all
do i=1,n ! chars to caps

ic =ichar(l1(i:i))
if (ic.ge.97 .and. ic.le.122) ic =ic-32
I 2(i:i) = char(ic)

enddo

return

end

Thisisthe assembly language string capitalization routine.

TITLE ASMCAPS

. 386

. MODEL FLAT
_ACCDE SEGVENTPARA USE32 PUBLI C ' CODE

ASSUME CS: _ACODE

PUBLI C _asntaps_ ; Entry point nane
asntaps PRCC NEAR ; Start of procedure

push ebp ; Save EBP

nov ebp, esp ; WIIl use EBP for args

push esi ; Must preserve ES

push edi ; Must preserve EDI

nov esi,[ebp+8] ; 1st string addr (L1)

nov edi, [ebp+12] ; 2nd string addr (L2)

nov ecx, [ebp+16] ; 1st string length

cnp ecx, O ; Length nonpositive?

jle Exi t : Yes, so return
Looper: nov al, [esi] ; Get char fromlLl

cnp al, 97 ; Below "a"?

jl Put |t ;. Yes, SO no conversion

cnp al, 122 ; Above "z"?

ig Putlt ; Yes, so no conversion

sub al, 32 ; Change LC to UC
Putlt: nov [edi], al ; Store

inc esi ; Point to next char

inc edi ; Point to next target

| oop Looper ; Loop until done

LF Fortran Express User's Guide 89

Chapter 3 Mixed Language Programming

90

Exit: pop edi ; Restore saved EDI
pop esi ; Restore saved ESI
nov esp, ebp ; Restore stack pointer
pop ebp ; Restore base pointer
ret ; Return to caller
asntaps ENDP ; End of procedure
_ACODE ENDS ; End of segment
END

Note that the starting addresses of the arguments are stored in EBP+8 and EBP+12, while
thelengths of thetwo CHARACTER variablesarein EBP+16 and EBP+20. Inthiscode, we
do not make use of the length of the second string, assuming it to be equal to that of the first
one.

Since we use the ESI and EDI registers in this subroutine, we save their previous values on
the stack and restore them before returning.

Returning Values from Functions

LF95 Function Conventions

The methods for passing arguments and COMMON blocksto aFUNCTION areidentical to
those described above for a SUBROUTINE. The only difference in the calling sequenceis
that a FUNCTION returns a value, and the method that is used to send the result back to the
calling routine depends upon the data type of that value.

INTEGER-valued FUNCTIONS return values using CPU registers, so that the return value
for one-byte, two-byte, and four-byte functions are returned in AL, AX, and EAX,
respectively.

Four-byte and eight-byte REAL FUNCTIONSs use the top of the floating-point unit stack,
ST(0) for return of values. Theonly difference inthe assembly |anguage access of these vari-
abletypesisthat the former require DWORD PTR, while the latter use QWORD PTR when
loading to and storing from the FPU. These conventions are summarized in Table 8 on

page 91.

LF Fortran Express User’'s Guide

Returning Values from Functions

Table 8: FUNCTION Return Mechanisms

Function Type Kind No. L ocation of Return Value
INTEGER 1 AL
INTEGER 2 AX
INTEGER 4 EAX
LOGICAL 1 AL
LOGICAL 4 EAX

REAL 4 ST(0)

REAL 8 ST(0)
COMPLEX 4 Address on stack
COMPLEX 8 Address on stack

CHARACTER al Address & length on stack

Example 6: A COMPLEX Function

When an LF95 program calls a COMPLEX-valued function, it first pushes the argument
addresses onto the stack, and then al so pushes the address of a place where the function

should storeitsreturn value. Thus, after the function preamble (where the contents of ESP

are stored into EBP), EBP+8 will contain the address of the return buffer, and the normal

argument pointers will start at EBP+12.

Here is an example of a program that passes a COMPLEX variable to a COMPLEX-valued
Fortran function CXFFUN that returns two times its argument.

PROGRAM CXMAI N

conplex :: a, b, c,
a=1(1.0,2.0

b = cxffun(a)

¢ = cxafun(a)
print *, 'a=',6a
print *, 'b=",b
print *, 'c=',c

st op

end

cxffun, cxafun

LF Fortran Express User’s Guide

91

Chapter 3 Mixed Language Programming

92

FUNCTI ON' CXFFUN(A)

conplex :: a, cxffun
cxffun = a+a

return

end

The above program also callsa COMPLEX-valued assembly language function CXAFUN,
that performs exactly the same operation as CXFFUN, i.e., it returns double the argument.

TITLE CXAFUN

. 386
. MODEL FLAT
_ACCDE SEGMVENT PARA USE32 PUBLI C ' CODE'
ASSUME CS: _ACODE
PUBLI C _cxafun_ ; Entry point name
cxafun PRCC NEAR ; Start of procedure
push ebp ; Save EBP
nov ebp, esp ; WII use EBP for args
nov eax, [ebp+12] ; Argunent address
fld dword ptr [eax] ; Get real part
f add dword ptr [eax] ; Double it
fld dword ptr [eax+4] ; CGet inmmg part

f add dword ptr [eax+4] ; Double it

nov eax, [ebp+8] ; Return buffer address

fstp dword ptr [eax+4] ; Store imag part

fstp dword ptr [eax] ; Store real part

nov esp, ebp ; Restore stack pointer

pop ebp ; Restore base pointer

ret ; Return to caller
cxafun ENDP ; End of procedure
_ACODE ENDS ; End of segment

END

Looking at this function, we can see that the single argument's addressis stored in EBP+12.
That isthe address of thereal part of the argument, with the imaginary part being stored four
bytes higher in memory.

Both parts of the argument are copied into the FPU and doubled. The results are then stored
into the return buffer, whose addressis found at EBP+8. That is, of course, the address of
thereal part and the imaginary component is stored four bytes higher.

Example 7: A CHARACTER Function

A somewhat more complicated mechanism is used for CHARACTER-valued functions.
After the argument information has been pushed on the stack, they arefollowed by the length
and starting address of the memory buffer that will accept the result. Asaconsequence, the

LF Fortran Express User’'s Guide

Returning Values from Functions

return buffer's address can be found in EBP+8, and itslength in EBP+12. The address of the
first argument is then moved up to EBP+16, and any other arguments follow in the usual

manner.

Here is aFortran main program that sets a CHARACTER variable equal to the string
“Hello," and then calls a Fortran function (FFUN) that returns a capitalized form of the
string. The program then calls an assembly language function (AFUN) that returns a decap-
italized version.

PROGRAM CHMAI N

character*20 a, b, ¢, ffun, afun
a "Hell o'

b ffun(a)

c af un(b)

print 20, a, b, ¢

20 format (" a=",AN" b=" A" ¢c =" A

st op
end
CHARACTER* 20 FUNCTI ON FFUN(A)
character*(*) a
n = len(a)
do i=1,n
ic =ichar(a(i:i))
if (ic.ge.97 .and. ic.le.122) ic =ic-32
ffun(i:i) = char(ic)
enddo
return
end

Thisisthe CHARACTER-vaued assembly language function that is used by the program

above:

TITLE AFUN

. 386
. MODEL FLAT
_ACCDE SEGVENT PARA USE32 PUBLI C ' CODE'
ASSUME CS: _ACODE
PUBLIC _afun_ ; Entry point nane
afun PRCC NEAR ; Start of procedure
push ebp ; Save EBP
nov ebp, esp ; WIIl use EBP for args
push esi
push ed
nov edx, [ebp+12]; Length of return buffer
nov eax, [ebp+20]; Length of argunent
cnp edx, eax ; Which is smaller?
ig L10 ; Return buffer

LF Fortran Express User's Guide 93

Chapter 3 Mixed Language Programming

nov ecx, edx ; Get arg length
j np L20
L10: nov ecx, eax ; Get ret buf length
L20: cnp ecx, O ; Length nonpositive?
jle L90 ; Yes, so return
nov esi, [ebp+16]; Addr of argunent
nov edi, [ebp+8] ; Addr of ret buf
L30: nov al, [esi] ;. Get char fromlL1l
cnp al, 65 ;. Below "A"?
jl L40 ; Yes, so no conversion
cnp al, 90 ; Above "Z"?
jg L40 ;. Yes, SO no conversion
add al, 32 ; Change UC to LC
L40: nov [edi], al ; Store
inc esi ; Point to next char
inc edi ; Point to next target
| oop L30 ; Loop until done
L90: pop edi ; Restore saved EDI
pop esi
nov esp, ebp ; Restore stack pointer
pop ebp ; Restore base pointer
ret ; Return to caller
afun ENDP ; End of procedure
_ACODE ENDS ; End of segnent
END

The sole argument is passed with its starting address in EBP+16, and its length in EBP+20
--- remember that if there are several arguments, then the CHARACTER lengths follow the
entirelist of addresses. Thereturn buffer, the place where the function should storeitsreturn
value is communicated by its starting address (in EBP+8) and length (in EBP+12).

94 LF Fortran Express User’s Guide

Command-Line
Debugging with FDB

FDB is a command-line symbolic source-level debugger for Fortran 95 and assembly pro-
grams. Before debugging your program you must compile it using the - g option

(see” Compiler and Linker Options” on page 29). The - g option creates an additional file
with debugging information -- this file has the same name as the executable with the exten-
sion.ydg. Debugging cannot be performed without the presence of the .ydg file in the same
directory as the executable file. FDB cannot be used on LF90 executables.

Starting FDB

To start FDB type:
FDB exefile

Where: exefile isthe name of an executable file compiled with the - g option.

Commands

Commands can be abbreviated by entering only the underlined letter or lettersin the com-
mand descriptions. For example, ki | | can be abbreviated simply k and oncebr eak can be
abbreviated ob. All commands should be typed in lower case, unless otherwise noted.

Executing and Terminating a Program

run arglist

Passesthe arglist list of argumentsto the program at execution time. When arglist is omitted,
the program is executed using the arguments | ast specified. If arglist contains an argument
that starts with "<" or ">", the program is executed after the 1/O is redirected.

LF Fortran Express User’s Guide 95

Chapter 4 Command-Line Debugging with FDB

96

Run
Executes the program without arguments. The “R” should be upper case.

kill
Forces cancellation of the program.

param commandline arglist
Assign the program’s command line argument list a new set of values

param commandline
Display the current list of command line arguments

clear commandline
The argument list is deleted

quit
Ends the debugging session.

Shell Commands

cd dir
Change working directory to dir

pwd
Display the current working directory path

Breakpoints

General Syntax
break [location [? expr]]

Where |ocation corresponds to an address in the program or aline number in a source file,
and expr corresponds to a conditional expression associated with the breakpoint. The value

of location may be specified by one of the following items:

e [file Jline specifieslinenumber lineinthesourcefilefile. If omitted, filedefaults

to the current file.

» proc[+]- offset] specifiestheline number corresponding to the entry point of func-

tion or subroutine proc plus or minus offset lines.

LF Fortran Express User’'s Guide

Breakpoints

* [mod@]proc[@inproc] specifiesfunction or subroutine proc in current scoping unit,
or internal procedure inproc within proc, or procedure proc contained in module
mod.

» *addr specifiesaphysical address (default radix is hexadecimal).
» |f location is omitted, it defaults to the current line of code

The conditional expression expr can be constructed of program variables, typedef elements,
and constants, along with the following operators:

Minus unary operator (-)

Plus unary operator (+)

Assignment statement (=)

Scalar relational operator (<, <=, ==, /=, >,>=, .LT., .LE,, .EQ., .NE., .GT., .GE.)
Logical operator (.NOT., .AND., .OR,, .EQV., .NEQV.)

break [’ file’]line

Sets a breakpoint at the line number line in the sourcefilefile. If omitted, file defaultsto the
current file. Notethat the “apostrophes’ in ‘file', above, are the standard apostrophe charac-
ter (ascii 39).

break [’ file’] funcname

Setsabreakpoint at the entry point of the function funcnamein the sourcefilefile. If omitted,
file defaults to the current file. Note that the “apostrophes’ in ‘file', above, are the standard
apostrophe character (ascii 39).

break *addr
Sets a breakpoint at address addr .

break
Sets a breakpoint at the current line.

breakon [#n]
Enables the breakpoint number n. If #nisomitted, all breakpointsare enabled. Notethat the
"#' symbol is required.

breakoff [#n]
Disables, but does not remove, the breakpoint number n. If #nisomitted, all breakpoints are
disabled. Notethat the "#" symbol isrequired.

condition #n expr
Associate conditional expression expr with the breakpoint whose serial number is n. Note
that the “#’ symbol is required.

LF Fortran Express User's Guide 97

Chapter 4 Command-Line Debugging with FDB

98

condition #n

Remove any condition associated with the breakpoint whose serial number isn. Note that
the “#” symbol is required.

oncebreak

Sets atemporary breakpoint that is deleted after the program is stopped at the breakpoint
once. OnceBreak in other regards, including arguments, works like Break.

regularbreak "regex"

Set abreakpoint at the beginning of all functions or procedureswith aname matching regular
EXPression regex.

delete location
Removes the breakpoint at location location as described in above syntax description.

delete [’ file’] line

Removesthe breakpoint for theline number linein the source file specified asfile. If omitted,
file defaults to the current file. Note that the “apostrophes’ in ‘file', above, are the standard
apostrophe character (ascii 39).

delete [’ file’] funcname

Removes the breakpoint for the entry point of the function f uncnane in the source filefile.
If omitted, file defaultsto the current file. Note that the “ apostrophes’ in ‘file', above, arethe
standard apostrophe character (ascii 39).

delete *addr
Removes the breakpoint for the address addr .

delete #n
Removes breakpoint number n.

delete
Removes all breakpoints.

skip #n count
Skips the breakpoint number n count times.

onstop #n cmd[;cmd2;cmd3...;cmdn]
Upon encountering breakpoint n, execute the specified fdb command(s).

LF Fortran Express User’'s Guide

Controlling Program Execution

show break
B
Displays al breakpoints. If using the abbreviation “B”, the “B” must be upper case.

Controlling Program Execution

continue [count]

Continues program execution until abreakpoint's count reaches count. Then, execution stops.
If omitted, count defaultsto 1 and the executionisinterrupted at the next breakpoint. Program
execution is continued without the program being notified of asignal, even if the program
was broken by that signal. In this case, program execution is usually interrupted later when
the program is broken again at the same instruction.

silentcontinue [count]

Sameas Continue but if asignal breaksaprogram, the programisnotified of that signal when
program execution is continued.

step [count]

Executes the next count lines, including the current line. If omitted, count defaultsto 1, and
only the current lineis executed. If afunction or subroutine call is encountered, execution
“stepsinto” that procedure.

silentstep [count]

Same as Step but if asignal breaks a program, the program is notified of that signal when
program execution is continued.

stepi [count]
Executes the next count machine language instructions, including the current instruction. If
omitted, count defaultsto 1, and only the current instruction is executed.

silentstepi [count]
Same as Stepi but if asignal breaks a program, the program is notified of that signal when
program execution is continued.

next [count]

Executes the next count lines, including the current line, where a function or subroutine call
isconsideredto bealine. If omitted, count defaultsto 1, and only the current lineisexecuted.
In other words, if afunction or subroutine call is encountered, execution “ steps over” that
procedure.

LF Fortran Express User's Guide 99

Chapter 4 Command-Line Debugging with FDB

100

silentnext [count]
Same as Next but if asignal breaks a program, the program is notified of that signal when
program execution is continued.

nexti [count]

Executes the next count machine language instructions, including the current instruction,
where afunction call is considered to be an instruction. If omitted, count defaultsto 1, and
only the current instruction is executed.

silentnexti [count] or nin [count]
Same as Nexti but if asignal breaks a program, the program is notified of that signal when
program execution is continued.

until
Continues program execution until reaching the next instruction or statement.

until loc
Continues program execution until reaching the location or lineloc.

until *addr
Continues program execution until reaching the address addr.

until +|-offset
Continues program execution until reaching the line forward (+) or backward (-) offset lines
from the current line.

until return
Continues program execution until returning to the calling line of the function that includes
the current breakpoint.

Displaying Program Stack Information

traceback [n]
Displays subprogram entry points (frames) in the stack, where n is the number of stack
frames to be processed from the current frame.

frame [#n]
Select stack frame number n. If n is omitted, the current stack frameis selected. Note that
the “#” symbol is required.

LF Fortran Express User’'s Guide

Setting and Displaying Program Variables

upside [n]
Select the stack frame for the procedure n levels up the call chain (down the chainif nisless
than 0). The default value of nis 1.

downside [n]
Select the stack frame for the procedure n levels down the call chain (up the chainif nisless
than 0). The default value of nis 1.

show args
Display argument information for the procedure corresponding to the currently selected
frame

show locals
Display loca variables for the procedure corresponding to the currently selected frame

show reg [$r]

Displays the contents of the register r in the current frame. r cannot be a floating-point reg-
ister. If $r isomitted, thecontentsof all registersexcept floating-point registersare displayed.
Note that the $ symbol isrequired.

show freg [$fr]
Displays the contents of the floating-point register fr in the current frame. If $fr is omitted,
the contents of all floating-point registers are displayed. Note that the $ symbol is required.

show regs
Displays the contents of all registers including floating-point registersin the current frame.

show map
Displays the address map.

Setting and Displaying Program Variables

set variable = value
Sets variable to value.

set *addr = value
Sets *addr to value.

set reg = value
Setsreg to value. reg must be aregister or afloating-point register.

LF Fortran Express User'sGuide 101

Chapter 4 Command-Line Debugging with FDB

102

print [[:F] variable [= value]]

Displays the content of the program variable variable by using the edit format F. If edit for-
mat F is omitted, it isimplied based on the type of variable. variable can be ascalar, array,
array element, array section, derived type, derived type element, or common block. F can
have any of the following values:

hexadecimal
signed decimal
unsigned decimal
octal

floating-point
character

character string
address of variable

»Q O O ™ o0 < o X

If value is specified, the variable will be set to value.

If no arguments are specified, the last print command having arguments is repeated.

memprint [:FuN] addr

dump [:FUN] addr

Displays the content of the memory address addr by using edit format F. u indicates the dis-
play unit, and N indicates the number of units. F can have the same values as were defined
for the Print command variable F.

If omitted, f defaultsto x (hexadecimal).
u can have any of the following values:

b onebyte

h two bytes (half word)

w four bytes (word)

| eight bytes (long word/double word)

If uisomitted, it defaults to w (word). If nisomitted, it defaults to 1. Therefore, the two fol-
lowing commands have the same resullt:

memprint addr
memprint :xw1 addr

Source File Display

show source
Displays the name of the current file.

LF Fortran Express User’'s Guide

Source File Display

list now
Displaysthe current line.

list [next]
Displays the next 10 lines, including the current line. The current line is changed to the last
line displayed.

list previous
Displaysthelast 10 lines, except for the current line. The current line is changed to the last
line displayed.

list around
Displaysthelast 5 lines and the next 5 lines, including the current line. The current lineis
changed to the last line displayed.

list [’ file’] num

Changesfrom the current line of the current file to the line number num of the sourcefilefile,
and displays the next 10 lines, including the new current line. If file is omitted, the current
file is not changed.

list +|-offset
Displaysthe line forward (+) or backward (-) offset lines from the current line. The current
lineis changed to the last line displayed.

list [’ file’] top,bot
Displaysthe source file lines between line number top and line number bot in the source file
file. If fileisomitted, it defaults to the current file. The current lineis changed to the last line

displayed.

list [func[tion] funcname
Displaysthelast 5 lines and the next 5 lines of the entry point of the function funcname.

disas
Displays the current machine language instruction in disassembled form.

disas *addrl [,*addr2]

Displays the machine language instructions between address addr 1 and address addr2 in dis-
assembled form. If addr2 isomitted, it defaultsto the end of the current function that contains
address addr 1.

disas funcname
Displays al instructions of the function funcname in disassembled form.

LF Fortran Express User'sGuide 103

Chapter 4 Command-Line Debugging with FDB

104

Automatic Display

screen [:F] expr
Displaysthe value of expression expr according to format F every time the program stops.

screen
Displaysthe names and values of all expressions set by the screen [:F] expr command above.

unscreen [#n]
Remove automatic display number n (“#’ symbol required). When #n is omitted, all are
removed.

screenoff [#n]
Deactivate automatic display number n. When #n is omitted, all are deactivated.

screenon [#n]
Activate automatic display number n. When #n is omitted, all are activated.

show screen
Displays anumbered list of all expressions set by the screen [:F] expr command above.

Symbols

show function ["regex"]
Display the type and name of all functions or subroutines with a name that matches regular
expression regex. When regex is omitted, al procedure names and types are displayed.

show variable ["regex"]
Display thetype and name of all variableswith anamethat matchesregular expression regex.
When regex is omitted, all variable names and types are displayed.

Scripts

alias cmd "cmd-str”
Assigns the fdb command(s) in cmd-str to alias cmd.

alias [cmd]
show alias [cmd]
display the alias cmd definition. When cmd is omitted, all the definitions are displayed.

LF Fortran Express User’'s Guide

Sgnals

unalias [cmd]
Remove the alias cd definition. When cmd is omitted, all the definitions are removed.

Signals

signal sig action

Behavior actionisset for signal sig. Pleaserefer to signal(5) for the name which can be spec-
ified for sig. The possible values for action are:

st opped Execution stopped when signal sig encountered
t hr ow Execution not stopped when signal sig encountered

show signal [sig]
Displays the set response for signal sig. If sig isomitted, the response for all signalsis
displayed.

Miscellaneous Controls

param listsize num

The number of linesdisplayed by thel i st commandissetto num. Theinitial (default) value
of numis 10.

param prompt "str"

st r isused asaprompt character string. Theinitial (default) valueis“f db*”. Notethat the
double quotes are required.

param printelements num

Set the number of displayed array elementsto numwhen printing arrays. Theinitial (default)
value is 200. The minimum value of numis 10. Setting numto O implies no limit.

param prm
Display the value of parameter prm.

Files

show exec
Display the name of the current executable file.

LF Fortran Express User'sGuide 105

Chapter 4 Command-Line Debugging with FDB

106

param execpath [path]

Add path to the execution file search path. If path is omitted, the value of the search path is
displayed. Note that this search path is comprised of alist of directories separated by
semicolons.

param srcpath [path]

Add path to the sourcefile search path when searching for procedures, variables, etc. If path
is omitted, the value of the search path is displayed. Note that this search path is comprised
of alist of directories separated by semicolons.

show source
Display the name of the current sourcefile.

show sources
Display the names of all source filesin the program.

Fortran 95 Specific

breakall mdl
Set a breakpoint in all Fortran procedures (including internal procedures) in module mdl.

breakall func
Set a breakpoint in all internal proceduresin procure func.

show ffile
Displays information about the files that are currently open in the Fortran program.

show fopt
Display the runtime options specified at the start of Fortran program execution.

Communicating with fdb

Functions
In aFortran 95 program, if modules and internal subprograms are used, functions are speci-
fied as the following:

A modul e subprogram sub defined inside a module module is specified as module@sub.

An entry point ent defined inside a module module is specified as module@ent.

LF Fortran Express User’'s Guide

Communicating with fdb

Aninternal subprogram insub defined inside a modul e subprogram sub within amodule mod-
uleis specified as module@sub@insub.

An internal subprogram insub defined inside a subprogram sub is specified as sub@insub.

The name of the top level function, MAIN_, is not needed when specifying a function.

Variables
Variables are specified in f db in the same manner as they are specified in Fortran 95 or C.

In C, astructure member is specified as variable. member or variable- >member if variable
isapointer. In Fortran 95, a derived-type (i.e., structure) component is specified as
variablevsmember.

InC, an array element is specified asvariable] member] [member] In Fortran 95, an array
element is specified as variable(member, member, ...) . Notethat in Fortran 95, omission of
array subscripts implies areference to the entire array. Listing of array contentsin Fortran
95islimited by thepri nt el ement s parameter (see” Miscellaneous Controls’ on page
105).

Values
Numeric values can be of typesinteger, real, unsigned octal, or unsigned hexadecimal. Val-
ues of type real can have an exponent, for example 3. 14e10.

InaFortran 95 program, values of type complex, logical, and character are also alowed. Val-
ues of type complex are represented as (real-part,imaginary-part). Character datais
represented as" character string " (the string is delimited by quotation marks, i.e., ascii 34).

Values of typelogical arerepresentedas.t. or.f. .

Addresses

Addresses can be represented as unsigned decimal numbers, unsigned octal numbers (which
must start with 0), or unsigned hexadecimal numbers (which must start with 0x or 0X). The
following examples show print commands with address specifications.

menprint 1024 (The content of the area addressed by 0x0400 is displayed.)
menprint 01024 (The content of the area addressed by 0x0214 is displayed.)
menprint 0x1024 (The content of the area addressed by 0x1024 is displayed.)

Registers
$BP Base Pointer
$SP Stack Pointer
$EI P Program counter

$EFLAGS Processor state register
$ST[0- 7] Hoating-point registers

LF Fortran Express User'sGuide 107

Chapter 4 Command-Line Debugging with FDB

Names

In Fortran 95 programs, alowercase letter in the name (such as a function name, variable
name, and so on) isthe same as the corresponding uppercase | etter. The main program name
isMAI N_ and a subprogram name is generated by adding an underscore() after the corre-
sponding name specified in the Fortran source program. A common block name is also
generated by adding an underscore (_) after the corresponding name specified in the Fortran
source program.

108 LF Fortran Express User’s Guide

Library Manager

TheMicrosoft librarian utility, LIB, can be used to manage library creation and modification,
extract object filesfrom an existing library, or create import libraries. These threetasksare
mutually exclusive, which meansthat LIB can only beinvoked to perform one of these func-
tions at atime.

By default, L1B outputs afile using the name of the first object or library file that is encoun-
tered, givingitthe. | i b extension. If afile with this name already exists, it is overwritten.
The default action can be overridden by using the/ out : libname option.

LIB accepts both OMF and COFF format object files. When an OMF object fileis specified,
LIB changes the format to COFF before creating a library.

LIB Syntax:
LIB [optiong] [files]
optionsisalist of options separated by spaces. Options begin with ahyphen (-) or
adash(/). They may appear in any order and are processed in the order they are
encountered. Argumentsto options are denoted by a colon character (:), and there

cannot be any spaces or tabs between an option and it's argument.

filesis a space separated list of object and library filenames.

Options

/CONVERT

Converts an import library to Visual Studio version 5 format.

LF Fortran Express User’sGuide 109

Chapter 5 Library Manager

110

/IDEF[:filename]

Indicates that an import library isto be created. filename indicates the name of a definition
file. L1B will export proceduresthat are specified in the EXPORT section adefinition file or
that are specified using the /EXPORT option.

[EXPORT:symbol
Used to specify procedures to be exported when creating an import library.

[EXTRACT:membername
Used to extract the object file membername from alibrary.

/INCLUDE:symbol
Adds symbol to the symbol table when creating an import library.

/LIBPATH:dir

Sets a path to be searched for library files. This path overrides a path specified by the LIB
environment variable.

/LINK50COMPAT
Generates an import library using Visual Studio version 5 format.

/LIST[:filename]

Displaysalist of objectsin thefirst library file encountered. If filenameisabsent, the output
isdisplayed on stdout. If filenameis present, the output is directed to the specified file.

/NODEFAULTLIBI:library]

Do not refer to default librarieswhen resolving external references. If libraryispresent, only
the specified library is removed from the default library list.

/NOLOGO
Suppresses the display of the version and copyright banner.

/OUT:libname
Sets the name of the output library file.

/REMOVE:membername
Removes the object file named membername from the specified library.

/VERBOSE
Displays detailed information about the progress of the LIB session.

LF Fortran Express User’'s Guide

Response Files

Response Files

It is possible to place commonly used or long L1B command-line parametersin aresponse
file. LIB command-line parameters are entered in aresponse filein the same manner asthey
would be entered on the command line. A new linein aresponse file istreated like a sepa-
rator on the LIB command line.

To invoke the response filg, type:
LIB @response-filename

where response-filename is the name of the response file with extension.

Creating and maintaining COFF libraries

Thedefault usagefor LIB isto performlibrary management. LIB runsin default mode when-
ever the/ def or/extract optionsarenot used. LIB will accept any object files and
libraries specified on the command lineand in acommand file, and create alibrary containing
the combined contents of the input files.

Example 1:
lib obj1l.obj obj2.obj libl.lib

Inthisexample, thefilesobj 1. obj obj 2. obj and i bl.1i b arecombinedinto alibrary
calledobj 1. 1ib. Ifobj1.1ib didnot exist beforethis command wasinvoked, itiscre-
ated. If obj 1. 1i b did exist before this command was invoked, it's previous contents are

overwritten.

Example 2:
lib obj1l. obj obj2.obj libl.lib /out:nylib.lib

Inthisexample, thefilesobj 1. obj obj 2. obj and i bl.1i b arecombinedintoalibrary
calednylib.lib. Ifnylib.lib didnotexist beforethiscommand wasinvoked, itis
created. If nylib.lib didexist beforethis command wasinvoked, it's previous contents
are overwritten.

Example 3:
lib /renmove: obj1.0bj nylib.lib

In this example, the object file obj 1. obj isremoved from thelibrary myl i b. |i b.

Example 4:
lib nylib.lib obj1l.obj

In this example, the object file obj 1. obj isadded to thelibrary myl i b. | i b.

LF Fortran Express User'sGuide 111

Chapter 5 Library Manager

Extracting object files from libraries

Whenthe/ ext ract optionisused, LIB extractsan object filefrom an existing library. The
object being extracted isnot removed from thelibrary. To delete an object from alibrary use
the/ r enove option.

Example:
lib /extract:objl.obj nylib.lib

In this example, the object file obj 1. obj isextracted fromthelibrary nylib.lib andis
written to disk. If afilenamed obj 1. obj previously existed, it is overwritten.

Creating import libraries

112

When the / def option is specified, LIB is used to generate an import library. Itisusualy
not necessary to use LI B to create an import library, because the import library is automati-
cally generated by LI NK whenever aDLL iscreated. If theuseriscreatingaDLL with a3rd
party language system and an import library is not created, or if the user is provided with a
DLL by a3rd party without an import library, one can be generated using LI B / def . For
moreinformation on creating import librariesfor mixed language applications, see“ Building
Import Libraries’ on page 57.

Two items are needed to generate an import library - a set of definitions and an object file
containing the exported procedures.

Definitions may be in the form of adefinition file or as arguments to the /EXPORT option.
A definition file contains exported symbols as they appear inthe DLL. These symbols can
be listed using DUMPBI N / EXPORTS. Alternatively, a definition file can be generated from
aDLL using the MAKEDEF utility. Notethat the definition file that is used when creating the
import library should only contain procedure names that appear in the object file, otherwise
unresolved references will occur when the LI B command is executed.

If the object file that was used to createthe DLL isavailable, an import library can easily be
created using the object file and a definition file.

Example:
lib /def:nydl|.def dllobj.obj /out:nydlIl.lib

Inthisexamplethefilenydl | . def containsan EXPORTS header, under which export sym-
bols are listed as they appear when displayed with the DUMPBI N utility. Thefile
dl | obj . obj isthe object file that was linked to makethe DLL.

If no object fileisavailable, a Fortran object file can be created from a Fortran ‘stub’. All
that isrequired isthat the user know the calling sequence for the DLL procedure. A stub pro-
cedure consists of a SUBROUTI NE or FUNCTI ON statement, an argument list, declarations
for any dummy arguments, a DLL_EXPORT statement, and an END statement. Note that the
stub procedure name appearing in the DLL_EXPORT statement is case-sensitive, and should

LF Fortran Express User’'s Guide

Creating import libraries

have the same case asthe procedure exported fromthe DLL. The stub procedure iscompiled
into an object fileusing the- ¢ and an appropriate - m option. This object file can then be
used by LI B to create the import library. When compiling the LF95 program that will call
theDLL, make surethat thesame- m optionisused asfor the stub procedure. Notethat - m

| f 95 isnot avalid option when making an import library.

Example stub procedure (called dllsub1.f90):

subroutine dllsubl(a,i,l)
dl export :: dllsubl
real ioa
i nt eger U
| ogi cal SR

end subroutine

Example definition file (called dlisubl.def):
EXPORTS
dl I subl

Example compile command:
1f95 -c¢ -m msvc dl | subl.f90

Example LIB command:
lib /def:dllsubl.def dllsubl.obj /out:mydll.lib

The above examples show how to create an import library from a Fortran stub for aDLL
caled nydl I . dl I, which contains a procedure called dI | sub1 having three arguments.
When compiling the LF95 main program which callsnydl | . dl | ,the-m msvc option
must be used.

Note that depending on which target is specified when using the - nl option, LI B may gen-
erate awarning about multiply defined symbols. Thiswarning can generally be disregarded.

Further examples of creating import librariesusing/ def and stub procedures exist in direc-
tories under the EXAMPLES\ M X_LANG directory.

LF Fortran Express User'sGuide 113

Chapter 5 Library Manager

114 LF Fortran Express User's Guide

o Utility Programs

This chapter documents the following utility programs:

« DUMPBIN.EXE
» EDITBIN.EXE

» HDRSTRIP.F90
* LFSPLIT.EXE

» MAKEDEF.EXE
* SEQUNF.F90

+ TRYBLOCK.F90
* UNFSEQ.F90

* WHERE.EXE

DUMPBIN.EXE

DUMPBIN.EXE alows you to display information about COFF object files, libraries of
COFF object files, executablefiles, and dynamic-link libraries. Information can bedisplayed
in both hexadecimal and ASCI| character formats.

Invoking DUMPBIN
DUMPBIN isinvoked from the command prompt using the following syntax:

dumpbin [options] files

DUMPBIN Options

Options are distinguished by using an option specifier, which consists of aleading “/” or
character, followed by the option name. Options and filenames may be separated by the
space or tab characters. Options and filenames are not case sensitive. If no options are spec-
ified, the default option is/ISUMMARY .

w N

LF Fortran Express User’'sGuide 115

Chapter 6 Utility Programs

116

Option list
Note that some options for DUMPBIN may not apply to files built with LF95. Only options
known to be valid for files built with LF95 are described.

-ALL
Displays everything except disassembly. Use/RAWDATA:NONE with the/ALL optionto
prevent display of raw binary details.

-ARCHIVEMEMBERS
Displays information about objectsin alibrary.

-DEPENDENTS
Displays the name of any DLL needed by an executable or DLL.

-DISASM
Displays code disassembly.

-EXPORTS
Displays all symbols exported by aDLL.

-HEADERS
Displays coff header information.

-IMPORTS
Displays al symbolsimported by an executable or DLL.

-LINKERMEMBER][:lev]

Displays public symbols defined in alibrary. If thelev argument is 1, display symbolsin
object order, along with their offsets. If thelev argument is2, display offsetsand index num-
bers of objects, then list the symbolsin alphabetical order along with the object index for
each. If thelev argument is not present, both outputs are displayed.

-OUT:filename
Sends output to the specified file instead of to the console.

-RAWDATA:option
Displaystheraw contents of each section in the file. The option argument controlsthe format
of the display, asfollows:

BYTES - Default setting. Contents are displayed in hexadecimal bytes, and in ASCII.
SHORTS - Contents are displayed in hexadecimal words.

LONGS - Contentsare displayed in hexadecimal long words.

NONE - Display of raw datais suppressed.

number - Controls the number of values displayed per line.

-RELOCATIONS
Displays any relocations in the object or image.

-SECTION:section
Restricts output to the specified section.

LF Fortran Express User’'s Guide

EDITBIN.EXE

-SUMMARY
Default option. Displays minimal information about thefile.

-SYMBOLS
Displays the COFF symbol table for an object file or library.

EDITBIN.EXE

EDITBIN.EXE alowsyou to edit information in COFF object files, libraries of COFF object
files, executable files, and dynamic-link libraries. EDITBIN can aso be used to convert
object model format files (OMF) to common object file format (COFF). To convert from
OMF to COFF, run EDITBIN with no options.

Invoking EDITBIN

EDITBIN isinvoked from the command prompt using the following syntax:

editbin [optiong] files

EDITBIN Options

Options are distinguished by using an option specifier, which consists of aleading “/” or
character, followed by the option name. Options and filenames may be separated by the
space or tab characters. Options and filenames are not case sensitive.

w N

Option list

-BIND[:PATH=path]

Sets the addresses of the entry pointsin the import address table for an executable file or
DLL. Usethisoptionto reduceload time of aprogram. Theoptional path argument specifies
thelocation of any DLLs. Separate multiple directories with semicolons. If pathis not spec-
ified, EDITBIN searchesthe directories specified inthe PATH environment variable. If path
is specified, EDITBIN ignoresthe PATH variable.

-HEAP:reserve[,commit]
Setsthe size of the heap in bytes. Numbers are specified in decimal format.

Thereserve argument specifiesthetotal heap allocation in virtual memory. The default heap
sizeis IMB. Thelinker rounds the specified value up to the nearest 4 bytes.

Theoptional commit argument specifiesthe amount of physical memory to allocate at atime.
Committed virtual memory causes space to be reserved in the paging file. A larger commit
value saves time when the application needs more heap space but increases the memory
requirements and possibly startup time.

-LARGEADDRESSAWARE
Edits the image to indicate that the application can handle addresses larger than 2 gigabytes.

LF Fortran Express User'sGuide 117

Chapter 6 Utility Programs

118

-NOLOGO
Suppresses display of the EDITBIN copyright message and version number.

-REBASE[:modifiers]

Sets the base addresses for the specified files. Assigns new base addresses in a contiguous
address space according to the size of each file rounded up to the nearest 64K. Numbersare
specified in decimal format. One or more optional modifiers are separated by a comma:

BASE=address - Beginning addressfor reassigning base addressesto thefiles. If BASE
isnot specified, the default starting base addressis 0x400000. If DOWN isused, BASE must
be specified, and address sets the end of the range of base addresses.

BASEFILE - Createsafilenamed COFFBASE.TXT, whichisatext fileintheformat
expected by LINK's/BASE option.

DOWN - Reassign base addresses downward from an ending address. Filesare
reassigned in the order specified, with the first file located in the highest possible address
below the end of the address range. BASE must be used with DOWN to ensure sufficient
address space for basing the files. To determine the address space needed by the specified
files, run EDITBIN with the/REBA SE option on the files and add 64K to the displayed total
size.

-RELEASE
Sets the checksum in the header of an executable file.

-SECTION:name[=newname][,properties][,alignment]

Changes the properties of a section, overriding the properties that were set when the object
filefor the section was compiled or linked. propertiesand alignment characters are specified
as a string with no white space.

name is the name of the section to modify.
newname is the new section name.

propertiesisacommaseparated list of characters. To negate aproperty, precedeitscharacter
with an exclamation point (!). The following properties may be specified:

- code

- discardable

- executable

- initialized data

- cached virtual memory
- link remove

link info

- paged virtual memory
- read

- shared

- uninitialized data

- write

Scw-TOoOgXTOmQao
1

LF Fortran Express User’'s Guide

HDRSTRIP.F90

alignment isspecified by the character "a" followed by acharacter to set the size of alignment
in bytes, asfollows:

- 1byte

- 2 bytes

- 4 bytes

8 bytes

16 bytes

32 bytes

- 64 bytes

no alignment

X 0 —*+T 00 h~DNPRF
1

-STACK:reserve[,commit]

Setsthe size of the stack in bytes. Numbers are specified in decimal format. The/STACK
option applies only to an executable file.

Thereserve argument specifiesthetotal heap allocation in virtual memory. The default heap
sizeis IMB. Thelinker rounds the specified value up to the nearest 4 bytes.

Theoptional commit argument specifiesthe amount of physical memory to allocate at atime.
Committed virtual memory causes space to be reserved in the paging file. A larger commit
val ue saves time when the application needs more heap space but increases the memory
requirements and possibly startup time.

-SUBSYSTEM:system[,major[.minor]]
Editsthe image to indicate which subsystem the operating system must invoke for execution.

Tells the operating system how to run the executable file. systemis specified as follows:
CONSOLE - Used for Win32 character-mode applications.
WINDOWS - Used for applications that do not require a console.

The optiona major and minor version numbers specify the minimum required version of the
subsystem.

-VERSION:left[,right]

Places aversion number into the header of the image.

left indicates the portion of the version number that appears to the left of the decimal point.
right indicatesthe portion of the version number that appearsto the right of the decimal point.

HDRSTRIP.FO0

HDRSTRIP.F90 is a Fortran source file that you can compile, link, and execute with LF95.
It converts LF90 direct-access filesto LF95 style.

LF Fortran Express User'sGuide 119

Chapter 6 Utility Programs

LFSPLIT.EXE

Run LFSPLIT.EXE to divide a source file into new separate source files, one for each main
program, subroutine, function or module. Each new source file will have a filename of the
sub-program unit name and the same extension as the original file.

Typel fsplit -hel p atthecommand prompt for more details about use of thefile splitter.

MAKEDEF.EXE

UseMAKEDEF.EXEto createadefinitionfilelistingall exported symbolsfromaDLL. The
definition fileisused by LIB.EXE to create an import library. MAKEDEF acceptsasingle
DLL fileincluding the .dIl extension asacommand line argument, and creates afile with the
same name having the .def extension. If a definition file with this name already exists, itis
overwritten. MAKEDEF ignores all exported symbolsthat contain three or more sequential

underscore characters. The MAKEDEF utility requiresthat DUMPBIN.EXE be availablein
adirectory onthe path. See* Creating import libraries’ on page 112 for instructions on gen-
erating an import library.

SEQUNF.F90

SEQUNF.F90 is a Fortran source file that you can compile, link, and execute with LF95. It
converts LF90 unformatted sequential filesto LF95 style.

TRYBLK.F90

TRYBLK.F90isaFortran sourcefile you can build with LF95. It triesarange of blocksizes
and displays an el apsed time for 1/O operations with each blocksize. Y ou can usetheresults
to determine an optimum value for your PC to specify in your programs. Note that a partic-
ular blocksize may not perform aswell on other PC’s.

UNFSEQ.F90

120

UNFSEQ.F90 is a program that converts L F95 unformatted sequential filesto LF90 style.

LF Fortran Express User’'s Guide

WHERE.EXE

WHERE.EXE

WHERE.EXE can be used to locate files on the path or in directories, and to display the exe
type, time and size of thefile.

Invoking WHERE
WHERE is invoked with the following syntax:

WHERE [/r dir] [/Qqte] pattern ...

Where:

/rdir recursively search directories under dir

1Q display output files in double quotes

q quiet mode, exit code of zero indicates file found

It display file size and time

le display executable type

pattern isone or more file specifications, with the wildcards, * ?, allowed

If /r is not specified, WHERE searches along the path.

Examples
where | f95. exe

Searches along the path for all occurrences of LF95.
where /te /r \wi ndows user32.dlI

Recursively searches all directories under \ wi ndows for all occurences of USER32.DLL,
and lists each file size and creation time, and the executable type.

LF Fortran Express User'sGuide 121

Chapter 6 Utility Programs

122 LF Fortran Express User’s Guide

Programming Hints

This appendix contains information that may help you create better LF95 programs.

Efficiency Considerations

In the majority of cases, the most efficient solution to a programming problem is one that is
straightforward and natural. 1t is seldom worth sacrificing clarity or elegance to make a pro-
gram more efficient.

The following observations, which may not apply to other implementations, should be con-
sidered in cases where program efficiency is critical:

» One-dimensional arrays are more efficient than two, two are more efficient than
three, etc.

» Makeadirect filerecord length a power of two.

» Unformatted input/output is faster for numbers.

e Formatted CHARACTER input/output is faster using:
CHARACTER* 256 C

than:
CHARACTER* 1 C(256)

Side Effects

LF95 arguments are passed to subprograms by address, and the subprograms reference those
arguments as they are defined in the called subprogram. Because of the way arguments are
passed, the following side effects can result:

» Declaring adummy argument asadifferent numeric datatypethan in the calling pro-
gram unit can cause unpredictable results and NDP error aborts.

LF Fortran Express User’s Guide 123

Appendix A Programming Hints

e Declaring adummy argument to be larger in the called program unit than in the call-
ing program unit can result in other variables and program code being modified and
unpredictable behavior.

e If avariable appearstwice asan argument in asingle CALL statement, then the cor-
responding dummy arguments in the subprogram will refer to the same location.
Whenever one of those dummy argumentsis modified, so is the other.

» Function arguments are passed in the same manner as subroutine arguments, so that
modifying any dummy argument in afunction will also modify the corresponding
argument in the function invocation:

y = x + f(x)

The result of the preceding statement is undefined if the function f modifies the
dummy argument x.

File Formats

124

Formatted Sequential File Format

Files controlled by formatted sequential input/output statements have an undefined length
record format. One Fortran record correspondsto onelogical record. The length of the unde-
fined length record depends on the Fortran record to be processed. The max length may be
assigned in the OPEN statement RECL = specifier. The carriage-return/line-feed sequence
terminates the logical record. If the $ edit descriptor or \ edit descriptor is specified for the
format of the formatted sequential output statement, the Fortran record does not include the
carriage-return/line-feed sequence.

Unformatted Sequential File Format

Files processed using unformatted sequential input/output statements have a variable length
record format. One Fortran record corresponds to one logical record. The length of the vari-
ablelength record depends on the length of the Fortran record. The length of the Fortran
record includes 4 bytes added to the beginning and end of the logical record. The max length
may be assigned in the OPEN statement RECL = specifier. The beginning areais used when
an unformatted sequential statement is executed. The end areais used when aBACK SPACE
statement is executed.

LF Fortran Express User’'s Guide

Direct File Format

Direct File Format

Files processed by unformatted direct input/output statements have afixed length record for-
mat, with no header record. One Fortran record can correspond to more than one logical
record. The record length must be assigned in the OPEN statement RECL = specifier. If the
Fortran record terminates within alogical record, the remaining part is padded with binary
zeros. If thelength of the Fortran record exceedsthelogical record, the remaining datagoes
into the next record.

Transparent File Format

Files opened with ACCESS="TRANSPARENT"” or FORM="BINARY" are processed asa
stream of bytes with no record separators. While any format of file can be processed trans-
parently, you must know its format to processit correctly.

Determine Load Image Size

To determine the load image size of a protected-mode program, add the starting address of
the last public symbol in the linker map file to the length of that public symbol to get an
approximate load image memory requirement (not execution memory requirement).

Link Time

Certain code can cause the linker to take longer. For example, using hundreds to thousands
of named COMMON blocks causes the linker to slow down. Most of the additional timeis
spent in processing the names themsel ves because Windows (requires certain ordering rules
to be followed within the executable itself.

Y ou can reduce the link time by reducing the number of named COMMON blocks you use.
Instead of coding:

comon /al/ i
common / a2/ j
common /a3/ k
conmon /al000/ k1000
code:
comon /al i,j,k, ..., k1000
Link time may also be reduced by using the - NOVAP option.

LF Fortran Express User'sGuide 125

Appendix A Programming Hints

Year 2000 compliance

The"Y ear 2000" problem arises when a computer program uses only two digits to represent
the current year and assumes that the current century is 1900. A compiler can look for indi-
cations that this might be occurring in a program and issue awarning, but it cannot foresee
every occurrence of thisproblem. Itisultimately the responsibility of the programmer to cor-
rect the situation by modifying the program. The most likely source of problems for Fortran
programsisthe use of the obsolete DATE() subroutine. Even though LF95 will compile and
link programs that use DATE(), its useis strongly discouraged; the use of
DATE_AND_TIME(), which returns a four digit date, is recommended in its place.

LF95 can be made to issue awarning at runtime whenever acall to DATE() ismade. This
can be accomplished by running a program with the runtime options- W, Ry, i for
example,

nyprog. exe -W, Ry, |i
For more information on runtime options, see “ Runtime Options’ on page 129.

126 LF Fortran Express User’s Guide

Limits of Operation.

Limits of Operation.

Table 9: LF95 Limits of Operation

Item

Maximum

program size

4 Gigabytes or available memory (includ-
ing virtual memory), whichever is smaller

number of files open concurrently

Not limited by LF95 language system.

Length of CHARACER datum 2,147,483,647 bytes
I/O block size 65,000 bytes
1/O record length 2,147,483,647 bytes

1/O file size (except transparent access)

18,446,744,073,709,551,614 bytes

I/O file size (transparent access) 4,294,967,296 bytes
[/O maximum number of recor_dsfor direct 2,147 483,647
access and transparent access files

nesting depth of function, array section, 255

array element, and substring references

nesting depth of DO, CASE, and | F state- 50

ments

nesting depth of implied-DO loops 25

nesting depth of INCLUDE files 16

LF Fortran Express User's Guide 127

Appendix A Programming Hints

Table 9: LF95 Limits of Operation

Item

Maximum

number of array dimensions

7

array size

The compiler calculates T for each array
declaration to reduce the number of calcu-
lations needed for array sections or array
element addresses. The absolute value of
T obtained by the formula below must not
exceed 2147483647, and the absolute
value must not exceed 2147483647 for
any intermediate calculations:

n i
T:|1X5+Z Iix[l‘ldm—lX%
m=2

i=2

n: Array dimension number

s: Array element length

I: Lower bound of each dimension

d: Size of each dimension

T: Value calculated for the array declara-
tion

128 LF Fortran Express User’s Guide

Runtime Options

The behavior of the LF95 runtime library can be modified at the time of execution by a set
of commands which are submitted via the command line when invoking the executable pro-
gram, or via shell environment variables. These runtime options can modify behavior of
input/output operations, diagnostic reporting, and floating-point operations.

Runtime options submitted on the command line are returned by the GETCL, GETPARM,
and GETARG functions.

Command Format

Runtime options and user-defined executabl e program opti ons may be specified ascommand
option arguments of an execution command. The runtime options use functions supported by
the LF95 runtime library. Please note that these options are case-sensitive.

The format of runtime optionsis as follows:
exe file [/WI,[runtime optiong],...] [user-defined program argumentsg]...

Where exe_fileindicates the user’s executable program file. The string “/WI,” (or “-WI,")
must precede any runtime options, so they may be identified as such and distinguished from
user-defined program arguments. Notethat itisW followed by alowercase L (not the number
one). Please note also that if an option is specified more than once with different arguments,
thelast occurrence is used.

Command Shell Variable

As an dternative to the command line, the shell variable FORT90L may be used to specify
runtime options. Any runtime options specified in the command line are combined with those
specified in FORTO0L. The command line arguments take precedence over the correspond-
ing options specified in the shell variable FORTO0L.

LF Fortran Express User’sGuide 129

Appendix B Runtime Options

The following examples show how to use the shell variable FORTOOL (the actual meaning
of each runtime option will be described in the sections below):

Example 1:
Setting the value of shell variable FORTO0L and executing the program as such:

set FORT90L=-WI,e99,le
a.exe -W, nm9 /k

has the same effect as the command line
a.exe -W,e99,le,m9 /k

The result is that when executing the program a.exe, the runtime options €99, le, and m99,
and user-defined executable program argument /k are in effect.

Example 2:
When the following command lines are used,

set FORT90L=-WI,e10
a.exe -W, e99

theresult isthat a.exe is executed with runtime option /€99 isin effect, overriding the option
€10 set by shell variable FORTO0L .

Execution Return Values

130

Thefollowing table lists possible values returned to the operating system by an L F95 execut-
able program upon termination and exit. These correspond to the levels of diagnostic output
that may be set by various runtime options:

Table 10: Execution Return Values

Return value Status

0 No error or level | (information message)

4 Level W error (warning)

8 Level E error (medium)

12 Level Serror (serious)

16 Limit exceeded for level W, E, Serror, or alevel U

error (Unrecoverable) was detected
240 Abnormal termination
Other Forcible termination

LF Fortran Express User’'s Guide

Sandard Input and Output

Standard Input and Output

The default unit numbers for standard input, output, and error output for LF95 executable
programs are as follows, and may be changed to different unit numbers by the appropriate
runtime options:

Standard input: Unit number 5
Standard output: Unit number 6
Standard error output: Unit number O

Runtime Options

Runtime options may be specified as arguments on the command line, or in the FORT90L
shell variable. This section explains the format and functions of the runtime options. Please
note that all runtime options are case-sensitive.

The runtime option format is as follows:

/WI [,Cunit] [, M] [,Q] [,Re] [, Rm:file] [, Tunit] [,a] [,dnum] [,enum] [,gnum] [,i]
[lelvI] [,munit] [,n][,punit] [,q] [,runit] [,u] [.X]

When runtime options are specified, the string “/WI” (where | islowercase L) isrequired at
the beginning of the options list, and the options must be separated by commas. If the same
runtime option is specified more than once with different arguments, the last occurrence is
used.

Example:
a.exe /W, a, pl0, x

Description of Options

C or C[unit]

The C option specifies how to process an unformatted file of IBM370-format floating-point
datausing an unformatted input/output statement. When the C option is specified, the data of
an unformatted file associated with the specified unit number is regarded as IBM 370-format
floating-point data in an unformatted input/output statement. The optional argument unit
specifies an integer from 0 to 2147483647 as the unit number. If optional argument unit is
omitted, the C option isvalid for al unit numbers connected to unformatted files. When the
specified unit number is connected to aformatted file, the option isignored for thefile. When
the C option is not specified, the data of an unformatted file associated with unit number unit
isregarded as |EEE-format floating-point data in an unformatted input-output statement.

LF Fortran Express User'sGuide 131

Appendix B Runtime Options

132

Example:
a.exe /W, C10

M

The M option specifies whether to output the diagnostic message (jwe0147i-w) when bits of
the mantissa are lost during conversion of IBM370-1EEE-format floating-point data. If the
M option is specified, a diagnostic message is output if conversion of IBM370-1EEE-format
floating-point data resultsin bits of the mantissa being lost. When the M option is omitted,
the diagnostic message (jwe0147i-w) is not output.

Example:
a.exe /W, M

Q

The Q option suppresses padding of an input field with blanks when a formatted input state-
ment is used to read a Fortran record. This option applies to cases where the field width
needed in aformatted input statement islonger than the length of the Fortran record and the
filewas not opened with and OPEN statement. Theresult isthe ssme asif the PAD= specifier
inan OPEN statement is set to NO. If the Q option isomitted, theinput record is padded with
blanks. The result is the same as when the PAD= specifier in an OPEN statement is set to

Y ES or when the PAD= specifier is omitted.

Example:
a.exe /W, Q

Re

Disables the runtime error handler. Traceback, error summaries, user control of errors by
ERRSET and ERRSAV, and execution of user code for error correction are suppressed. The
standard correction is processed if an error occurs.

Example:
a.exe /W, Re

Rm: filename

The Rm option saves the following output items to the file specified by the filename
argument:

» Messagesissued by PAUSE or STOP statements
* Runtime library diagnostic messages

e Traceback map
e Error summary

LF Fortran Express User’'s Guide

Description of Options

Example:
a.exe /W,Rmerrors.txt

Ry
EnforcesY 2K compliance at runtime by generating ani-level (information) diagnostic when-

ever code is encountered which may cause problems after the year 2000A.D. Must be used
in conjunction with li option in order to view diagnostic output.

Example:
a.exe /W, Ry, i

T or T[u_no]

Big endian integer data, logical data, and | EEE floating-point datais transferred in an unfor-
matted input/output statement. The optional argument u_no isaunit number, val ued between
0 and 2147483647, connected with an unformatted file. If u_no isomitted, T takes effect for
all unit numbers. If both T and Tu_no are specified, then T takes effect for all unit numbers.

Example:
a.exe /W, T10

a

When the a option is specified, an abend is executed forcibly following normal program ter-
mination. This processing is executed immediately before closing external files.

Example:
a.exe /W, a

d[num] 1

The d option determines the size of the input/output work area used by a direct access input/
output statement. The d option improvesinput/output performance when dataisread from or
written to files arecord at atime in sequential record-number order. If the d option is speci-
fied, the input/output work area size is used for all units used during execution.

To specify the size of the input/output work areafor individua units, specify the number of
Fortran recordsin the shell variable FUnnBF where nn is the unit number (see” Shell Vari-
ables for Input/Output” on page 136 for details). When the d option and shell variable are
specified at the same time, the d option takes precedence. The optional argument num spec-
ifies the number of Fortran records, in fixed-block format, included in one block. The
optional argument num must be an integer from 1 to 32767. To obtain the input/output work
areasize, multiply numby the value specified in the RECL = specifier of the OPEN statement.
If thefiles are shared by several processes, the number of Fortran records per block must be
1. If the d option is omitted, the size of the input/output work areais 4K bytes.

LF Fortran Express User'sGuide 133

Appendix B Runtime Options

134

Example:
a.exe /W, d10

e[num]

The e option controls termination based on the total number of execution errors. The option
argument num, specifies the error limit as an integer from 0 to 32767. When numis greater
than or equal to 1, execution terminates when the total number of errors reachesthe limit. If
enumisomitted or numiszero, execution isnot terminated based on the error limit. However,
program execution still terminates if the Fortran system error limit is reached.

Example:
a.exe /W, el0

gnum

The g option sets the size of the input/output work area used by a sequential access input/
output statement. This sizeis set in units of kilobytes for al unit numbers used during exe-
cution. The argument num specifies an integer with avalue of 1 or more. If the g optionis
omitted, the size of the input/output work area defaultsto 8 kilobytes.

The g option improves input/output performance when alarge amount of dataisread from
or written to files by an unformatted sequential accessinput/output statement. The argument
num is used as the size of the input/output work areafor al units. To avoid using excessive
memory, specify the size of the input/output work areafor individual units by specifying the
sizein the shell variable fuxxbf, where xx is the unit number (see" Shell Variables for Input/
Output” on page 136 for details). When the g option is specified at the sametime asthe shell
variable fuxxbf, the g option has precedence.

Example:
a.exe /W, gl0

i

Thei option controls processing of runtime interrupts. When thei option is specified, the For-
tran library is not used to process interrupts. When the i option is not specified, the Fortran
library isused to processinterrupts. Theseinterrupts are exponent overflow, exponent under-
flow, division check, and integer overflow. If runtime option -i is specified, no exception
handling is taken. The u option must not be combined with the i option

Example:
a.exe /Wi

lerrivl errlvl: {i|w|e]|s}

Thel option (lowercase L) controlsthe output of diagnostic messages during execution. The
optional argument errlvl, specifies the lowest error level, i (informational), w (warning), e
(medium), or s (serious), for which diagnostic messages areto be output. If thel optionis not
specified, diagnostic messages are output for error levelsw, e, and s. However, messages
beyond the print limit are not printed.

LF Fortran Express User’'s Guide

Description of Options

i
Theli option outputs diagnostic messages for al error levels.

w
The lw option outputs diagnostic messages for error levelsw, e, s, and u.

e
The le option outputs diagnostic messages for error levelse, s, and u.

S
The s option outputs diagnostic messages for error levels sand u.

Example:
a.exe /W, le

mu_no

The m option connects the specified unit number u_no to the standard error output file where
diagnostic messages are to be written. Argument u_no is an integer from 0 to 2147483647.
If the m option is omitted, unit number 0, the system default, is connected to the standard
error output file. See“ Shell Variables for Input/Output” on page 136 for further details.

Example:
a.exe /W, nl0

n

The n option controls whether prompt messages are sent to standard input. When the n option
isspecified, prompt messages are output when dataisto be entered from standard i nput using
formatted sequential READ statements, including list-directed and namelist statements. If
the n option is omitted, prompt messages are not generated when datais to be entered from
standard input using a formatted sequential READ statement.

Example:
a.exe /W, n

pu_no
The p option connects the unit number u_no to the standard output file, whereu_noisan
integer ranging from 0 to 2147483647. If the p option is omitted, unit number 6, the system
default, is connected to the standard output file. See“ Shell Variables for Input/Output” on
page 136 for further details.

Example:
a.exe /W, pl0

q

The g option specifieswhether to capitalizethe E, EN, ES, D, Q, G, L, and Z edit output char-
acters produced by formatted output statements. This option also specifies whether to
capitalize the alphabetic charactersin the character constants used by the inquiry specifier
(excluding the NAME specifier) in the INQUIRE statement. If the g option is specified, the

LF Fortran Express User'sGuide 135

Appendix B Runtime Options

characters appear in uppercase | etters. If the g option is omitted, the characters appear in low-
ercase |etters. If compiler option - nf i x isin effect, the characters appear in uppercase | etters
so the g option is not required.

Example:
a.exe /W, q

ru_no

Ther option connectsthe unit number u_no to the standard input file during execution, where
u_no isan integer ranging from 0 to 2147483647. If the r option is omitted, unit number 5,
the system default, is connected to the standard input file. See* Shell Variables for Input/
Output” on page 136 for further details.

Example:
a.exe /W, r10

u

The u option controls floating point underflow interrupt processing. If the u option is speci-
fied, the system performs floating point underflow interrupt processing. The system may
output diagnostic message jwe0012i-e during execution. If the u optionisomitted, the system
ignores floating point underflow interrupts and continues processing. Thei option must not
be combined with the u option.

Example:
a.exe /W,u

X

The x option determines whether blanks in numeric edited input data are ignored or treated
as zeros. If the x option is specified, blanks are changed to zeros during numeric editing with
formatted sequential input statements for which no OPEN statement has been executed. The
result isthe same as when the BLANK= specifier in an OPEN statement is set to zero. If the
x option is omitted, blanksin theinput field are treated as null and ignored. The result isthe
same as if the BLANK= specifier in an OPEN statement is set to NULL or if the BLANK=
specifier is omitted.

Example:
a.exe /W, x

Shell Variables for Input/Output

136

This section describes shell variables that control file input/output operations

LF Fortran Express User’'s Guide

Shell Variables for Input/Output

FUnn = filname

The FUNN shell variable connects units and files. The value nn is a unit number. The value
filenameis afile to be connected to unit number nn. The standard input and output files
(FUO05 and FU06) and error file (FU0O0) must not be specified.

The following exampl e shows how to connect myfile.dat to unit number 10 prior to the start
of execution.

Example:
set FULO=nyfil e. dat

FUNnBF = size

The FUNnBF shell variable specifiesthe size of the input/output work area used by a sequen-
tial or direct access input/output statement. The value nnin the FUNNBF shell variable
specifies the unit number. The size argument used for sequential access input/output state-
ments isin kilobytes; the size argument used for direct access input/output statementsisin
records. The size argument must be an integer with avalue of 1 or more. A size argument
must be specified for every unit number.

If this shell variable and the g option are omitted, the input/output work area size used by
sequential accessinput/output statements defaultsto 1 kilobytes. The size argument for direct
access input/output statementsis the number of Fortran records per block in fixed-block for-
mat. The size argument must be an integer from 1 to 32767 that indicates the number of
Fortran records per block. If this shell variable and the d option are omitted, the area sizeis
1K bytes.

Example 1:
Sequential Access Input/Output Statements.

When sequential access input/output statements are executed for unit number 10, the state-
ments use an input/output work area of 64 kilobytes.

set FULOBF=64

Example 2:

Direct Access Input/Output Statements.

When direct access input/output statements are executed for unit number 10, the number of
Fortran records included in one block is 50. The input/output work areasize is obtained by
multiplying 50 by the value specified in the RECL = specifier of the OPEN statement.

set FU10BF=50

LF Fortran Express User's Guide 137

Appendix B Runtime Options

138 LF Fortran Express User’s Guide

INDEX

A

aruntime option 133
-ap option, arithmetic precision 29
API, Windows 78

B

-block, blocksize option 30
Borland C++ 55

Borland Delphi 55, 73
breakpoints 96

Building Import Libraries 57

C

C runtime option 131
-, suppress linking option 30
-chk, checking option 30
-chkglobal, global checking
option 33
-co, display compiler options 33
command files
compiler 24
LIB 111
-comment, insert comment into
executable option 33
compiler 22,28
command files 24
controlling 28
errors 28
Compiler and Linker Options 29
compiler options
description 23
-concc, support carriage control
charactersin consolei/o
option 33
console mode 46

D

d runtime option 133
-dal, deallocate allocatables
option 33
-dbl, double precision option 34
debugger 21
debugging
with FDB 95

DEMO.F90 18

direct fileformat 125

disassembly 103

distribution 19

divide-by-zero 45

-dll, create dynamic link library
option 34

DLLs 22

driver 21

dummy argument 123

DUMPBIN.EXE 115

dynamic link libraries 22

E
eruntime option 134
EDITBIN.EXE 117
efficiency considerations 123
environment variables
FORT90L 129
FUnn 137
FUnNnBF 137
errors
compiler 28

F

-f95, standard conformance checking
option 34
file formats
direct 124
formatted sequential 124
transparent 124
unformatted sequential 124
-file, filename option 34
filenames 22
extensions 22
MOD extension 22
object file 23
output file 23
source file 23
files
HDRSTRIPF90 119
SEQUNF.F90 120
TRYBLK.F90 120
UNFSEQ.EXE 120
-fix, fixed source-form option 35

formatted sequential file format 124

FORT90L environment variable 129

-fullwarn, detailed linker warnings
option 46

FUnn environment variable 137

FUNnNBF environment variable 137

G

g runtime option 134
-g, debug option 35

H

HDRSTRIPF90 119
hints
determining load image
size 125
efficiency considerations 123
fileformats 124
performance considerations 125
side effects 123

i runtime option 134

-i, include path option 35

Import Libraries 57

-in, IMPLICIT NONE option 36

-info, display informational messages
option 36

-inline, inline code option 36

installation 3

invalid operation 45

I0_ERROR.TXT 20

L
Lahey Fortran 95 ExpressUser’s
Guide 20
Lahey Fortran 95 Reference
Manua 20
LFSPLIT.EXE 120
-li, Lahey intrinsic procedures
option 37
LIB
command files 111
responsefiles 111

Lahey/Fujitsu Fortran 95 User’s Guide 139

Index

-libpath, library path option 37
librarian 21, 22, 109
library
linking libraries 50
manager 109
searching rules 50
license activation 9
limits of operation 127
LINK.EXE 22
linker 22
library searching rules 49
linking libraries 50
linking modules 49
overview 48
undocumented options 49
load image size 125
-long, long integers option 37
-It, listing option 37

M

M runtime option 132
m runtime option 135
MAKEDEFEXE 120
-map, create linker map file
option 38
-maxfatals, maximum fatal errors
option 38
Microsoft Visual Basic 55, 71
Microsoft Visua C++ 55, 70
-ml, mixed language option 39,
56
ML_EXTERNAL 59
-mldefault, mixed language
default option 39
MOD filename extension 22
-mod, module path option 39
modules
linking modul e object
files 49

N

nruntime option 135

-nologo, suppress linker banner
option 39

notational conventions 2

@]
-0, object file name option 40
-00, optimization level zero

option 40

-01, optimization level one option 40
02, optimization level 2 option 40
object filenames 23

OpenGL graphics 26

Optimization 40

Option conflicts 24

options

-ap, arithmetic precision 29
-block, blocksize 30
-, suppress linking 30
-chk, checking 30
-chkglobal, global checking 33
-co, display compiler options 33
-conce, support carriage control
charactersin consolei/o 33
-dal, deallocate alocatables 33
-dbl, double precision option 34
-f95, standard conformance
checking 34
-file, filename 34
-fix, fixed source-form 35
-g, debug 35
-i, include path 35
-in, IMPLICIT NONE 36
-info, display informational
messages 36
-inling, inline code 36
-li, Lahey intrinsic procedures 37
linker
-comment, insert comment
into executable 33
-dll, create dynamic link
library 34
-fullwarn, detailed linker
warnings 46
-libpath, library path 37
-map, create map file 38
-nologo, suppress linker
banner 39
-out, output file 40
-stack, set stack size 42
-staticlib, static or dynamic
runtime libraries 43
undocumented 49
-warn, publish linker
warnings 46
-long, long integers 37
-, listing 37
-maxfatals 38

140 Lahey/Fujitsu Fortran 95 User’s Guide

-ml, mixed language 39

-mldefault, mixed language
default 39

-mod, module path 39

-0, object file name 40

-00, optimization level zero 40

-01, optimization level one 40

-02, optimization level 2 40

-pause, pause after program
completion 40

-pca, protect constant
arguments 41

-prefetch, prefetch optimization
option 41

-private, module accessiblity 42

-quad, quadruple precision 42

-sav, SAVE local variables 42

-sse2, use streaming SIMD exten-
sions2 42

-staticlink, mixed language static
linking 43

-stehk, stack overflow
checking 43

-Swm, suppress warning
messages 44

-tp, target Pentium 44

-tp4, target Pentium 4 44

-tpp, target Pentium Pro 44

-trace, runtime error
traceback 44

-trap, trap NDP exceptions 45

--unroll, loop unrolling 45

--varheap, local variable on
heap 45

-version, display versioninfo 46

-w, publish compiler
warnings 46

-wide, wide format fixed form
code 46

-win, create Windows
application 46

-wo, obsolescent feature
warning 47

-xref, cross-reference listing 47

-zero, include variablesinitial-
izedto zero 48

--zfm, zero flash mode for SSE2
ingtructions 48

-out, output file option 40
output filenames 23

Index

overflow 45

P

p runtime option 135

-pause, pause after program
completion 40

-pca, protect constant arguments
option 41

preconnected units, standard i/
o 131

-prefetch, prefetch optimization
option 41

-private, module accessibility
option 42

program size 127

programming hints 123

Q

Q runtime option 132

g runtime option 135

-quad, quadruple precision
option 42

R

r runtime option 136
Re runtime option 132
README.TXT 19
README_PORT_56.TXT 19
README_PORT_LF90.TXT 19
README_SERVICE_ROUTINES
TIXT 19

registering 14
Repairing LF95 17
requirements

system 2
Resource Compiler 22
response files

compiler 24

LIB 111
return codes 25
return values, execution 130
Rm runtime option 132
RTERRMSGTXT 20
runtime options

a 133

C 131

d 133

e 134

g 134

i 134

M 132

m 135

n 135

p 135

Q 132

g 135

r 136

Re 132

Rm 132

Ry 133

T 133

u 136

X 136
runtime options, syntax 131
Ry runtime option 133

S

-sav, SAVE local variables option 42
searching rules
library 50

SEQUNF.F90 120

side effects 123

SIMD 42

source filenames 23

Split utility 120

SSE2 42,48

-sse2, use streaming SIMD extensions 2
option 42

-stack, set stack size option 42

standard input/output units 131

static linking 58

-staticlib, static or dynamic Linking of
Fortran runtime libraries option 43

-staticlink, mixed language static link-
ing option 43

-stchk, stack overflow checking
option 43

step 99

support services 129

-Swm, suppress warning message(s)
option 44

system requirements 2

T
T runtime option 133

Technical Support 20

-tp, target Pentium option 44

-tp4, target Pentium 4 option 44
-tpp, target Pentium Pro option 44

-trace, runtime error traceback
option 44
transparent fileformat 125
-trap, trap NDP exceptions option 45
TRYBLK.F90 120

U

uruntime option 136

underflow 45

unformatted sequential file
format 124

UNFSEQ.EXE 120

Uninstalling LF95 18

--unroll, loop unrolling option 45

\%

--varheap, local variables on heap
option 45
-version, display versioninfo 46

w

-w, publish compiler warnings
option 46

-warn, publish linker warnings
option 46

WHERE.EXE 121

-wide, wide format fixed form
code 46

-win, create Windows application
option 46

-winconsol e, Windows console-mode
switch 46

Windows 46

Windows APl 78

Windows console-mode 46

-wo, obsolescent feature warning
option 47

X

X runtime option 136
-xref, cross-reference listing
option 47

Y

Y 2K compliance, Ry runtime
option 133

Z
-zero, include variablesinitialized to

Lahey/Fujitsu Fortran 95 User’s Guide 141

Index

zero option 48
--zfm, zero flash mode for SSE2
instructions option 48

142 Lahey/Fujitsu Fortran 95 User’s Guide

	Getting Started
	Manual Organization
	Notational Conventions
	System Requirements
	Installing Lahey/Fujitsu Fortran 95
	License Activation
	License Activation
	Activation During Installation
	The License Activation Utility Program
	Purchase or Upgrade License
	Activate or Reactivate a License
	Manually Activate a License
	After Activation

	Product Registration
	Maintenance Updates
	Repairing LF95
	Uninstalling LF95
	Building Your First LF95 Program
	Generating the Executable Program
	Running the Program

	What’s Next?
	Other Sources of Information
	Files
	Manuals
	Newsletters
	Lahey Web Page

	Technical Support

	Developing with LF95
	The Development Process
	How the Driver Works
	Running LF95
	Filenames
	Source Filenames
	Object Filenames
	Output Filenames

	Options
	Conflicts Between Options

	Driver Configuration File (LF95.FIG)
	Command Files
	Passing Information
	Return Codes from the Driver
	Creating a Console-Mode Application
	Creating a Windows GUI application
	Creating a 32-bit Windows DLL
	Creating a static library
	OpenGL Graphics Programs
	The OpenGL Libraries
	The f90gl Libraries & Modules
	Example Programs
	Sources of Information

	Controlling Compilation
	Errors in Compilation

	Compiler and Linker Options
	-[N]AP
	-BLOCK blocksize
	-[N]C
	-[N]CHK [([a][,e][,s][,u][,x])]
	-[N]CHKGLOBAL
	-[N]CO
	-COMMENT comment
	-[N]CONCC
	-[N]DAL
	-[N]DBL
	-[N]DLL
	-[N]F95
	-FILE filename
	-[N]FIX
	-[N]G
	-I path1[;path2 ...]
	-[N]IN
	-[N]INFO
	-[N]INLINE [(arg[,arg[,...]])]
	-[N]LI
	-LIBPath dir1[,dir2 ...]
	-[N]LONG
	-[N]LST [(f=fval[,i=ival])]
	-[NO]MAP filename
	-[N]MAXFATALS number
	-ML { bc | bd | fc | lf90 | lf95 | msvb | msvc | winapi }
	-MLDEFAULT { bc | bd | fc | lf90 | lf95 | msvb | msvc | winapi }
	-MOD dir1[;dir2 ...]
	-NOLOGO
	{ -O0 | -O1 | -O2 }
	-O filename
	-OUT filename
	-[N]PAUSE
	-[N]PCA
	-[N]PREFETCH [{ 1 | 2 }]
	-[N]PRIVATE
	-[N]QUAD
	-[N]SAV
	-[n]SSE2
	-STACK reserve[:commit]
	-[N]STATICLIB
	-[N]STATICLINK
	-[N]STCHK
	-[N]SWM msgno
	{ -TP | -TPP | -TP4 }
	-[N]TRACE
	�[N]TRAP [d][i][o][u]
	-[N]UNROLL [(limit)]
	-[N]VARHEAP [(size)]
	-VERSION
	-[N]W
	-WARN, -FULLWARN
	-[N]WIDE
	-WIN or -WINCONSOLE
	-[N]WO
	-[N]XREF [(f=fval[,i=ival])]
	-[N]ZERO
	-[N]ZFM

	Linking
	Link Environment Variables
	Additional Linker Options
	Linking Fortran 95 Modules
	Object File Processing Rules
	Linking Libraries

	Recommended Option Settings

	Mixed Language Programming
	Dynamically linked applications
	Supported language systems
	Declaring calling conventions
	Building Fortran DLLs
	Building Import Libraries
	Delivering Applications with LF95 DLLs

	Statically linked Fortran and C applications
	Calling Conventions
	Argument Passing
	Passing Arrays in C or C++

	Variable Type Correspondence

	Fortran Calling Fortran DLLs
	Fortran and C applications
	Fortran calling C DLLs
	C Calling Fortran DLLs
	Referencing DLL Procedures

	Passing Data

	Microsoft Visual Basic Information
	Visual Basic calling Fortran
	Running the Visual Basic Demo

	Declaring your Procedure in Visual Basic
	Passing Character Data in Visual Basic
	Passing Arrays in Visual Basic

	Borland Delphi Information
	Delphi Calling Fortran
	Running the Delphi Calling Fortran Demo

	Fortran Calling Delphi DLLs
	Running the Fortran Calling Delphi Demo

	Declaring your Procedure in Delphi
	Passing Character Data in Delphi
	Passing Arrays in Delphi

	Calling Fortran DLL’s from .NET Applications
	Calling LF95 DLLs from Microsoft C#
	Calling LF95 DLLs from Microsoft Visual Basic .NET
	Calling LF95 DLLs from Microsoft Visual C++ .NET

	Calling the Windows API
	Calling assembly language procedures
	LF95 Conventions
	Entry Point Name Mangling
	Saved Registers
	Argument Passing

	Passing Arguments to Subroutines
	Returning Values from Functions
	LF95 Function Conventions

	Command-Line Debugging with FDB
	Starting FDB
	Commands
	Executing and Terminating a Program
	Shell Commands
	Breakpoints
	General Syntax

	Controlling Program Execution
	Displaying Program Stack Information
	Setting and Displaying Program Variables
	Source File Display
	Automatic Display
	Symbols
	Scripts
	Signals
	Miscellaneous Controls
	Files
	Fortran 95 Specific
	Communicating with fdb

	Library Manager
	LIB Syntax:
	Options
	/CONVERT
	/DEF[:filename]
	/EXPORT:symbol
	/EXTRACT:membername
	/INCLUDE:symbol
	/LIBPATH:dir
	/LINK50COMPAT
	/LIST[:filename]
	/NODEFAULTLIB[:library]
	/NOLOGO
	/OUT:libname
	/REMOVE:membername
	/VERBOSE

	Response Files
	Creating and maintaining COFF libraries
	Extracting object files from libraries
	Creating import libraries

	Utility Programs
	DUMPBIN.EXE
	Invoking DUMPBIN
	dumpbin [options] files

	DUMPBIN Options
	Option list
	-ALL
	-ARCHIVEMEMBERS
	-DEPENDENTS
	-DISASM
	-EXPORTS
	-HEADERS
	-IMPORTS
	-LINKERMEMBER[:lev]
	-OUT:filename
	-RAWDATA:option
	BYTES - Default setting. Contents are displayed in hexadecimal bytes, and in ASCII.
	SHORTS - Contents are displayed in hexadecimal words.
	LONGS - Contents are displayed in hexadecimal long words.
	NONE - Display of raw data is suppressed.
	-RELOCATIONS
	-SECTION:section
	-SUMMARY
	-SYMBOLS

	EDITBIN.EXE
	Invoking EDITBIN
	editbin [options] files

	EDITBIN Options
	Option list
	-BIND[:PATH=path]
	-HEAP:reserve[,commit]
	-LARGEADDRESSAWARE
	-NOLOGO
	-REBASE[:modifiers]
	-RELEASE
	-SECTION:name[=newname][,properties][,alignment]
	c - code
	d - discardable
	e - executable
	i - initialized data
	k - cached virtual memory
	m - link remove
	o - link info
	p - paged virtual memory
	r - read
	s - shared
	u - uninitialized data
	1 - 1 byte
	2 - 2 bytes
	4 - 4 bytes
	8 - 8 bytes
	p - 16 bytes
	t - 32 bytes
	s - 64 bytes
	-STACK:reserve[,commit]
	-SUBSYSTEM:system[,major[.minor]]
	-VERSION:left[,right]

	Places a version number into the header of the image.
	left indicates the portion of the version number that appears to the left of the decimal point.

	HDRSTRIP.F90
	LFSPLIT.EXE
	MAKEDEF.EXE
	SEQUNF.F90
	TRYBLK.F90
	UNFSEQ.F90
	WHERE.EXE
	Invoking WHERE
	WHERE [/r dir] [/Qqte] pattern ...
	Where:
	Examples

	Programming Hints
	Efficiency Considerations
	Side Effects
	File Formats
	Formatted Sequential File Format
	Unformatted Sequential File Format
	Direct File Format
	Transparent File Format

	Determine Load Image Size
	Link Time
	common /a1/ i
	common /a2/ j
	common /a3/ k
	...

	Year 2000 compliance
	myprog.exe -Wl,Ry,li

	Limits of Operation.
	Table 9: LF95 Limits of Operation

	Runtime Options
	Command Format
	Command Shell Variable
	Example 1:
	set FORT90L=-Wl,e99,le
	a.exe -Wl,m99 /k
	a.exe -Wl,e99,le,m99 /k
	Example 2:

	set FORT90L=-Wl,e10
	a.exe -Wl,e99

	Execution Return Values
	Table 10: Execution Return Values

	Standard Input and Output
	Runtime Options
	/Wl [,Cunit] [,M] [,Q] [,Re] [,Rm:file] [,Tunit] [,a] [,dnum] [,enum] [,gnum] [,i] [,lelvl] [,mun...
	Example:

	a.exe /Wl,a,p10,x
	Description of Options
	C or C[unit]
	Example:
	a.exe /Wl,C10

	M
	Example:
	a.exe /Wl,M

	Q
	Example:
	a.exe /Wl,Q

	Re
	Example:
	a.exe /Wl,Re

	Rm: filename
	Example:
	a.exe /Wl,Rm:errors.txt

	Ry
	Example:

	T or T[u_no]
	Example:
	a.exe /Wl,T10

	a
	Example:
	a.exe /Wl,a

	d[num] 1
	Example:
	a.exe /Wl,d10

	e[num]
	Example:
	a.exe /Wl,e10

	gnum
	Example:
	a.exe /Wl,g10

	i
	Example:
	a.exe /Wl,i

	lerrlvl errlvl: { i | w | e | s }
	i
	w
	e
	s
	Example:
	a.exe /Wl,le

	mu_no
	Example:
	a.exe /Wl,m10

	n
	Example:
	a.exe /Wl,n

	pu_no
	Example:
	a.exe /Wl,p10

	q
	Example:
	a.exe /Wl,q

	ru_no
	Example:
	a.exe /Wl,r10

	u
	Example:
	a.exe /Wl,u

	x
	Example:
	a.exe /Wl,x

	Shell Variables for Input/Output
	FUnn = filname
	Example:
	set FU10=myfile.dat

	FUnnBF = size
	Example 1:
	set FU10BF=64
	Example 2:

