
LF Fortran 95 Language 
Reference
Revision G.02



Copyright
Copyright © 1994-2004 by Lahey Computer Systems, Inc. All rights reserved worldwide. This manual
is protected by federal copyright law. No part of this manual may be copied or distributed, transmitted,
transcribed, stored in a retrieval system, or translated into any human or computer language, in any form
or by any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties.

Trademarks
Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Disclaimer
Lahey Computer Systems, Inc. and Fujitsu, Ltd. reserve the right to revise their software and publications
with no obligation to notify any person or any organization of such revision. In no event shall Lahey
Computer Systems, Inc. or Fujitsu, Ltd. be liable for any loss of profit or any other commercial damage,
including but not limited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
 865 Tahoe Boulevard

 P.O. Box 6091
Incline Village, NV 89450-6091

(775) 831-2500
Fax: (775) 831-8123

http://www.lahey.com

Technical Support
support2@lahey.com (all versions)



Table of Contents

Introduction...........................................vii

Manual Organization .....................................vii
Notational Conventions ................................viii

Elements of Fortran................................1
Character Set.................................................... 1
Names .............................................................. 1
Statement Labels.............................................. 2
Source Form .................................................... 2
Data.................................................................. 4
Expressions .................................................... 19
Input/Output................................................... 22
Input/Output Editing...................................... 25
Statements...................................................... 33
Executable Constructs ................................... 42
Procedures ..................................................... 43
Program Units................................................ 55
Scope ............................................................. 58

Alphabetical Reference........................61
ABS Function ................................................ 61
ACHAR Function .......................................... 62
ACOS Function ............................................. 62
ADJUSTL Function....................................... 63
ADJUSTR Function ...................................... 63
AIMAG Function .......................................... 64
AINT Function .............................................. 64
ALL Function ................................................ 65
ALLOCATABLE Statement ......................... 66
ALLOCATE Statement ................................. 67
ALLOCATED Function ................................ 69
ANINT Function............................................ 69
ANY Function ............................................... 70
Arithmetic IF Statement  (obsolescent) ......... 71
ASIN Function............................................... 72
Assigned GOTO Statement  (obsolescent) .... 73
ASSIGN Statement  (obsolescent) ................ 73
Assignment Statement ................................... 74
ASSOCIATED Function ............................... 77
ATAN Function ............................................. 78

ATAN2 Function ...........................................79
BACKSPACE Statement ...............................80
BIT_SIZE Function........................................81
BLOCK DATA Statement .............................81
BTEST Function ............................................82
CALL Statement ............................................83
CARG Function .............................................86
CASE Construct .............................................88
CEILING Function.........................................90
CHAR Function .............................................91
CHARACTER Statement...............................91
CLOSE Statement ..........................................94
CMPLX Function...........................................95
COMMON Statement ....................................96
COMPLEX Statement....................................98
Computed GOTO Statement  (obsolescent).100
CONJG Function..........................................101
CONTAINS Statement.................................102
CONTINUE Statement ................................103
COS Function...............................................103
COSH Function............................................104
COUNT Function.........................................104
CPU_TIME Subroutine................................105
CSHIFT Function.........................................106
CYCLE Statement........................................107
DATA Statement..........................................108
DATE_AND_TIME Subroutine ..................110
DBLE Function ............................................111
DEALLOCATE Statement ..........................112
DIGITS Function .........................................113
DIM Function...............................................113
DIMENSION Statement ..............................114
DLL_EXPORT Statement ...........................115
DLL_IMPORT Statement............................116
DO Construct ...............................................116
DOT_PRODUCT Function..........................119
DOUBLE PRECISION Statement...............120
DPROD Function .........................................122
DVCHK Subroutine (Windows Only) .........122
ELEMENTAL  Procedure............................123
LF Fortran 95 Language Reference iii



Contents
END Statement............................................ 125
ENDFILE Statement ................................... 126
ENTRY Statement....................................... 127
EOSHIFT Function ..................................... 129
EPSILON Function ..................................... 130
EQUIVALENCE Statement........................ 131
ERROR Subroutine ..................................... 132
EXIT Statement ........................................... 133
EXIT Subroutine ......................................... 133
EXP Function .............................................. 134
EXPONENT Function................................. 134
EXTERNAL Statement ............................... 135
FLOOR Function......................................... 136
FLUSH Subroutine...................................... 137
FORALL Construct ..................................... 137
FORALL Statement .................................... 138
FORMAT Statement ................................... 139
FRACTION Function.................................. 146
FUNCTION Statement................................ 146
GETCL Subroutine...................................... 149
GETENV Subroutine .................................. 149
GO TO Statement........................................ 150
HUGE Function........................................... 150
IACHAR Function ...................................... 151
IAND Function............................................ 152
IBCLR Function .......................................... 152
IBITS Function............................................ 153
IBSET Function........................................... 154
ICHAR Function ......................................... 155
IEOR Function ............................................ 155
IF Construct ................................................. 156
IF Statement ................................................ 157
IMPLICIT Statement................................... 158
INCLUDE Line ........................................... 160
INDEX Function ......................................... 161
INQUIRE Statement.................................... 162
INT Function ............................................... 166
INTEGER Statement................................... 167
INTENT Statement...................................... 168
INTERFACE Block .................................... 169
INTRINSIC Statement ................................ 175
INVALOP Subroutine (Windows only)...... 176
IOR Function............................................... 176
IOSTAT_MSG Subroutine.......................... 177

ISHFT Function ...........................................178
ISHFTC Function.........................................179
KIND Function ............................................179
LBOUND Function......................................180
LEN Function...............................................181
LEN_TRIM Function...................................182
LGE Function...............................................182
LGT Function...............................................183
LLE Function ...............................................184
LLT Function ...............................................185
LOG Function ..............................................186
LOG10 Function ..........................................187
LOGICAL Function.....................................187
LOGICAL Statement ...................................188
MATMUL Function.....................................190
MAX Function .............................................191
MAXEXPONENT Function........................192
MAXLOC Function .....................................192
MAXVAL Function.....................................193
MERGE Function ........................................194
MIN Function...............................................195
MINEXPONENT Function .........................196
MINLOC Function.......................................197
MINVAL Function ......................................198
ML_EXTERNAL Statement .......................199
MOD Function .............................................199
MODULE Statement ...................................200
MODULE PROCEDURE Statement...........201
MODULO Function.....................................202
MVBITS Subroutine....................................202
NAMELIST Statement ................................203
NDPERR Function (Windows Only)...........204
NDPEXC Subroutine (Windows Only) .......205
NEAREST Function ....................................206
NINT Function.............................................206
NOT Function ..............................................207
NULL Function............................................208
NULLIFY Statement ...................................208
OPEN Statement ..........................................209
OPTIONAL Statement.................................212
OVEFL Subroutine (Windows Only) ..........213
PACK Function............................................213
PARAMETER Statement ............................214
PAUSE Statement (obsolescent)..................215
iv LF Fortran 95 Language Reference



Contents
Pointer Assignment Statement..................... 215
POINTER Function ..................................... 216
POINTER Statement ................................... 217
PRECFILL Subroutine ................................ 218
PRECISION Function ................................. 218
PRESENT Function..................................... 219
PRINT Statement......................................... 220
PRIVATE Statement ................................... 221
PRODUCT Function ................................... 222
PROGRAM Statement ................................ 223
PUBLIC Statement ...................................... 224
PURE Procedure.......................................... 225
RADIX Function ......................................... 226
RANDOM_NUMBER Subroutine.............. 227
RANDOM_SEED Subroutine ..................... 227
RANGE Function ........................................ 228
READ Statement ......................................... 229
REAL Function............................................ 231
REAL Statement.......................................... 232
REPEAT Function....................................... 234
RESHAPE Function .................................... 234
RETURN Statement .................................... 235
REWIND Statement .................................... 236
RRSPACING Function................................ 237
SAVE Statement.......................................... 237
SCALE Function ......................................... 238
SCAN Function ........................................... 239
SELECTED_INT_KIND Function ............. 240
SELECTED_REAL_KIND Function.......... 241
SEQUENCE Statement ............................... 242
SET_EXPONENT Function........................ 242
SHAPE Function ......................................... 243
SIGN Function............................................. 244
SIN Function................................................ 244
SINH Function............................................. 245
SIZE Function.............................................. 245
SPACING Function ..................................... 246
SPREAD Function....................................... 247
SQRT Function............................................ 248
Statement Function ...................................... 248
STOP Statement .......................................... 249
SUBROUTINE Statement ........................... 250
SUM Function ............................................. 251
SYSTEM Function (Linux only) ................. 252

SYSTEM Subroutine ...................................252
SYSTEM_CLOCK Subroutine....................253
TAN Function ..............................................253
TANH Function ...........................................254
TARGET Statement .....................................255
TINY Function .............................................255
TRANSFER Function ..................................256
TRANSPOSE Function................................257
TRIM Function.............................................257
Type Declaration Statement.........................258
TYPE Statement...........................................258
UBOUND Function .....................................260
UNDFL Subroutine (Windows Only) ..........261
UNPACK Function ......................................262
USE Statement .............................................263
VAL Function ..............................................264
VALUE Statement .......................................265
VERIFY Function ........................................266
VOLATILE Statement .................................267
WHERE Construct .......................................268
WHERE Statement.......................................270
WRITE Statement ........................................271

Fortran 77 Compatibility ....................275
Different Interpretation Under Fortran 95....275
Different Interpretation Under Fortran 90....275
Obsolescent Features....................................276

New in Fortran 95................................277

Intrinsic Procedures ...........................283

Porting Extensions .............................305

Glossary ..............................................309

ASCII Character Set............................319
LF Fortran 95 Language Reference v



Contents
vi LF Fortran 95 Language Reference



1 Introduction
Lahey/Fujitsu Fortran 95 (LF95) is a complete implementation of the Fortran 95 standard.  
Numerous popular extensions are supported.

This manual is intended as a reference to the Fortran 95 language for programmers with expe-
rience in Fortran.  For information on creating programs using the LF95 Language System, 
see the Lahey/Fujitsu Fortran 95 User’s Guide.

Manual Organization
The manual is organized in eight parts:

• Chapter 1, Elements of Fortran, takes an elemental, building-block approach, start-
ing from Fortran’s smallest elements, its character set, and proceeding through 
source form, data, expressions, input/output, statements, executable constructs, and 
procedures, and ending with program units.

• Chapter 2, Alphabetical Reference, gives detailed syntax and constraints for Fortran 
statements, constructs, and intrinsic procedures.

• Appendix A, Fortran 77 Compatibility, discusses issues of concern to programmers 
who are compiling their Fortran 77 code with LF95.

• Appendix B, New in Fortran 95, lists Fortran 95 features that were not part of stan-
dard Fortran 77.

• Appendix C, Intrinsic Procedures, is a table containing brief descriptions and spe-
cific names of procedures included with LF95.

• Appendix D, Porting Extensions, lists the various non-standard features provided to 
facilitate porting from other systems.

• Appendix E, Glossary, defines various technical terms used in this manual.

• Appendix F, ASCII Chart, details the 128 characters of the ASCII set.
LF Fortran 95 Language Reference vii



Introduction
Notational Conventions
The following conventions are used throughout the manual:

blue text indicates an extension to the Fortran 95 standard.

code is indicated by courier font.

In syntax descriptions, [brackets] enclose optional items.  An ellipsis, “...”, following an 
item indicates that more items of the same form may appear.  Italics indicate text to be 
replaced by you.  Non-italic letters in syntax descriptions are to be entered exactly as they 
appear.
viii LF Fortran 95 Language Reference



1 Elements of Fortran
Character Set
The Fortran character set consists of

• letters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

• digits:

0 1 2 3 4 5 6 7 8 9

• special characters:

<blank> = + - * / ( ) , . ' : ! " % & ; < > ? $

• and the underscore character ‘_’.

Special characters are used as operators, as separators or delimiters, or for grouping.  

‘?’ and ‘$’ have no special meaning.

Lower case letters are equivalent to corresponding upper-case letters except in CHARAC-
TER literals.

The underscore character can be used as a non-leading significant character in a name.

Names
Names are used in Fortran to refer to various entities such as variables and program units.  A 
name starts with a letter or a ‘$’ and consists entirely of letters, digits, underscores, and the 
‘$’ character.  A standard conforming name must be 31 characters or less in length, but LF95 
accepts names of up to 240 characters in length.
LF Fortran 95 Language Reference 1



Chapter 1    Elements of Fortran
Examples of legal Fortran names are:

aAaAa apples_and_oranges r2d2

rose ROSE Rose

The three representations for the names on the line immediately above are equivalent.

The following names are illegal:

_start_with_underscore

2start_with_a_digit

name_toooooooooooooooooooooooooooooooooooooooooooooooooooo&

&ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo&

&ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo&

&ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo&

&ooooooooo_long

illegal_@_character

Statement Labels
Fortran statements can have labels consisting of one to five digits, at least one of which is 
non-zero.  Leading zeros are not significant in distinguishing statement labels.  The following 
labels are valid:

123

5000

10000

1

0001

The last two labels are equivalent.  The same statement label must not be given to more than 
one statement in a scoping unit.

Source Form
Fortran offers two source forms: fixed and free.  

Fixed Source Form
Fixed source form is the traditional Fortran source form and is based on the columns of a 
punched card.  There are restrictions on where statements and labels can appear on a line.  
Except in CHARACTER literals, blanks are ignored.
2 LF Fortran 95 Language Reference



Free Source Form
Except within a comment:

• Columns 1 through 5 are reserved for statement labels.  Labels can contain blanks.

• Column 6 is used only to indicate a continuation line.  If column 6 contains a blank 
or zero, column 7 begins a new statement.  If column 6 contains any other character, 
columns 7 through 72 are a continuation of the previous non-comment line.  There 
can be up to 19 continuation lines.  Continuation lines must not be labeled.  

• Columns 7 through 72 are used for Fortran statements.

• Columns after 72 are ignored.

Fixed source form comments are formed by beginning a line with a ‘C’ or a ‘*’ in column 1.  
Additionally, trailing comments can be formed by placing a ‘!’ in any column except column 
6.  A ‘!’ in a CHARACTER literal does not indicate a trailing comment.  Comment lines 
must not be continued, but a continuation line can contain a trailing comment.  An END state-
ment must not be continued.

The ‘;’ character can be used to separate statements on a line.  If it appears in a CHARAC-
TER literal or in a comment, the ‘;’ character is not interpreted as a statement separator.

Free Source Form
In free source form, there are no restrictions on where a statement can appear on a line.  A 
line can be up to 132 characters long.  Blanks are used to separate names, constants, or labels 
from adjacent names, constants, or labels.  Blanks are also used to separate Fortran keywords, 
with the following exceptions, for which the blank separator is optional:

• BLOCK DATA
• DOUBLE PRECISION
• ELSE IF
• END BLOCK DATA
• END DO
• END FILE
• END FUNCTION
• END IF
• END INTERFACE
• END MODULE
• END PROGRAM
• END SELECT
• END SUBROUTINE
• END TYPE
• END WHERE
• GO TO
• IN OUT
• SELECT CASE
LF Fortran 95 Language Reference 3



Chapter 1    Elements of Fortran
The ‘!’ character begins a comment except when it appears in a CHARACTER literal.  The 
comment extends to the end of the line.

The ‘;’ character can be used to separate statements on a line.  If it appears in a CHARAC-
TER literal or in a comment, the ‘;’ character is not interpreted as a statement separator.

The ‘&’ character as the last non-comment, non-blank character on a line indicates the line is 
to be continued on the next non-comment line.  If a name, constant, keyword, or label is split 
across the end of a line, the first non-blank character on the next non-comment line must be 
the ‘&’ character followed by successive characters of the name, constant, keyword, or label.  
If a CHARACTER literal is to be continued, the ‘&’ character ending the line cannot be fol-
lowed by a trailing comment.  A free source form statement can have up to 39 continuation 
lines.

Comment lines cannot be continued, but a continuation line can contain a trailing comment.  
A line cannot contain only an ‘&’ character or contain an ‘&’ character as the only character 
before a comment.  

Data
Fortran offers the programmer a variety of ways to store and refer to data.  You can refer to 
data literally, as in the real numbers 4.73 and 6.23E5, the integers -3000 and 65536, or the 
CHARACTER literal "Continue (y/n)?".  Or, you can store and reference variable data, 
using names such as x or y, DISTANCE_FROM_ORIGIN or USER_NAME.  Constants such as pi 
or the speed of light can be given names and constant values.  You can store data in a fixed-
size area in memory, or allocate memory as the program needs it.  Finally, Fortran offers var-
ious means of creating, storing, and referring to structured data, through use of arrays, 
pointers, and derived types.  

Intrinsic Data Types
The five intrinsic data types are INTEGER, REAL, COMPLEX, LOGICAL, and CHARAC-
TER.  The DOUBLE PRECISION data type available in Fortran 77 is still supported, but is 
considered a subset, or kind, of the REAL data type.  

Kind
In Fortran, an intrinsic data type has one or more kinds.  In LF95 for the CHARACTER, 
INTEGER, REAL, and LOGICAL data types, the kind type parameter (a number used to 
refer to a kind) corresponds to the number of bytes used to represent each respective kind.  
For the COMPLEX data type, the kind type parameter is the number of bytes used to repre-
sent the real or the imaginary part.  Two intrinsic inquiry functions, SELECTED_INT_KIND 
4 LF Fortran 95 Language Reference



Kind
and SELECTED_REAL_KIND, are provided.  Each returns a kind type parameter based on 
the required range and precision of a data object in a way that is portable to other Fortran 90 
or 95 systems.  The kinds available in LF95 are summarized in the following table:

*  default kinds

Table 1: Intrinsic Data Types

Type Kind Type 
Parameter Notes

INTEGER 1 Range:  -128  to  127

INTEGER 2 Range:  -32,768  to  32,767

INTEGER 4* Range:  -2,147,483,648  to  2,147,483,647

INTEGER 8 Range:  -9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807

REAL 4* Range:   1.18 * 10-38  to  3.40 * 1038 
Precision:  6-7 decimal digits

REAL 8 Range:  2.23 * 10-308  to  1.79 * 10308 
Precision:  15-16 decimal digits 

REAL 16 Range:  10-4931  to  104932 
Precision:  approximately 33 decimal digits 

COMPLEX 4* Range:  1.18 * 10-38  to  3.40 * 1038 
Precision:  7-8 decimal digits

COMPLEX 8 Range:  2.23 * 10-308  to  1.79 * 10308 
Precision:   15-16 decimal digits

COMPLEX 16 Range:  10-4931  to  104932 
Precision:  approximately 33 decimal digits 

LOGICAL 1 Values: .TRUE.  and .FALSE.

LOGICAL 4* Values: .TRUE.  and .FALSE.

CHARACTER 1* ASCII character set
LF Fortran 95 Language Reference 5



Chapter 1    Elements of Fortran
Length
The number of characters in a CHARACTER data object is indicated by its length type 
parameter.  For example, the CHARACTER literal “Half Marathon” has a length of 
thirteen.

Literal Data
A literal datum, also known as a literal, literal constant, or immediate constant, is specified 
as follows for each of the Fortran data types.  The syntax of a literal constant determines its 
intrinsic type.

INTEGER literals
An INTEGER literal consists of one or more digits preceded by an optional sign (+ or -) and 
followed by an optional underscore and kind type parameter.  If the optional underscore and 
kind type parameter are not present, the INTEGER literal is of default kind.  Examples of 
valid INTEGER literals are

34 -256 345_4 +78_mykind

34 and -256 are of type default INTEGER.  345_4 is an INTEGER of kind 4 (default INTE-
GER in LF95).  In the last example,  mykind must have been previously declared as a scalar 
INTEGER named constant with the value of an INTEGER kind type parameter (1, 2, or 4 in 
LF95).  

A binary, octal, or hexadecimal constant can appear in a DATA statement.  Such constants 
are formed by enclosing a series of binary, octal, or hexadecimal digits in apostrophes or quo-
tation marks, and preceding the opening apostrophe or quotation mark with a B, O, or Z for 
binary, octal, and hexadecimal representations, respectively.  Two valid examples are

B'10101' Z"1AC3"

REAL literals
A REAL literal consists of one or more digits containing a decimal point (the decimal point 
can appear before, within, or after the digits), optionally preceded by a sign (+ or -), and 
optionally followed by an exponent letter and exponent, optionally followed by an under-
score and kind type parameter.  If an exponent letter is present the decimal point is optional.  
The exponent letter is E for single precision, D for double precision, or Q for quad precision.  
If the optional underscore and kind type parameter are not present, the REAL literal is of 
default kind.  Examples of valid REAL literals are

-3.45 .0001 34.E-4 1.4_8

The first three examples are of type default REAL.  The last example is a REAL of kind 8.
6 LF Fortran 95 Language Reference



Literal Data
COMPLEX literals
A COMPLEX literal is formed by enclosing in parentheses a comma-separated pair of REAL 
or INTEGER literals.  The first of the REAL or INTEGER literals represents the real part of 
the complex number; the second represents the imaginary part.  The kind type parameter of 
a COMPLEX constant is 16 if either the real or the imaginary part or both are quadruple pre-
cision REAL, 8 if either the real or the imaginary part or both are double-precision REAL, 
otherwise the kind type parameter is 4 (default COMPLEX).  Examples of valid COMPLEX 
literals are

(3.4,-5.45) (-1,-3) (3.4,-5)    (-3.d13,6._8)

The first three examples are of default kind, where four bytes are used to represent each part, 
real or imaginary, of the complex number.  The fourth example uses eight bytes for each part.  

LOGICAL literals
A LOGICAL literal is either .TRUE.  or .FALSE., optionally followed by an underscore and 
a kind type parameter.  If the optional underscore and kind type parameter are not present, 
the LOGICAL literal is of default kind.  Examples of valid LOGICAL literals are:

.false. .true. .true._mykind

In the last example,  mykind must have been previously declared as a scalar INTEGER 
named constant with the value of a LOGICAL kind type parameter (1 or 4 in LF95).   The 
first two examples are of type default LOGICAL.

CHARACTER literals
A CHARACTER literal consists of a string of characters enclosed in matching apostrophes 
or quotation marks, optionally preceded by a kind type parameter and an underscore.   

If a quotation mark is needed within a CHARACTER string enclosed in quotation marks, 
double the quotation mark inside the string.  The doubled quotation mark is then counted as 
a single quotation mark.  Similarly, if an apostrophe is needed within a CHARACTER string 
enclosed in apostrophes, double the apostrophe inside the string.  The double apostrophe is 
then counted as a single apostrophe.

Examples of valid CHARACTER literals are

"Hello world"

'don''t give up the ship!'

ASCII_'foobeedoodah'

""

''

ASCII must have been previously declared as a scalar INTEGER named constant with the 
value 1 to indicate the kind.  The last two examples, which have no intervening characters 
between the quotes or apostrophes, are zero-length CHARACTER literals.  
LF Fortran 95 Language Reference 7



Chapter 1    Elements of Fortran
Named Data
A named data object, such as a variable, named constant, or function result, is given the prop-
erties of an intrinsic or user-defined data type, either implicitly (based on the first letter of the 
name) or through a type declaration statement.  Additional information about a named data 
object, known as the data object’s attributes, can also be specified, either in a type declaration 
statement or in separate statements specific to the attributes that apply.

Once a data object has a name, it can be accessed in its entirety by referring to that name.  For 
some data objects, such as character strings, arrays, and derived types, portions of the data 
object can also be accessed directly.  In addition, aliases for a data object or a portion of a 
data object, known as pointers, can be established and referred to.

Implicit Typing
In the absence of a type declaration statement, a named data object’s type is determined by 
the first letter of its name.  The letters I through N begin INTEGER data objects and the other 
letters begin REAL data objects.  These implicit typing rules can be customized or disabled 
using the IMPLICIT statement.  IMPLICIT NONE can be used to disable all implicit typing 
for a scoping unit.

Type Declaration Statements
A type declaration statement specifies the type, type parameters, and attributes of a named 
data object or function.  A type declaration statement is available for each intrinsic type, 
INTEGER, REAL (and DOUBLE PRECISION), COMPLEX, LOGICAL, or CHARAC-
TER, as well as for derived types (see “Derived Types” on page 16).  

Attributes
Besides type and type parameters, a data object or function can have one or more of the fol-
lowing attributes, which can be specified in a type declaration statement or in a separate 
statement particular to the attribute:

• DIMENSION — the data object is an array (see “DIMENSION Statement” on page 
114).  

• PARAMETER — the data object is a named constant (see “PARAMETER State-
ment” on page 214).

• POINTER — the data object is to be used as an alias for another data object of the 
same type, kind, and rank (see “POINTER Statement” on page 217).  

• TARGET — the data object that is to be aliased by a POINTER data object (see 
“TARGET Statement” on page 255).

• EXTERNAL — the name is that of an external procedure (see “EXTERNAL State-
ment” on page 135).
8 LF Fortran 95 Language Reference



Substrings
• ALLOCATABLE — the data object is an array that is not of fixed size, but is to have 
memory allocated for it as specified during execution of the program (see “ALLO-
CATABLE Statement” on page 66).

• INTENT(IN) — the dummy argument will not change in the subprogram
• INTENT(OUT) — the dummy argument is undefined on entry to the subprogram
• INTENT(IN OUT) — the dummy argument has an initial value on entry and may be 

redefined within the subprogram (see “INTENT Statement” on page 168).

• PUBLIC — the named data object or procedure in a MODULE program unit is 
accessible in a program unit that uses that module (see “PUBLIC Statement” on page 
224).

• PRIVATE — the named data object or procedure in a MODULE program unit is 
accessible only in the current module (see “PRIVATE Statement” on page 221).

• INTRINSIC — the name is that of an intrinsic function (see “INTRINSIC Statement” 
on page 175).

• OPTIONAL — the dummy argument need not have a corresponding actual argu-
ment in a reference to the procedure in which the dummy argument appears (see 
“OPTIONAL Statement” on page 212).

• SAVE — the data object retains its value, association status, and allocation status 
after a RETURN or END statement (see “SAVE Statement” on page 237).

• SEQUENCE — the order of the component definitions in a derived-type definition 
is the storage sequence for objects of that type (see “SEQUENCE Statement” on 
page 242).

• VOLATILE — the data object may be referenced, become redefined or undefined 
by means not specified in the Fortran standard (see “VOLATILE Statement” on page 
267).

• DLL_EXPORT (Windows only) — the name is an external procedure, or a common 
block name, that to be a DLL (see “DLL_EXPORT Statement” on page 115).

• DLL_IMPORT (Windows only) — the name is an external procedure, or a common 
block name, that uses a DLL (see “DLL_IMPORT Statement” on page 116).

• ML_EXTERNAL (Windows only) — the name is an external procedure, or a com-
mon block name, that is available for calling from a mixed language procedure (see 
“ML_EXTERNAL Statement” on page 199).

Substrings
A character string is a sequence of characters in a CHARACTER data object.  The characters 
in the string are numbered from left to right starting with one.  A contiguous part of a char-
acter string, called a substring, can be accessed using the following syntax:
LF Fortran 95 Language Reference 9



Chapter 1    Elements of Fortran
string ( [lower-bound] : [upper-bound] )

Where:

string is a string name or a CHARACTER literal.

lower-bound is the lower bound of a substring of string.

upper-bound is the upper bound of a substring of string.

If absent, lower-bound and upper-bound are given the values one and the length of the string, 
respectively.  A substring has a length of zero if lower-bound is greater than upper-bound.  
lower-bound must not be less than one.

For example, if abc_string is the name of the string "abcdefg", 

abc_string(2:4) is “bcd”

abc_string(2:) is “bcdefg”

abc_string(:5) is “abcde”

abc_string(:) is “abcdefg”

abc_string(3:3) is “c”

“abcdef”(2:4) is “bcd”

“abcdef”(3:2) is a zero-length string

Arrays
An array is a set of data, all of the same type and type parameters, arranged in a rectangular 
pattern of one or more dimensions.  A data object that is not an array is a scalar.  Arrays can 
be specified by using the  DIMENSION statement or by using the DIMENSION attribute in 
a type declaration statement.  An array has a rank that is equal to the number of dimensions 
in the array; a scalar has rank zero.  The array’s shape is its extent in each dimension.  The 
array’s size is the number of elements in the array.  In the following example

integer, dimension (3,2) :: i

i has rank 2, shape (3,2), and size 6.

Array References

A whole array is referenced by the name of the array.  Individual elements or sections of an 
array are referenced using array subscripts.
10 LF Fortran 95 Language Reference



Arrays
Syntax:
array [(subscript-list)]

Where:
array is the name of the array.
subscript-list is a comma-separated list of 
element-subscript
or subscript-triplet
or vector-subscript
element-subscript is a scalar INTEGER expression.
subscript-triplet is [element-subscript] : [element-subscript] [ : stride]  
stride is a scalar INTEGER expression.
vector-subscript is a rank one INTEGER array expression.

The subscripts in subscript-list each refer to a dimension of the array.  The left-most subscript 
refers to the first dimension of the array.

Array Elements
If each subscript in an array subscript list is an element subscript, then the array reference is 
to a single array element.  Otherwise, it is to an array section (see “Array Sections” on page 
12).  

Array Element Order
The elements of an array form a sequence known as array element order.  The position of an 
element of an array in the sequence is:

Where:
si is the subscript in the ith dimension.

ji is the lower bound of the ith dimension.

di is the size of the ith dimension.

n is the rank of the array.

Another way of describing array element order is that the subscript of the leftmost dimension 
changes most rapidly as one goes from first element to last in array element order.  For exam-
ple, in the following code

integer, dimension(2,3) :: a

the order of the elements is a(1,1), a(2,1), a(1,2), a(2,2), a(1,3), a(2,3).  When 
performing input/output on arrays, array element order is used.

1 s1 j1–( )+( ) s2 j2–( ) d1×( ) … sn jn–( ) dn 1– dn 2– … d1×××( )+ + +
LF Fortran 95 Language Reference 11



Chapter 1    Elements of Fortran
Array Sections
You can refer to a selected portion of an array as an array.  Such a portion is called an array 
section.  An array section has a subscript list that contains at least one subscript that is either 
a subscript triplet or a vector subscript (see the examples under “Subscript Triplets” and 
“Vector Subscripts” below).  Note that an array section with only one element is not a scalar.

Subscript Triplets
The three components of a subscript triplet are the lower bound of the array section, the upper 
bound, and the stride (the increment between successive subscripts in the sequence), respec-
tively.  Any or all three can be omitted.  If the lower bound is omitted, the declared lower 
bound of the dimension is assumed.  If the upper bound is omitted, the upper bound of the 
dimension is assumed.  If the stride is omitted, a stride of one is assumed.  Valid examples of 
array sections using subscript triplets are:

a(2:8:2)         ! a(2), a(4), a(6), a(8)

b(1,3:1:-1)      ! b(1,3), b(1,2), b(1,1)

c(:,:,:)         ! c

Vector Subscripts
A vector (one-dimensional array) subscript can be used to refer to a section of a whole array.  
Consider the following example:

integer :: vector(3) = (/3,8,12/)

real :: whole(3,15)

...

print*, whole(3,vector) 

Here the array vector is used as a subscript of whole in the PRINT statement, which prints 
the values of elements (3,3), (3,8), and (3,12).  

Arrays and Substrings
A CHARACTER array section or array element can have a substring specifier following the 
subscript list.  If a whole array or an array section has a substring specifier, then the reference 
is an array section.  For example,

character (len=10), dimension (10,10) :: my_string

my_string(3:8,:) (2:4) = 'abc'

assigns 'abc' to the array section made up of characters 2 through 4 of rows 3 through 8 of 
the CHARACTER array my_string.
12 LF Fortran 95 Language Reference



Dynamic Arrays
Dynamic Arrays
An array can be fixed in size at compile time or can assume a size or shape at run time in a 
number of ways:  

• allocatable arrays and array pointers can be allocated as needed with an ALLO-
CATE statement, and deallocated with a DEALLOCATE statement.  An array 
pointer assumes the shape of its target when used in a pointer assignment statement 
(see “Allocatable Arrays” on page 13 and “Array Pointers” on page 13).  Allocat-
able arrays and array pointers together are known as deferred-shape arrays.

• A dummy array can assume a size and shape based on the size and shape of the cor-
responding actual argument (see “Assumed-Shape Arrays” on page 14).

• A dummy array can be of undeclared size (“Assumed-Size Arrays” on page 14).

• An array can have variable dimensions based on the values of dummy arguments 
(“Adjustable and Automatic Arrays” on page 15).

  

Allocatable Arrays
The ALLOCATABLE attribute can be given to an array in a type declaration statement or in 
an ALLOCATABLE statement.  An allocatable array must be declared with the deferred-
shape specifier, ‘:’, for each dimension.  For example,

integer, allocatable :: a(:), b(:,:,:)

declares two allocatable arrays, one of rank one and the other of rank three.  

The bounds, and thus the shape, of an allocatable array are determined when the array is allo-
cated with an ALLOCATE statement.  Continuing the previous example,

allocate (a(3), b(1,3,-3:3))

allocates an array of rank one and size three and an array of rank three and size 21 with the 
lower bound -3 in the third dimension.

Memory for allocatable arrays is returned to the system using the DEALLOCATE statement.

Array Pointers
The POINTER attribute can be given to an array in a type declaration statement or in a 
POINTER statement.  An array pointer, like an allocatable array, is declared with the 
deferred-shape specifier, ‘:’, for each dimension.  For example

integer, pointer, dimension(:,:) :: c

declares a pointer array of rank two.  An array pointer can be allocated in the same way an 
allocatable array can.  Additionally, the shape of a pointer array can be set when the pointer 
becomes associated with a target in a pointer assignment statement.  The shape then becomes 
that of the target.
LF Fortran 95 Language Reference 13



Chapter 1    Elements of Fortran
integer, target, dimension(2,4) :: d

integer, pointer, dimension(:,:) :: c

c => d

In the above example, the array c becomes associated with array d and assumes the shape of 
d.

Assumed-Shape Arrays
An assumed-shape array is a dummy array that assumes the shape of the corresponding 
actual argument.  The lower bound of an assumed-shape array can be declared and can be 
different from that of the actual argument array.  An assumed-shape specification is

[lower-bound] :

for each dimension of the assumed-shape array.  For example
...

integer :: a(3,4)

...

call zee(a)

...

subroutine zee(x)

implicit none

integer, dimension(-1:,:) :: x

...

Here the dummy array x assumes the shape of the actual argument a with a new lower bound 
for dimension one.

The interface for an assumed-shape array must be explicit (see “Explicit Interfaces” on page 
51).

Assumed-Size Arrays
An assumed-size array is a dummy array that’s size is not known.  All bounds except the 
upper bound of the last dimension are specified in the declaration of the dummy array.  In  
the declaration, the upper bound of the last dimension is an asterisk.  The two arrays have the 
same initial array element, and are storage associated.  

You must not refer to an assumed-size array in a context where the shape of the array must 
be known, such as in a whole array reference or for many of the transformational array intrin-
sic functions.  A function result can not be an assumed-size array.
14 LF Fortran 95 Language Reference



Array Constructors
...

integer a

dimension a(4)

...

call zee(a)

...

subroutine zee(x)

integer, dimension(-1:*) :: x

...

In this example, the size of dummy array x is not known.

Adjustable and Automatic Arrays
You can establish the shape of an array based on the values of dummy arguments.  If such an 
array is a dummy array, it is called an adjustable array.  If the array is not a dummy array it 
is called an automatic array.  Consider the following example:

integer function bar(i,k)

integer :: i,j,k

dimension i(k,3), j(k)

...

Here the shapes of arrays i and j depend on the value of the dummy argument k.  i is an 
adjustable array and j is an automatic array.

Array Constructors
An array constructor is an unnamed array.  

Syntax:
( / constructor-values / )

Where:
constructor-values is a comma-separated list of
expr
or ac-implied-do

expr is an expression.

ac-implied-do is ( constructor-values, ac-implied-do-control )

ac-implied-do-control is do-variable = do-expr, do-expr [, do-expr]

do-variable is a scalar INTEGER variable.

do-expr is a scalar INTEGER expression.
LF Fortran 95 Language Reference 15



Chapter 1    Elements of Fortran
An array constructor is a rank-one array.  If a constructor element is itself array-valued, the 
values of the elements, in array-element order, specify the corresponding sequence of ele-
ments of the array constructor.  If a constructor value is an implied-do, it is expanded to form 
a sequence of values under the control of the do-variable as in the DO construct (see “DO 
Construct” on page 116).

integer, dimension(3) :: a, b=(/1,2,3/), c=(/(i, i=4,6)/)

a = b + c + (/7,8,9/) ! a is assigned (/12,15,18/)

An array constructor can be reshaped with the RESHAPE intrinsic function and can then be 
used to initialize or represent arrays of rank greater than one.  For example

real,dimension(2,2) :: a = reshape((/1,2,3,4/),(/2,2/))

assigns (/1,2,3,4/) to a in array-element order after reshaping it to conform with the 
shape of a.

Derived Types
Derived types are user-defined data types based on the intrinsic types, INTEGER, REAL, 
COMPLEX, LOGICAL, and CHARACTER.  Where an array is a set of data all of the same 
type, a derived type can be composed of a combination of intrinsic types or other derived 
types.  A data object of derived type is called a structure.

Derived-Type Definition
A derived type must be defined before objects of the derived type can be declared.  A derived 
type definition specifies the name of the new derived type and the names and types of its 
components.

Syntax:
derived-type-statement
[private-sequence-statement]
type-definition-statement
[type-definition-statement] 

...
END TYPE [type-name]

Where:
derived-type-statement is a derived type statement.

private-sequence-statement is a PRIVATE statement.
or a SEQUENCE statement.

type-definition-statement is an INTEGER, REAL, COMPLEX, DOUBLE PRECISION, 
LOGICAL, CHARACTER or TYPE statement.
16 LF Fortran 95 Language Reference



Derived Types
A type definition statement in a derived type definition can have only the POINTER and 
DIMENSION attributes.  It cannot be a function. It can be given a default initialization value, 
in which case the component acquires the SAVE attribute.  A component array must be a 
deferred-shape array if the POINTER attribute is present, otherwise it must have an explicit 
shape.

type coordinates

real :: latitude, longitude

end type coordinates

type place

character(len=20) :: name

type(coordinates) :: location

end type place

type link

integer :: j

type (link), pointer :: next

end type link

In the example, type coordinates is a derived type with two REAL components:  lati-
tude and longitude.  Type place has two components: a CHARACTER of length twenty, 
name, and a structure of type coordinates named location.  Type link has two compo-
nents: an INTEGER, j, and a structure of type link, named next, that is a pointer to the 
same derived type.  A component structure can be of the same type as the derived type itself 
only if it has the POINTER attribute.  In this way, linked lists, trees, and graphs can be 
formed.

There are two ways to use a derived type in more than one program unit.  The preferred way 
is to define the derived type in a module (see “Module Program Units” on page 56) and use 
the module wherever the derived type is needed.  Another method, avoiding modules, is to 
use a SEQUENCE statement in the derived type definition, and to define the derived type in 
exactly the same way in each program unit the type is used.  This could be done using an 
include file.  Components of a derived type can be made inaccessible to other program units 
by using a PRIVATE statement before any component definition statements.

Declaring Variables of Derived Type
Variables of derived type are declared with the TYPE statement.  The following are examples 
of declarations of variables for each of the derived types defined above:

type(coordinates) :: my_coordinates

type(place) :: my_town

type(place), dimension(10) :: cities

type(link) :: head
LF Fortran 95 Language Reference 17



Chapter 1    Elements of Fortran
Component References
Components of a structure are referenced using the percent sign ‘%’ operator.  For example, 
latitude in the structure my_coordinates, above, is referenced as 
my_coordinates%latitude.  latitude in type coordinates in structure my_town is 
referenced as my_town%coordinates%latitude.  If the variable is an array of structures, 
as in cities, above, array sections can be referenced, such as 

cities(:,:)%name 

which references the component name for all elements of cities, and

cities(1,1:2)%coordinates%latitude

which references element latitude of type coordinates for elements (1,1) and (1,2) 
only of cities.  Note that in the first example, the syntax

cities%name

is equivalent and is an array section.

Structure Constructors
A structure constructor is an unnamed structure.

Syntax:
type-name ( expr-list )

Where:
type-name is the name of the derived type.

expr-list is a list of expressions.

Each expression in expr-list must agree in number and order with the corresponding compo-
nents of the derived type.  Where necessary, intrinsic type conversions are performed.  For 
non-pointer components, the shape of the expression must agree with that of the component.

type mytype            ! derived-type definition

integer :: i,j

character(len=40) :: string

end type mytype

type (mytype) :: a     ! derived-type declaration

a = mytype (4, 5.0*2.3, 'abcdefg')

In this example, the second expression in the structure constructor is converted to type default 
INTEGER when the assignment is made.
18 LF Fortran 95 Language Reference



Pointers
Pointers
In Fortran, a pointer is an alias.  The variable it aliases is its target.  Pointer variables must 
have the POINTER attribute; target variables must have either the TARGET attribute or the 
POINTER attribute.

Associating a Pointer with a Target
A pointer can only be associated with a variable that has the TARGET attribute or the 
POINTER attribute.  Such an association can be made in one of two ways:

• explicitly with a pointer assignment statement.

• implicitly with an ALLOCATE statement.

Once an association between pointer and target has been made, any reference to the pointer 
applies to the target.

Declaring Pointers and Targets
A variable can be declared to have the POINTER or TARGET attribute in a type declaration 
statement or in a POINTER or TARGET statement.  When declaring an array to be a pointer, 
you must declare the array with a deferred shape.

Example: 
integer, pointer :: a, b(:,:)

integer, target :: c

a => c              ! pointer assignment statement 

                    ! a is an alias for c

allocate (b(3,2))   ! allocate statement

                    ! an unnamed target for b is 

                    ! created with the shape (3,2)

In this example, an explicit association is created between a and c through the pointer assign-
ment statement.  Note that a has been previously declared a pointer, c has been previously 
declared a target, and a and c agree in type, kind, and rank.  In the ALLOCATE statement, 
a target array is allocated and b is made to point to it.  The array b was declared with a 
deferred shape, so that the target array could be allocated with any rank two shape.

Expressions
An expression is formed from operands, operators, and parentheses.  Evaluation of an expres-
sion produces a value with a type, type parameters (kind and, if CHARACTER, length), and 
a shape.  Some examples of valid Fortran expressions are:
LF Fortran 95 Language Reference 19



Chapter 1    Elements of Fortran
5
n
(n+1)*y
"to be" // ’ or not to be’ // text(1:23)
(-b + (b**2-4*a*c)**.5) / (2*a)
b%a - a(1:1000:10)
sin(a) .le.  .5
l .my_binary_operator.  r + .my_unary_operator.  m

The last example uses defined operations (see “Defined Operations” on page 53).

All array-valued operands in an expression must have the same shape.  A scalar is conform-
able with an array of any shape.  Array-valued expressions are evaluated element-by-element 
for corresponding elements in each array and a scalar in the same expression is treated like 
an array where all elements have the value of the scalar.  For example, the expression

a(2:4) + b(1:3) + 5

would perform 

a(2) + b(1) + 5 
a(3) + b(2) + 5 
a(4) + b(3) + 5

Expressions are evaluated according to the rules of operator precedence, described below.  If 
there are multiple contiguous operations of the same precedence, subtraction and division are 
evaluated from left to right, exponentiation is evaluated from right to left, and other opera-
tions  can be evaluated either way, depending on how the compiler optimizes the expression.  
Parentheses can be used to enforce a particular order of evaluation.

A specification expression is a scalar INTEGER expression that can be evaluated on entry to 
the program unit at the time of execution.  An initialization expression is an expression that 
can be evaluated at compile time.
20 LF Fortran 95 Language Reference



Intrinsic Operations
Intrinsic Operations
The intrinsic operators, in descending order of precedence are:

 Note: all operators within a given cell in the table are of equal precedence

If an operation is performed on operands of the same type, the result is of that type and has 
the greater of the two kind type parameters. 

If an operation is performed on numeric operands of different types, the result is of the higher 
type, where COMPLEX is higher than REAL and REAL is higher than INTEGER.  

If an operation is performed on numeric or LOGICAL operands of the same type but different 
kind, the result has the kind of the operand offering the greater precision.   

The result of a concatenation operation has a length that is the sum of the lengths of the 
operands.  

Table 2: Intrinsic Operators

Operator Represents Operands

** exponentiation two numeric

* and / multiplication and division two numeric

+ and - unary addition and subtraction one numeric

+ and - binary addition and subtraction two numeric

// concatenation two CHARACTER

.EQ.  and ==
.NE.  and /=

   
.LT.  and <

.LE.  and <=
.GT.  and >

.GE.  and >=

equal to
not equal to

      
less than

less than or equal to
greater than

greater than or equal to

two numeric or two 
CHARACTER
–––––––––––

two non-COMPLEX 
numeric or two CHAR-

ACTER

.NOT. logical negation one LOGICAL

.AND. logical conjunction two LOGICAL

.OR. logical inclusive disjunction two LOGICAL

.EQV.  and 
.NEQV.

logical equivalence and non-equiv-
alence two LOGICAL
LF Fortran 95 Language Reference 21



Chapter 1    Elements of Fortran
INTEGER Division
The result of a division operation between two INTEGER operands is the integer closest to 
the mathematical quotient and between zero and the mathematical quotient, inclusive.  For 
example, 7/5 evaluates to 1 and -7/5 evaluates to -1.

Input/Output
Fortran input and output are performed on logical units.  A unit is  

• a non-negative INTEGER associated with a physical device such as a disk file, the 
console, or a printer.  The unit must be connected to a file or device in an OPEN state-
ment, except in the case of pre-connected files.

• an asterisk, ‘*’, indicating the standard input and standard output devices, usually the 
keyboard and monitor, that are preconnected.

• a CHARACTER variable corresponding to the name of an internal file.  

Fortran statements are available to connect (OPEN) or disconnect (CLOSE) files and devices 
from input/output units; transfer data (PRINT, READ, WRITE); establish the position within 
a file (REWIND, BACKSPACE, ENDFILE); and inquire about a file or device or its con-
nection (INQUIRE).

Pre-Connected Input/Output Units
Input/output units 5, 6 and * are automatically connected when used.  Unit 5 is connected to 
the standard input device, usually the keyboard, and unit 6 is connected to the standard output 
device, usually the monitor.    Unit * is always connected to the standard input and standard 
output devices.

Files
Fortran treats all physical devices, such as disk files, the console, printers, and internal files, 
as files.  A file is a sequence of zero or more records.  The data format (either formatted or 
unformatted), file access type (either direct or sequential) and record length determine the 
structure of the file.

File Position
Certain input/output statements affect the position within an external file.  Prior to execution 
of a data transfer statement, a direct file is positioned at the beginning of the record indicated 
by the record specifier REC= in the data transfer statement.  By default, a sequential file is 
positioned after the last record read or written.  However, if non-advancing input/output is 
specified using the ADVANCE= specifier, it is possible to read or write partial records and 
to read variable-length records and be notified of their length.
22 LF Fortran 95 Language Reference



Files
An ENDFILE statement writes an endfile record after the last record read or written and posi-
tions the file after the endfile record.  A REWIND statement positions the file at its initial 
point.  A BACKSPACE statement moves the file position back one record.

If an error condition occurs, the position of the file is indeterminate. 

If there is no error, and an endfile record is read or written, the file is positioned after the end-
file record.  The file must be repositioned with a REWIND or BACKSPACE statement 
before it is read from or written to again.  

For non-advancing (partial record) input/output, if there is no error and no end-of-file condi-
tion, but an end-of-record condition occurs, the file is positioned after the record just read.  If 
there is no end-of-record condition the file position is unchanged.

File Types
The type of file to be accessed is specified in the OPEN statement using the FORM= and 
ACCESS= specifiers (see “OPEN Statement” on page 209).

Formatted Sequential
• variable-length records terminated by end of line
• stored as CHARACTER data
• can be used with devices or disk files
• records must be processed in order
• files can be printed or displayed easily
• usually slowest

Formatted Direct
• fixed-length records - no header
• stored as CHARACTER data
• disk files only
• records can be accessed in any order
• not easily processed outside of LF95
• same speed as formatted sequential disk files

Unformatted Sequential
• variable length records separated by record marker
• stored as binary data
• disk files only
• records must be processed in order
• faster than formatted files
• not easily read outside of LF95
LF Fortran 95 Language Reference 23



Chapter 1    Elements of Fortran
Unformatted Direct
• fixed-length records - no header
• stored as binary data
• disk files only
• records can be accessed in any order
• fastest
• not easily read outside of LF95

Binary (or Transparent)
• stored as binary data without record markers or header
• record length one byte but end-of-record restrictions do not apply
• records can be processed in any order
• can be used with disk files or other physical devices
• good for files that are accessed outside of LF95
• fast and compact

See “File Formats” in the User's Guide for more information.

Internal Files
An internal file is always a formatted sequential file and consists of a single CHARACTER 
variable.  If the CHARACTER variable is array-valued, each element of the array is treated 
as a record in the file.  This feature allows conversion from internal representation (binary, 
unformatted) to external representation (ASCII, formatted) without transferring data to an 
external device.

Carriage Control
The first character of a formatted record sent to a terminal device, such as the console or a 
printer, is used for carriage control and is not printed.  The remaining characters are printed 
on one line beginning at the left margin.  The carriage control character is interpreted as 
follows:

Table 3: Carriage Control

Character Vertical Spacing Before Printing

0 Two Lines

1 To First Line of Next Page

+ None

Blank or Any 
Other Character One Line
24 LF Fortran 95 Language Reference



Input/Output Editing
Input/Output Editing
Fortran provides extensive capabilities for formatting, or editing, of data.  The editing can be 
explicit, using a format specification; or implicit, using list-directed input/output, in which 
data are edited using a predetermined format (see “List-Directed Formatting” on page 31).  
A format specification is a default CHARACTER expression and can appear

• directly as the FMT= specifier value.  

• in a FORMAT statement whose label is the FMT= specifier value.

• in a FORMAT statement whose label was assigned to a scalar default INTEGER 
variable that appears as the FMT= specifier value.

The syntax for a format specification is

 ( [ format-items ] )

where format-items includes editing information in the form of edit descriptors.  See “FOR-
MAT Statement” on page 139 for detailed syntax.

Format Control
A correspondence is established between a format specification and items in a READ, 
WRITE or PRINT statement’s input/output list in which the edit descriptors and input/output 
list are both interpreted from left to right.  Each effective edit descriptor is applied to the cor-
responding data entity in the input/output list.  Each instance of a repeated edit descriptor is 
an edit descriptor in effect.  Three exceptions to this rule are 

1.  COMPLEX items in the input/output list require the interpretation of two F, E, EN, 
ES, D or G edit descriptors.

2.  Control and character string edit descriptors do not correspond to items in the input/
output list. 

3.  If the end of a complete format is encountered and there are remaining items in the 
input/output list, format control reverts to the beginning of the format item termi-
nated by the last preceding right parenthesis, if it exists, and to the beginning of the 
format otherwise.  If format control reverts to a parenthesis preceded by a repeat 
specification, the repeat specification is reused.

Data Edit Descriptors
Data edit descriptors control conversion of data to or from its internal representation.  
LF Fortran 95 Language Reference 25



Chapter 1    Elements of Fortran
Numeric Editing
The I, B, O, Z, Q, F, E, EN, ES, D, and G edit descriptors can be used to specify the input/
output of INTEGER, REAL, and COMPLEX data.  The following general rules apply:

• On input, leading blanks are not significant.  

• On output, the representation is right-justified in the field.

• On output, if the number of characters produced exceeds the field width the entire 
field is filled with asterisks.   

INTEGER Editing (I, B, O, and Z)
The Iw, Iw.m, Bw, Bw.m, Ow, Ow.m, Zw, and Zw.m edit descriptors indicate the manner of 
editing for INTEGER data.  The w indicates the width of the field on input, including a sign 
(if present).  The m indicates the minimum number of digits on output; m must not exceed w 
unless w is zero.  The output width is padded with blanks if the number is smaller than the 
field, unless w is zero.  If w is zero then a suitable width will be used to show all digits without 
any padding blanks.  Note that an input width must always be specified.

REAL Editing (Q, F, D, and E)
The Qw.d, Fw.d, Ew.d, Dw.d, Ew.dEe, EN, and ES edit descriptors indicate the manner of 
editing of REAL and COMPLEX data.  

Q, F, D,  E, EN, and ES editing are identical on input.  The w indicates the width of the field; 
the d indicates the number of digits in the fractional part.  The field consists of an optional 
sign, followed by one or more digits that can contain a decimal point.  If the decimal point is 
omitted, the rightmost d digits are interpreted as the fractional part.  An exponent can be 
included in one of the following forms:

• An explicitly signed INTEGER constant.

• Q, E, or D followed by an optionally signed INTEGER constant.

F editing, the output field consists of zero or more blanks followed by a minus sign or an 
optional plus sign (see S, SP, and SS Editing), followed by one or more digits that contain a 
decimal point and represent the magnitude.  The field is modified by the established scale fac-
tor (see P Editing) and is rounded to d decimal digits.  If w is zero then a suitable width will 
be used to show all digits and sign without any padding blanks.
26 LF Fortran 95 Language Reference



Data Edit Descriptors
For Q, E, and D editing, the output field consists of the following, in order:

1. zero or more blanks  

2. a minus or an optional plus sign (see S, SP, and SS Editing)

3. a zero (depending on scale factor, see P Editing) 

4. a decimal point 

5. the d most significant digits, rounded 

6. a Q, E, or a D

7. a plus or a minus sign

8. an exponent of e digits, if the extended Ew.dEe form is used, and two digits 
otherwise.

For Q, E, and D editing, the scale factor k controls the position of the decimal point.  If 
, the output field contains exactly  leading zeros and  significant digits 

after the decimal point.  If , the output field contains exactly k significant digits 
to the left of the decimal point and  significant digits to the right of the decimal point.  
Other values of k are not permitted.

EN Editing
The EN edit descriptor produces an output field in engineering notation such that the decimal 
exponent is divisible by three and the absolute value of the significand is greater than or equal 
to 1 and less than 1000, except when the output value is zero.  The scale factor has no effect 
on output.

The forms of the edit descriptor are ENw.d and ENw.dEe indicating that the external field 
occupies w positions, the fractional part of which consists of d digits and the exponent part e 
digits.

On input, EN editing is the same as F editing.

ES Editing
The ES edit descriptor produces an output field in the form of a real number in scientific nota-
tion such that the absolute value of the significand is greater than or equal to 1 and less than 
10, except when the output value is zero.  The scale factor has no effect on output.

The forms of the edit descriptor are ESw.d and ESw.dEe indicating that the external field 
occupies w positions, the fractional part of which consists of d digits and the exponent part e 
digits.

On input, ES editing is the same as F editing.

d– k< 0≤ k d k–
0 k d 2+< <

d k– 1+
LF Fortran 95 Language Reference 27



Chapter 1    Elements of Fortran
COMPLEX Editing
COMPLEX editing is accomplished by using two REAL edit descriptors.  The first of the edit 
descriptors specifies the real part; the second specifies the imaginary part.  The two edit 
descriptors can be different.  Control edit descriptors can be processed between the edit 
descriptor for the real part and the edit descriptor for the imaginary part.  Character string edit 
descriptors can be processed between the two edit descriptors on output only.

LOGICAL Editing (L)
The Lw edit descriptor indicates that the field occupies w positions.  The specified input/out-
put list item must be of type LOGICAL.  

The input field consists of optional blanks, optionally followed by a decimal point, followed 
by a T for true or F for false.  The T or F can be followed by additional characters in the field.  
Note that the logical constants .TRUE.  and .FALSE.  are acceptable input forms.  If a pro-
cessor is capable of representing letters in both upper and lower case, a lower-case letter is 
equivalent to the corresponding upper-case letter in a LOGICAL input field.

The output field consists of w - 1 blanks followed by a T or F, depending on whether the value 
of the internal data object is true or false, respectively.

CHARACTER Editing (A)
The A[w] edit descriptor is used with an input/output list item of type CHARACTER.  

If a field width w is specified with the A edit descriptor, the field consists of w characters.  If 
a field width w is not specified with the A edit descriptor, the number of characters in the field 
is the length of the corresponding list item.

Let len be the length of the list item.  On input, if w is greater than or equal to len, the right-
most len characters will be taken from the field; if w is less than len, the w characters are left-
justified and padded with len-w trailing blanks.  

On output, the list item is padded with leading blanks if w is greater than len.  If w is less than 
or equal to len, the output field consists of the leftmost w characters of the list item.

Generalized Editing (G)
The Gw.d and Gw.dEe edit descriptors can be used with an input/output list item of any 
intrinsic type.  

These edit descriptors indicate that the external field occupies w positions, the fractional part 
of which consists of a maximum of d digits and the exponent part e digits.  d and e have no 
effect when used with INTEGER, LOGICAL, or CHARACTER data.

Generalized Integer Editing
With INTEGER data, the Gw.d and Gw.dEe edit descriptors follow the rules for the Iw edit 
descriptor.
28 LF Fortran 95 Language Reference



Control Edit Descriptors
Generalized Real and Complex Editing

The form and interpretation of the input field is the same as for F editing.

The method of representation in the output field depends on the magnitude of the data object 
being edited.  If the decimal point falls just before, within, or just after the d significant digits 
to be printed, then the output is as for the F edit descriptor; otherwise, editing is as for the E 
edit descriptor.  

Note that the scale factor k (see “P Editing” on page 30) has no effect unless the magnitude 
of the data object to be edited is outside the range that permits effective use of F editing.

Generalized Logical Editing

With LOGICAL data, the Gw.d and Gw.dEe edit descriptors follow the Lw edit descriptor 
rules.

Generalized Character Editing

With CHARACTER data, the Gw.d and Gw.dEe edit descriptors follow the Aw edit descrip-
tor rules.

Control Edit Descriptors
Control edit descriptors affect format control or the conversions performed by subsequent 
data edit descriptors.

Position Editing (T, TL, TR, and X)
The Tn, TLn, TRn, and nX edit descriptors control the character position in the current record 
to or from which the next character will be transferred.  The new position can be in either 
direction from the current position.  This makes possible the input of the same record twice, 
possibly with different editing.  It also makes skipping characters in a record possible.  

The Tn edit descriptor tabs to character position n from the beginning of the record.  The TLn 
and TRn edit descriptors tab n characters left or right, respectively, from the current position.  
The nX edit descriptor tabs n characters right from the current position.

If the position is changed to beyond the length of the current record, the next data transfer to 
or from the record causes the insertion of blanks in the character positions not previously 
filled.

Slash Editing
The slash edit descriptor terminates data transfer to or from the current record.  The file posi-
tion advances to the beginning of the next record.  On output to a file connected for sequential 
access, a new record is written and the new record becomes the last record in the file.
LF Fortran 95 Language Reference 29



Chapter 1    Elements of Fortran
Colon Editing
The colon edit descriptor terminates format control if there are no more items in the input/
output list.  The colon edit descriptor has no effect if there are more items in the input/output 
list.

S, SP, and SS Editing
The S, SP, and SS edit descriptors control whether an optional plus is to be transmitted in 
subsequent numeric output fields.  SP causes the optional plus to be transmitted.  SS causes 
it not to be transmitted.  S returns optional pluses to the processor default (no pluses).

P Editing
The kP edit descriptor sets the value of the scale factor to k.  The scale factor affects the Q, 
F, E, EN, ES, D, or G editing of subsequent numeric quantities as follows:

• On input (provided that no exponent exists in the field) the scale factor causes the 
externally represented number to be equal to the internally represented number mul-
tiplied by 10k.  The scale factor has no effect if there is an exponent in the field.

• On output, with E and D editing, the significand part of the quantity to be produced 
is multiplied by 10k and the exponent is reduced by k.  

• On output, with G editing, the effect of the scale factor is suspended unless the mag-
nitude of the data object to be edited is outside the range that permits the use of F 
editing.  If the use of E editing is required, the scale factor has the same effect as with 
E output editing.

• On output, with EN and ES editing, the scale factor has no effect.

• On output, with F editing, the scale factor effect is that the externally represented 
number equals the internally represented number times 10k.

BN and BZ Editing
The BN and BZ edit descriptors are used to specify the interpretation, by numeric edit 
descriptors, of non-leading blanks in subsequent numeric input fields.  If a BN edit descriptor 
is encountered in a format, blanks in subsequent numeric input fields are ignored.  If a BZ 
edit descriptor is encountered, blanks in subsequent numeric input fields are treated as zeros.  

Character String Edit Descriptors
The character string edit descriptors cause literal CHARACTER data to be output.  They 
must not be used for input.

CHARACTER String Editing
The CHARACTER string edit descriptor causes characters to be output from a string, includ-
ing blanks.  Enclosing characters are either apostrophes or quotation marks.
30 LF Fortran 95 Language Reference



List-Directed Formatting
For a CHARACTER string edit descriptor, the width of the field is the number of characters 
contained in, but not including, the delimiting characters.  Within the field, two consecutive 
delimiting characters (apostrophes, if apostrophes are the delimiters; quotation marks, if quo-
tation marks are the delimiters) are counted as a single character.  Thus an apostrophe or 
quotation mark character can be output as part of a CHARACTER string edit descriptor 
delimited by the same character.

H Editing (obsolescent)
The cH edit descriptor causes character information to be written from the next c characters 
(including blanks) following the H of the cH edit descriptor in the list of format items itself.   
The c characters are called a Hollerith constant.  

List-Directed Formatting
List-directed formatting is indicated when an input/output statement uses an asterisk instead 
of an explicit format.  For example,

read*, a

print*, x,y,z

read (unit=1, fmt=*) i,j,k

all use list-directed formatting.

List-Directed Input
List-directed records consist of a sequence of values and value separators.  Values are either 
null or any of the following forms:

c

r*c

r*

Where:
c is a literal constant or a non-delimited CHARACTER string.

r is a positive INTEGER literal constant with no kind type parameter specified.

r*c is equivalent to r successive instances of c.

r* is equivalent to r successive instances of null.  

Separators are either commas or slashes with optional preceding or following blanks; or one 
or more blanks between two non-blank values.  A slash separator causes termination of the 
input statement after transfer of the previous value.
LF Fortran 95 Language Reference 31



Chapter 1    Elements of Fortran
Editing occurs based on the type of the list item as explained below.  On input the following 
formatting applies:

List-Directed Output
For list-directed output the following formatting applies:

Table 4: List-Directed Input Editing

Type Editing

INTEGER I

REAL F

COMPLEX As for COMPLEX literal constant

LOGICAL L

CHARACTER

As for CHARACTER string.  CHARACTER string 
can be continued from one record to the next.  

Delimiting apostrophes or quotation marks are not 
required if the CHARACTER string does not cross a 
record boundary and does not contain value separa-

tors or CHARACTER string delimiters, or begin 
with r*.

Table 5: List-Directed Output Editing

Type Editing

INTEGER Gw

REAL Gw.d

COMPLEX (Gw.d, Gw.d)

LOGICAL T for value true and F for value false

CHARACTER As CHARACTER string, except as overridden by 
the DELIM= specifier
32 LF Fortran 95 Language Reference



Namelist Formatting
Namelist Formatting
Namelist formatting is indicated by an input/output statement with an NML= specifier.   
Namelist input and output consists of

1. optional blanks

2. the ampersand character followed immediately by the namelist group name specified 
in the namelist input/output statement

3. one or more blanks

4. a sequence of zero or more name-value subsequences, and

5. a slash indicating the end of the namelist record.

The characters in namelist records form a sequence of name-value subsequences.  A name-
value subsequence is a data object or subobject previously declared in a NAMELIST state-
ment to be part of the namelist group, followed by an equals, followed by one or more values 
and value separators.

Formatting for namelist records is the same as for list-directed records.

Example:
integer :: i,j(10)
real :: n(5)
namelist /my_namelist/ i,j,n
read(*,nml=my_namelist)

If the input records are

&my_namelist i=5, n(3)=4.5, 
j(1:4)=4*0/

then 5 is stored in i, 4.5 in n(3), and 0 in elements 1 through 4 of j.

Statements
A brief description of each statement follows.  For complete syntax and rules, see Chapter 2, 
“Alphabetical Reference.”  

Fortran statements can be grouped into five categories.  They are

• Control Statements

• Specification Statements

• Input/Output Statements

• Assignment and Storage Statements

• Program Structure Statements
LF Fortran 95 Language Reference 33



Chapter 1    Elements of Fortran
Control Statements
Arithmetic IF (obsolescent)
Execution of an arithmetic IF statement causes evaluation of an expression followed by a 
transfer of control.  The branch target statement identified by the first, second, or third label 
in the arithmetic IF statement is executed next if the value of the expression is less than zero, 
equal to zero, or greater than zero, respectively.  

Assigned GOTO (obsolescent)
The assigned GOTO statement causes a transfer of control to the branch target statement indi-
cated by a variable that was assigned a statement label in an ASSIGN statement.  If the 
parenthesized list of labels is present, the variable must be one of the labels in the list.

CALL
The CALL statement invokes a subroutine and passes to it a list of arguments.

CASE
Execution of a SELECT CASE statement causes a case expression to be evaluated.  The 
resulting value is called the case index.  If the case index is in the range specified with a 
CASE statement’s case selector, the block following the CASE statement, if any, is executed.

Computed GOTO
The computed GOTO statement causes transfer of control to one of a list of labeled 
statements.  

CONTINUE
Execution of a CONTINUE statement has no effect.

CYCLE
The CYCLE statement curtails the execution of a single iteration of a DO loop.

DO
The DO statement begins a DO construct.  A DO construct specifies the repeated execution 
(loop) of a sequence of executable statements or constructs.  

ELSE IF
The ELSE IF statement controls conditional execution of a nested IF block in an IF construct 
where all previous IF expressions are false.

ELSE
The ELSE statement controls conditional execution of a block of code in an IF construct 
where all previous IF expressions are false.

ELSEWHERE
The ELSEWHERE statement controls conditional execution of a block of assignment state-
ments for elements of an array for which the WHERE construct’s  mask expression is false.

END DO
The END DO statement ends a DO construct.

END FORALL
The END FORALL statement ends a FORALL construct.
34 LF Fortran 95 Language Reference



Control Statements
END IF
The END IF statement ends an IF construct.

END SELECT
The END SELECT statement ends a CASE construct.

END WHERE
The END WHERE statement ends a WHERE construct.

ENTRY
The ENTRY statement permits one program unit to define multiple procedures, each with a 
different entry point.

EXIT 
The EXIT statement terminates a DO loop.  

FORALL
The FORALL statement begins a FORALL construct.  The FORALL construct controls mul-
tiple assignments, masked array (WHERE) assignments, and nested FORALL constructs and 
statements.

GOTO
The GOTO statement transfers control to a statement identified by a label.

IF
The IF statement controls whether or not a single executable statement is executed.

IF-THEN
The IF-THEN statement begins an IF construct.

PAUSE (Obsolescent)
The PAUSE statement temporarily suspends execution of the program.

RETURN
The RETURN statement completes execution of a subroutine or function and returns control 
to the statement following the procedure invocation.

SELECT CASE
The SELECT CASE statement begins a CASE construct.  It contains an expression that, 
when evaluated, produces a case index.  The case index is used in the CASE construct to 
determine which block in a CASE construct, if any, is executed.

STOP
The STOP statement terminates execution of the program.

WHERE
The WHERE statement is used to mask the assignment of values in array assignment state-
ments.  The WHERE statement can begin a WHERE construct that contains zero or more 
assignment statements, or can itself contain an assignment statement.
LF Fortran 95 Language Reference 35



Chapter 1    Elements of Fortran
Specification Statements
ALLOCATABLE
The ALLOCATABLE statement declares allocatable arrays.  The shape of an allocatable 
array is determined when space is allocated for it by an ALLOCATE statement.

CHARACTER
The CHARACTER statement declares entities of type CHARACTER.

COMMON
The COMMON statement provides a global data facility.  It specifies blocks of physical stor-
age, called common blocks, that can be accessed by any scoping unit in an executable 
program.

COMPLEX
The COMPLEX statement declares names of type COMPLEX.

DATA
The DATA statement provides initial values for variables.  It is not executable.

Derived-Type Definition Statement
The derived-type definition statement begins a derived-type definition.

DIMENSION
The DIMENSION statement specifies the shape of an array.

DLL_EXPORT (Windows only)
The DLL_EXPORT statement declares names externally available in a DLL.

DLL_IMPORT (Windows only)
The DLL_IMPORT statement declares names to import from a DLL.

DOUBLE PRECISION
The DOUBLE PRECISION statement declares names of type double precision REAL.

EQUIVALENCE
The EQUIVALENCE statement specifies that two or more objects in a scoping unit share the 
same storage.

EXTERNAL
The EXTERNAL statement specifies external procedures.  Specifying a procedure name as 
EXTERNAL permits the name to be used as an actual argument.

IMPLICIT
The IMPLICIT statement specifies, for a scoping unit, a type and optionally a kind or a 
CHARACTER length for each name beginning with a letter specified in the statement.  Alter-
nately, it can specify that no implicit typing is to apply in the scoping unit.

INTEGER
The INTEGER statement declares names of type INTEGER.

INTENT
The INTENT statement specifies the intended use of a dummy argument.
36 LF Fortran 95 Language Reference



Specification Statements
INTRINSIC
The INTRINSIC statement specifies a list of names that represent  intrinsic procedures.  
Doing so permits a name that represents a specific intrinsic function to be used as an actual 
argument.

LOGICAL
The LOGICAL statement declares names of type LOGICAL.

NAMELIST
The NAMELIST statement specifies a list of variables which can be referred to by one name 
for the purpose of performing input/output.

ML_EXTERNAL (Windows only)
The ML_EXTERNAL statement specifies the name is an external procedure, or a common 
block name, that is available for calling from a mixed language procedure (see 
“ML_EXTERNAL Statement” on page 199).

MODULE PROCEDURE
The MODULE PROCEDURE statement specifies that the names in the statement are part of 
a generic interface.

OPTIONAL
The OPTIONAL statement specifies that any of the dummy arguments specified need not be 
associated with an actual argument when the procedure is invoked.

PARAMETER
The PARAMETER statement specifies named constants.

POINTER
The POINTER statement specifies a list of variables that have the POINTER attribute.

PRIVATE
The PRIVATE statement specifies that the names of entities are accessible only within the 
current module.  

PUBLIC
The PUBLIC statement specifies that the names of entities are accessible anywhere the mod-
ule in which the PUBLIC statement appears is used.  

REAL
The REAL statement declares names of type REAL.

SAVE
The SAVE statement specifies that all objects in the statement retain their association, allo-
cation, definition, and value after execution of a RETURN or subprogram END statement.

SEQUENCE
The SEQUENCE statement can only appear in a derived type definition.  It specifies that the 
order of the component definitions is the storage sequence for objects of that type.
LF Fortran 95 Language Reference 37



Chapter 1    Elements of Fortran
TARGET
The TARGET statement specifies a list of object names that have the target attribute and thus 
can have pointers associated with them.

TYPE
The TYPE statement specifies that all entities whose names are declared in the statement are 
of the derived type named in the statement.

USE
The USE statement specifies that a specified module is accessible by the current scoping unit.  
It also provides a means of renaming or limiting the accessibility of entities in the module.

VOLATILE
The VOLATILE statement specifies that a data object may be referenced, become redefined 
or undefined by means not specified in the Fortran standard (see “VOLATILE Statement” on 
page 267).

Input/Output Statements
BACKSPACE
The BACKSPACE statement positions the file before the current record, if there is a current 
record, otherwise before the preceding record.

CLOSE
The CLOSE statement terminates the connection of a specified input/output unit to an exter-
nal file.

ENDFILE
The ENDFILE statement writes an endfile record as the next record of the file.  The file is 
then positioned after the endfile record, which becomes the last record of the file.

FORMAT
The FORMAT statement provides explicit information that directs the editing between the 
internal representation of data and the characters that are input or output.  

INQUIRE
The INQUIRE statement enables the program to make inquiries about a file’s existence, con-
nection, access method or other properties.  

OPEN  
The OPEN statement connects or reconnects an external file and an input/output unit.

PRINT
The PRINT statement transfers values from an output list to an input/output unit.

READ
The READ statement transfers values from an input/output unit to the entities specified in an 
input list or a namelist group.

REWIND
The REWIND statement positions the specified file at its initial point.
38 LF Fortran 95 Language Reference



Assignment and Storage Statements
WRITE
The WRITE statement transfers values to an input/output unit from the entities specified in 
an output list or a namelist group.

Assignment and Storage Statements
ALLOCATE
For an allocatable array the ALLOCATE statement defines the bounds of each dimension 
and allocates space for the array.  

For a pointer the ALLOCATE statement creates an object that implicitly has the TARGET 
attribute and associates the pointer with that target.

ASSIGN (obsolescent)
Assigns a statement label to an INTEGER variable.

Assignment
Assigns the value of  the expression on the right side of the equal sign to the variable on the 
left side of the equal sign.

DEALLOCATE
The DEALLOCATE statement deallocates allocatable arrays and pointer targets and disas-
sociates pointers.

NULLIFY
The NULLIFY statement disassociates pointers.

Pointer Assignment
The pointer assignment statement associates a pointer with a target.

Program Structure Statements
BLOCK DATA
The BLOCK DATA statement begins a block data program unit.

CONTAINS
The CONTAINS statement separates the body of a main program, module, or subprogram 
from any internal or module subprograms it contains.

END
The END statement ends a program unit, module subprogram, interface, or internal 
subprogram.

FUNCTION  
The FUNCTION statement begins a function subprogram, and specifies its return type and 
name (the function name by default), its dummy argument names, and whether it is recursive.
LF Fortran 95 Language Reference 39



Chapter 1    Elements of Fortran
INTERFACE
The INTERFACE statement begins an interface block.  An interface block specifies the 
forms of reference through which a procedure can be invoked.  An interface block can be 
used to specify a procedure interface, a defined operation, or a defined assignment.

MODULE
The MODULE statement begins a module program unit.

PROGRAM
The PROGRAM statement specifies a name for the main program.

Statement Function
A statement function is a function defined by a single statement.  

SUBROUTINE
The SUBROUTINE statement begins a subroutine subprogram and specifies its dummy 
argument names and whether it is recursive.

Statement Order
There are restrictions on where a given statement can appear in a program unit or subpro-
gram.  In general, 

• USE statements come before specification statements;

• specification statements appear before executable statements, but FORMAT, 
DATA, and ENTRY statements can appear among the executable statements; and

• module procedures and internal procedures appear following a CONTAINS 
statement.
40 LF Fortran 95 Language Reference



Statement Order
The following table summarizes statement order rules.   Vertical lines separate statements 
that can be interspersed.  Horizontal lines separate statements that cannot be interspersed. 

Statements are restricted in what scoping units (see “Scope” on page 58) they may appear, 
as follows:

• An ENTRY statement may only appear in an external subprogram or module 
subprogram.

• A USE statement may not appear in a BLOCK DATA program unit.
• A FORMAT statement may not appear in a module scoping unit, BLOCK DATA 

program unit, or interface body.
• A DATA statement may not appear in an interface body.
• A derived-type definition may not appear in a BLOCK DATA program unit.
• An interface block may not appear in a BLOCK DATA program unit.
• A statement function may not appear in a module scoping unit, BLOCK DATA pro-

gram unit, or interface body.
• An executable statement may not appear in a module scoping unit, a BLOCK DATA 

program unit, or an interface body.
• A CONTAINS statement may not appear in a BLOCK DATA program unit, an inter-

nal subprogram, or an interface body.

Table 6: Statement Order

PROGRAM, FUNCTION, SUBROUTINE, MODULE,
or BLOCK DATA statement

USE statements

FORMAT 
and 

ENTRY 
statements

IMPLICIT NONE

PARAMETER 
statements

IMPLICIT
statements

PARAMETER
and DATA
statements

Derived-type definitions,
interface blocks,

type declaration statements,
statement function statements,
and specification statements

DATA statements Executable statements

CONTAINS statement

Internal subprograms or module subprograms

END statement
LF Fortran 95 Language Reference 41



Chapter 1    Elements of Fortran
Executable Constructs
Executable constructs control the execution of blocks of statements and nested constructs.  

• The CASE and IF constructs control whether a block will be executed (see “CASE 
Construct” on page 88 and “IF Construct” on page 156).  

• The DO construct controls how many times a block will be executed (see “DO Con-
struct” on page 116).  

•  The FORALL construct controls multiple assignments, masked array (WHERE) 
assignments, and nested FORALL constructs and statements (see “FORALL Con-
struct” on page 137).

• The WHERE construct controls which elements of an array will be affected by a 
block of assignment statements (see “WHERE Construct” on page 268).

Construct Names
Optional construct names can be used with CASE, IF, DO, and FORALL constructs.  Use of 
construct names can add clarity to a program.  For the DO construct, construct names enable 
a CYCLE or EXIT statement to leave a DO nesting level other than the current one.  All con-
struct names must match for a given construct.  For example, if a SELECT CASE statement 
has a construct name, the corresponding CASE and END SELECT statements must have the 
same construct name.
42 LF Fortran 95 Language Reference



Procedures
Procedures
Fortran has two varieties of procedures: functions and subroutines.  Procedures are further 
categorized in the following table:

Intrinsic procedures are built-in procedures that are provided by the Fortran processor.  

An external procedure is defined in a separate program unit and can be separately compiled.  
It is not necessarily coded in Fortran.  External procedures and intrinsic procedures can be 
referenced anywhere in the program.  

An internal procedure is contained within another program unit.  It can only be referenced 
from within the containing program unit.    

Internal and external procedures can be referenced recursively if the RECURSIVE keyword 
is included in the procedure definition.  

Table 7: Procedures

Functions

Intrinsic Func-
tions

Generic Intrinsic  
Functions

Specific Intrinsic
Functions

External Func-
tions

Generic External 
Functions

Specific External 
Functions

Internal Functions

Statement Functions

Subroutines

Intrinsic 
Subroutines

Generic Intrinsic 
Subroutines

Specific Intrinsic  
Subroutines

External Sub-
routines

Generic External 
Subroutines

Specific External
Subroutines

Internal Subroutines
LF Fortran 95 Language Reference 43



Chapter 1    Elements of Fortran
Intrinsic and external procedures can be either specific or generic.  A generic procedure  has 
specific versions, which can be referenced by the generic name.  The specific version used is 
determined by the type, kind, and rank of the arguments.  

Additionally, procedures can be elemental or non-elemental.  An elemental procedure can 
take as an argument either a scalar or an array.  If the procedure takes an array as an argument, 
it operates on each element in the array as if it were a scalar.  

Each of the various kinds of Fortran procedures is described in more detail below.

Intrinsic Procedures
Intrinsic procedures are built-in procedures provided by the Fortran processor.  Fortran has 
over one hundred standard intrinsic procedures.  Each is documented in detail in the Alpha-
betical Reference.  A table is provided in “Intrinsic Procedures” on page 283.  

Subroutines
A subroutine is a self-contained procedure that is invoked using a CALL statement.  For 
example,

program main

  implicit none

  interface ! an explicit interface is provided

    subroutine multiply(x, y)

      implicit none

      real, intent(in out) :: x

      real, intent(in) :: y

    end subroutine multiply

  end interface

  real :: a, b

  a = 4.0

  b = 12.0

  call multiply(a, b)

  print*, a

end program main

  

subroutine multiply(x, y)

  implicit none

  real, intent(in out) :: x

  real, intent(in) :: y

  multiply = x*y

end subroutine multiply
44 LF Fortran 95 Language Reference



Functions
This program calls the subroutine multiply and passes two REAL actual arguments, a and 
b.  The subroutine multiply’s corresponding dummy arguments, x and y, refer to the same 
storage as a and b in main.  When the subroutine returns, a has the value 48.0 and b is 
unchanged.

The syntax for a subroutine definition is

subroutine-stmt
[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-subroutine-stmt

Where:
subroutine-stmt is a SUBROUTINE statement.

use-stmts is zero or more USE statements.

specification-part is zero or more specification statements.

execution part is zero or more executable statements.

internal-subprogram-part is 
CONTAINS
procedure-definitions

procedure-definitions is one or more procedure definitions.

end-subroutine-stmt is
END [ SUBROUTINE [subroutine-name] ]

subroutine-name is the name of the subroutine.

Functions
A function is a procedure that produces a single scalar or array result.  It is used in an expres-
sion in the same way a variable is.  For example, in the following program,
LF Fortran 95 Language Reference 45



Chapter 1    Elements of Fortran
program main
  implicit none
  interface ! an explicit interface is provided
    function square(x)
      implicit none
      real, intent(in) :: x
      real :: square
    end function square
  end interface
  real :: a, b=3.6, c=3.8, square
  a = 3.7 + b + square(c) + sin(4.7)
  print*, a
  stop
end program main

function square(x)
  implicit none
  real, intent(in) :: x
  real :: square
  square = x*x
  return
end function square

square(c) and sin(4.7) are function references.

The syntax for a function reference is 

function-name (actual-arg-list)

Where:
function-name is the name of the function.

actual-arg-list is a list of actual arguments.

A function can be defined as an internal or external function or as a statement function.
46 LF Fortran 95 Language Reference



Functions
External Functions
External functions can be called from anywhere in the program.  The syntax for an external 
function definition is

function-stmt
[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-function-stmt

Where:
function-stmt is a FUNCTION statement.

use-stmts is zero or more USE statements.

specification-part is zero or more specification statements.

execution part is zero or more executable statements.

internal-subprogram-part is 
CONTAINS
procedure-definitions

procedure-definitions is one or more procedure definitions.

end-function-stmt is
END [FUNCTION [function-name] ]

function-name is the name of the function.

Statement Functions 
A statement function (see “Statement Function” on page 248) is a function defined on a sin-
gle line with a single expression.  It can only be referenced within the program unit in which 
it is defined.  A statement function is best used where speed is more important than reusabil-
ity in other locations, and where the function can be expressed in a single expression.  The 
following is an example equivalent to the external function example in “Functions” on page 
45:

program main

real :: a, b=3.6, c=3.8, square

square(x) = x*x

a = 3.7 + b + square(c) + sin(4.7)

print*, a

end
LF Fortran 95 Language Reference 47



Chapter 1    Elements of Fortran
Internal Procedures
A procedure can contain other procedures, which can be referenced only from within the host 
procedure.  Such procedures are known as internal procedures.  An internal procedure is 
specified within the host procedure following a CONTAINS statement, which must appear 
after all the executable code of the containing subprogram.  The form of an internal procedure 
is the same as that of an external procedure.

Example:
subroutine external ()

  ...

  call internal ()        ! reference to internal procedure

  ...

contains

  subroutine internal ()  ! only callable from external()

...

  end subroutine internal

end subroutine external

Names from the host procedure are accessible to the internal procedure.  This is called host 
association.

Recursion
A Fortran procedure can reference itself, either directly or indirectly, only if the RECUR-
SIVE keyword is specified in the procedure definition.  A function that calls itself directly 
must use the RESULT option (see “FUNCTION Statement” on page 146).

Pure Procedures
Fortran procedures can be specified as PURE, meaning that there is no chance that the pro-
cedure would have any side effect on data outside the procedure.  Only pure procedures can 
be used in specification expressions.  The PURE keyword must be used in the procedure 
declaration.

Elemental Procedures
Fortran procedures can be elemental, meaning that they work on each element of an array 
argument as if the argument were a scalar.  The ELEMENTAL keyword must be used in the 
procedure declaration.  Note that all elemental procedures are also pure procedures.
48 LF Fortran 95 Language Reference



Procedure Arguments
Procedure Arguments
Arguments provide a means of passing information between a calling procedure and a pro-
cedure it calls.  The calling procedure provides a list of actual arguments.  The called 
procedure accepts a list of dummy arguments.

Argument Intent
Because Fortran passes arguments by reference, unwanted side effects can occur when an 
actual argument’s value is changed by the called procedure.  To protect the program from 
such unwanted side effects, the INTENT attribute is provided.  A dummy argument can have 
one of the following attributes:

• INTENT(IN), when it is to be used to input data to the procedure and not to return 
results to the calling subprogram;

• INTENT(OUT), when it is to be used to return results but not to input data; and

• INTENT(IN OUT), when it is to be used for inputting data and returning a result.  
This is the default argument intent.

The INTENT attribute is specified for dummy arguments using the INTENT statement or in 
a type declaration statement.

Keyword Arguments
Using keyword arguments, the programmer can specify explicitly which actual argument 
corresponds to which dummy argument, regardless of position in the actual argument list.  To 
do so, specify the dummy argument name along with the actual argument, using the follow-
ing syntax:

keyword = actual-arg

Where:
keyword is the dummy argument name.

actual-arg is the actual argument.

Example:
...
call zee(c=1, b=2, a=3)
...

subroutine zee(a,b,c)
...

In the example, the actual arguments are provided in reverse order.

A procedure reference can use keyword arguments for zero, some, or all of the actual argu-
ments (see “Optional Arguments” below).  For those arguments not having keywords, the 
order in the actual argument list determines the correspondence with the dummy argument 
list.  Keyword arguments must appear after any non-keyword arguments.
LF Fortran 95 Language Reference 49



Chapter 1    Elements of Fortran
Note that for a procedure invocation to use keyword arguments an explicit interface must be 
present (see “Procedure Interfaces” on page 51).  

Optional Arguments
An actual argument need not be provided for a corresponding dummy argument with the 
OPTIONAL attribute.  To make an argument optional, specify the OPTIONAL attribute for 
the dummy argument, either in a type declaration statement or with the OPTIONAL 
statement.

An optional argument at the end of a dummy argument list can simply be omitted from the 
corresponding actual argument list.  Keyword arguments must be used to omit other optional 
arguments, unless all of the remaining arguments in the reference are omitted.  For example,

subroutine zee(a, b, c)
  implicit none
  real, intent(in), optional :: a, c
  real, intent(in out) :: b
  ...
end subroutine zee

In the above subroutine, a and c are optional arguments.  In the following calls, various com-
binations of optional arguments are omitted:

call zee(b=3.0)        ! a and c omitted, keyword necessary
call zee(2.0, 3.0)     ! c omitted
call zee(b=3.0, c=8.5) ! a omitted, keywords necessary

It is usually necessary in a procedure body to know whether or not an optional argument has 
been provided.  The PRESENT intrinsic function takes as an argument the name of an 
optional argument and returns true if the argument is present and false otherwise.  A dummy 
argument or procedure that is not present must not be referenced except as an argument to 
the PRESENT function or as an optional argument in a procedure reference.  

Note that for a procedure to have optional arguments an explicit interface must be present 
(see “Procedure Interfaces” on page 51).  Many of the Fortran intrinsic procedures have 
optional arguments.

Alternate Returns (obsolescent)
A procedure can be made to return to a labeled statement in the calling subprogram using an 
alternate return.  The syntax for an alternate return dummy argument is

*

The syntax for an alternate return actual argument is 

* label

Where:
label is a labeled executable statement in the calling subprogram.
50 LF Fortran 95 Language Reference



Procedure Interfaces
An argument to the RETURN statement is used in the called subprogram to indicate which 
alternate return in the dummy argument list to take.  For example,

...
call zee(a,b,*200,c,*250)
...

subroutine zee(a, b, *, c, *)
  ...
  return 2       ! returns to label 250 in calling procedure
  ...
  return 1       ! returns to label 200 in calling procedure
  return         ! normal return

Dummy Procedures
A dummy argument can be the name of a procedure that is to be referenced in the called sub-
program or is to appear in an interface block or in an EXTERNAL or INTRINSIC statement.  
The corresponding actual argument must not be the name of an internal procedure or state-
ment function.  

Procedure Interfaces
A procedure interface is all the characteristics of a procedure that are of interest to the  Fortran 
processor when the procedure is invoked.  These characteristics include the name of the pro-
cedure, the number, order, type parameters, shape, and intent of the arguments; whether the 
arguments are optional, and  whether they are pointers; and, if the reference is to a function, 
the type, type parameters, and rank of the result, and whether it is a pointer.  If the function 
result is not a pointer, its shape is an important characteristic.  The interface can be explicit, 
in which case the Fortran processor has access to all characteristics of the procedure inter-
face, or implicit, in which case the Fortran processor must make assumptions about the 
interface.  

Explicit Interfaces
It is desirable, to avoid errors, to create explicit interfaces whenever possible.  In each of the 
following cases, an explicit interface is mandatory:

If a reference to a procedure appears
• with a keyword argument,
• as a defined assignment,
• in an expression as a defined operator, or
• as a reference by its generic name; 

or if the procedure has
• an optional dummy argument,
• an array-valued result,
• a dummy argument that is an assumed-shape array, a pointer, or a target,
LF Fortran 95 Language Reference 51



Chapter 1    Elements of Fortran
• a CHARACTER result whose length type parameter value is neither assumed nor 
constant, or

• a result that is a pointer.

An interface is always explicit for intrinsic procedures, internal procedures, and module pro-
cedures.  A statement function’s interface is always implicit.  In other cases,  explicit 
interfaces can be established using an interface block:

Syntax:
interface-stmt
[interface-body] ...
[module procedure statement] ...
end-interface statement

Where:
interface-stmt is an INTERFACE statement.

interface-body is
function-stmt
[specification-part]
end stmt

or
subroutine-stmt
[specification-part]
end-stmt

module-procedure-stmt is a MODULE PROCEDURE statement.

end-interface-stmt is an END INTERFACE statement.

function-stmt is a FUNCTION statement.

subroutine-stmt is a SUBROUTINE statement.

specification-part is the specification part of the procedure.

end-stmt is an END statement.

Example:
interface   
  subroutine x(a, b, c)
    implicit none
    real, intent(in), dimension (2,8) :: a
    real, intent(out), dimension (2,8) :: b, c
    end subroutine x
  function y(a, b)
    implicit none
    logical, intent(in) :: a, b
  end function y
end interface
52 LF Fortran 95 Language Reference



Procedure Interfaces
In this example, explicit interfaces are provided for the procedures x and y.  Any errors in 
referencing these procedures in the scoping unit of the interface block will be diagnosed at 
compile time.

Generic Interfaces
An INTERFACE statement with a generic-name (see “INTERFACE Block” on page 169) 
specifies a generic interface for each of the procedures in the interface block.  In this way 
external generic procedures can be created, analogous to intrinsic generic procedures.

Example:
interface swap  ! generic swap routine
  subroutine real_swap(x, y)
    implicit none

    real, intent(in out) :: x, y
  end subroutine real_swap

  subroutine int_swap(x, y)
    implicit none
    integer, intent(in out) :: x, y

  end subroutine int_swap
end interface

Here the generic procedure swap can be used with both the REAL and INTEGER types.

Defined Operations
Operators can be extended and new operators created for user-defined and intrinsic data 
types.  This is done using interface blocks with INTERFACE OPERATOR (see “INTER-
FACE Block” on page 169).  

A defined operation has the form 

operator operand

for a defined unary operation, and

operand operator operand

for a defined binary operation, where operator is one of the intrinsic operators or a user-
defined operator of the form

.operator-name.

where .operator-name. consists of one to 31 letters.

For example, either

a .intersection.  b

or

a * b
LF Fortran 95 Language Reference 53



Chapter 1    Elements of Fortran
might be used to indicate the intersection of two sets.  The generic interface block might look 
like

interface operator (.intersection.)

  function set_intersection (a, b)

    implicit none

    type (set), intent(in) :: a, b, set_intersection

  end function set_intersection

end interface

for the first example, and 

interface operator (*)

  function set_intersection (a, b)

    implicit none

    type (set), intent(in) :: a, b, set intersection

  end function set_intersection

end interface

for the second example.  The function set_intersection would then contain the code to 
determine the intersection of a and b.

The precedence of a defined operator is the same as that of the corresponding intrinsic oper-
ator if an intrinsic operator is being extended.  If a user-defined operator is used, a unary 
defined operation has higher precedence than any other operation, and a binary defined oper-
ation has a lower precedence than any other operation.

An intrinsic operation (such as addition) cannot be redefined for valid intrinsic operands.  For 
example, it is illegal to redefine plus to mean minus for numeric types.

The functions specified in the interface block take either one argument, in the case of a 
defined unary operator, or two arguments, for a defined binary operator.  The operand or 
operands in a defined operation become the arguments to a function specified in the interface 
block, depending on their type, kind, and rank.  If a defined binary operation is performed, 
the left operand corresponds to the first argument and the right operand to the second argu-
ment.  Both unary and binary defined operations for a particular operator may be specified in 
the same interface block.

Defined Assignment
The assignment operator may be extended using an interface block with INTERFACE 
ASSIGNMENT (see “INTERFACE Block” on page 169).  The mechanism is similar to that 
used to resolve a defined binary operation (see “Defined Operations” on page 53), with the 
variable on the left side of the assignment corresponding to the first argument of a subroutine 
in the interface block and the data object on the right side corresponding to the second argu-
ment.  The first argument must be INTENT(OUT) or INTENT(IN OUT); the second 
argument must be INTENT(IN).
54 LF Fortran 95 Language Reference



Program Units
Example:
interface assignment (=)  ! use = for integer to 
                          ! logical array
  subroutine integer_to_logical_array (b, n)
    implicit none
    logical, intent(out) :: b(:)
    integer, intent(in) :: n
  end subroutine integer_to_logical_array
end interface

Here the assignment operator is extended to convert INTEGER data to a LOGICAL array.

Program Units
Program units are the smallest elements of a Fortran program that may be separately com-
piled.  There are five kinds of program units:

• Main Program

• External Function Subprogram

• External Subroutine Subprogram

• Block Data Program Unit

• Module Program Unit

External Functions and Subroutines are described in “Functions” on page 45 and “Intrinsic 
Procedures” on page 44.

Main Program
Execution of a Fortran program begins with the first executable statement in the main pro-
gram and ends with a STOP statement anywhere in the program or with the END statement 
of the main program.

The form of a main program is

[program-stmt]
[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-stmt

Where:
program-stmt is a PROGRAM statement.

use-stmts is one or more USE statements.
LF Fortran 95 Language Reference 55



Chapter 1    Elements of Fortran
specification-part is one or more specification statements or interface blocks.

execution-part is one or more executable statements, other than RETURN or ENTRY 
statements.

internal-subprogram is one or more internal procedures.

end-stmt is an END statement.

Block Data Program Units
A block data program unit provides initial values for data in one or more named common 
blocks.  Only specification statements may appear in a block data program unit.  A block data 
program unit may be referenced only in EXTERNAL statements in other program units.

The form of a block data program unit is 

block-data-stmt
[specification-part]
end-stmt

Where:
block-data-stmt is a BLOCK DATA statement.

specification-part is one or more specification statements, other than ALLOCATABLE, 
INTENT, PUBLIC, PRIVATE, OPTIONAL, and SEQUENCE.

end-stmt is an END statement.

Module Program Units
Module program units provide a means of packaging anything that is required by more than 
one scoping unit (a scoping unit is a program unit, subprogram, derived type definition, or 
procedure interface body, excluding any scoping units it contains).  Modules may contain 
type specifications, interface blocks, executable code in module subprograms, and references 
to other modules.  The names in a module can be specified PUBLIC (accessible wherever the 
module is used) or PRIVATE (accessible only in the scope of the module itself).  Typical 
uses of modules include

• declaration and initialization of data to be used in more than one subprogram without 
using common blocks. 

• specification of explicit interfaces for procedures.

• definition of derived types and creation of reusable abstract data types (derived types 
and the procedures that operate on them).
56 LF Fortran 95 Language Reference



Module Program Units
The form of a module program unit is

module-stmt
[use-stmts]
[specification-part]
[module-subprogram-part]
end-stmt

Where:
module-stmt is a MODULE statement.

use-stmts is one or more USE statements.

specification-part is one or more interface blocks or specification statements other than 
OPTIONAL or INTENT.

module-subprogram part is CONTAINS, followed by one or more module procedures.

end-stmt is an END statement.

Example:
module example

  implicit none

  integer, dimension(2,2) :: bar1=1, bar2=2

  type phone_number                !derived type definition

    integer :: area_code,number

  end type phone_number

  interface                       !explicit interfaces

    function test(sample,result)

      implicit none

      real :: test
      integer, intent(in) :: sample,result

    end function test

    function count(total)

      implicit none

      integer :: count

      real,intent(in) :: total
    end function count

  end interface

  interface swap                  !generic interface

    module procedure swap_reals,swap_integers
  end interface

  contains

    function swap_reals        !module procedure

      ...

    end function swap_reals
LF Fortran 95 Language Reference 57



Chapter 1    Elements of Fortran
    function swap_integers  !module procedure

      ...

    end function swap_integers

end module example

Module Procedures
Module procedures have the same rules and organization as external procedures.  They are 
analogous to internal procedures, however, in that they have access to the data of the host 
module.  Only program units that use the host module have access to the module’s module 
procedures.  Procedures may be made local to the module by specifying the PRIVATE 
attribute in a PRIVATE statement or in a type declaration statement within the module.

Using Modules
Information contained in a module may be made available within another program unit via 
the USE statement.  For example,

use set_module

would give the current scoping unit access to the names in module set_module.  If a name 
in set_module conflicts with a name in the current scoping unit, an error occurs only if that 
name is referenced.  To avoid such conflicts, the USE statement has an aliasing facility:

use set_module, a => b

Here the module entity b would be known as a in the current scoping unit.

Another way of avoiding name conflicts, if the module entity name is not needed in the cur-
rent scoping unit, is with the ONLY form of the USE statement:

use set_module, only : c, d

Here, only the names c and d are accessible to the current scoping unit.

Forward references to modules are not allowed in LF95.  If a module resides in a separate file 
from the code that uses the module, the module must be compiled before the code using the 
module. If a module and the code using the module are in the same source file, the compiler 
will compile the module in the proper order, regardless of where the module appears in the 
source file.

Scope
Names of program units, common blocks, and external procedures have global scope.  That 
is, they may be referenced from anywhere in the program.  A global name must not identify 
more than one global entity in a program.  
58 LF Fortran 95 Language Reference



Data Sharing
Names of statement function dummy arguments have statement scope.  The same name may 
be used for a different entity outside the statement, and the name must not identify more than 
one entity within the statement.

Names of implied-do variables in DATA statements and array constructors have a scope of 
the implied-do list.  The same name may be used for a different entity outside the implied-
DO list, and the name must not identify more than one entity within the implied-DO list.

Other names have local scope.  The local scope, called a scoping unit, is one of the following:

• a derived-type definition, excluding the name of the derived type. 

• an interface body, excluding any derived-type definitions or interface bodies within 
it.

• a program unit or subprogram, excluding derived-type component definitions, inter-
face bodies, and subprograms contained within it.

Names in a scoping unit may be referenced from a scoping unit contained within it, except 
when the same name is declared in the inner, contained scoping unit.  This is known as host 
association.  For example,

subroutine external ()
  implicit none
  integer :: a, b
  ...

contains

  subroutine internal ()
    implicit none
    integer :: a
    ...
    a=b  ! a is the local a; 
          ! b is available by host association
    ...
  end subroutine internal

  ...
end subroutine external

In the statement a=b, above, a is the a declared in subroutine internal, not the a declared 
in subroutine external.  b is available from external by host association.

Data Sharing
To make an entity available to more than one program unit, pass it as an argument, place it 
in a common block (see “COMMON Statement” on page 96), or declare it in a module and 
use the module (see “Module Program Units” on page 56).
LF Fortran 95 Language Reference 59



Chapter 1    Elements of Fortran
60 LF Fortran 95 Language Reference



2 Alphabetical 
Reference
This chapter contains descriptions and examples of Fortran 95 statements, constructs, intrin-
sic procedures, and extensions.

ABS Function
Description
The ABS function returns the absolute value of a numeric argument.

Syntax
ABS (a)

Arguments
a is an INTENT(IN) scalar or array of type REAL, INTEGER, or COMPLEX.

Result
If a is INTEGER or REAL, the result is the same type and kind as a and has the value |a|.

If a is COMPLEX with value (x,y), the result is a REAL value with the same kind as a, and

is a representation of .

Example
real :: y=-4.5

complex :: z=(1.,-1.)

write(*,*) abs(y)  ! writes 4.5000000

write(*,*) abs(z)  ! writes 1.4142135

x2 y2+
LF Fortran 95 Language Reference 61



Chapter 2    Alphabetical Reference
ACHAR Function
Description
The ACHAR function returns a character from the ASCII collating sequence.  See “ASCII 
Character Set” on page 319.

Syntax
ACHAR (i)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

Result
A length one CHARACTER value corresponding to the character in position (i) of the ASCII 
collating sequence.  

If i is an array, the result is an array of length one CHARACTER values, with the same shape 
as i

Example
integer, dimension(6) :: i=(/72,111,119,100,121,33/)
write(*,*) achar(i)  ! writes "Howdy!"

ACOS Function
Description
The ACOS function returns the trigonometric arccosine of a real number, in radians.

Syntax
ACOS (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL and must be within the range .  
If the argument is outside this range, an error message is printed and program execution is 
terminated.

Result
A REAL representation, expressed in radians, of the arccosine of x.

Example
real :: x=.5

1– x 1≤ ≤
62 LF Fortran 95 Language Reference



ADJUSTL Function
write(*,*) acos(x)  ! writes 1.0471975

ADJUSTL Function
Description
The ADJUSTL function results in a character string which has been adjusted to the left.  
Leading blanks are removed from any text and replaced as trailing blanks.  The resulting 
character string is the same length as the input string.

Syntax
ADJUSTL (string)

Arguments
string is an INTENT(IN) scalar or array of type CHARACTER.

Result
A CHARACTER value the same length, kind, and shape as string.  

The result is the text from string with any leading blanks removed and the same number of 
trailing blanks inserted.

Example
character(len=10) :: str="    string"
write(*,*) "’",adjustl(str),"’" ! writes ’string    ’

ADJUSTR Function
Description
The ADJUSTR function results in a character string which has been adjusted to the right.  
Trailing blanks are removed from any text string, and replaced as leading blanks.  The result-
ing character string is the same length as the input string.

Syntax
ADJUSTR (string)

Arguments
string is an INTENT(IN) scalar or array of type CHARACTER.

Result
A CHARACTER of the same length, kind, and shape as string. 
LF Fortran 95 Language Reference 63



Chapter 2    Alphabetical Reference
 The result is the text from string with any trailing blanks removed and the same number of 
leading blanks inserted.

Example
character(len=10) :: str="string    "

write(*,*) "’",adjustr(str),"’" ! writes ’    string’ 

AIMAG Function
Description
The AIMAG function returns the imaginary part of a complex number.

Syntax
AIMAG  (z)

Arguments
z is an INTENT(IN) scalar or array of type COMPLEX.

Result
A REAL number with the same kind as z.  If z has the value (x,y) then the result has the value 
y.

Example
complex :: z=(-4.2,5.5)

write(*,*) aimag(z)  ! writes 5.500000

AINT Function
Description
The AINT function truncates a real number by removing its fractional part.

Syntax
AINT (a [, kind])

Required Arguments
a is an INTENT(IN) scalar or array of type REAL.
64 LF Fortran 95 Language Reference



ALL Function
Optional Arguments
kind determines the kind of the result. It must be a scalar INTEGER expression that can be 
evaluated at compile time.  To maintain portability, this argument should be the result of a 
“KIND Function” or “SELECTED_REAL_KIND Function”.

Result
The result is equal to the value of a without its fractional part.

If kind is present, the result  is a REAL value of kind kind, otherwise it is the same kind as a.

Example
real(kind=kind(1.e0)) :: r1=-7.32, r2=1.999999

real(kind=kind(1.d0)) :: dr

write(*,*) aint(r1,kind(r1)) ! writes -7.000000 

write(*,*) aint(r2, kind(dr)) ! writes 1.0000000000000

ALL Function
Description
The ALL function determines whether all values in a logical mask are true either for an entire 
mask or along a given dimension of the mask.

Syntax
ALL (mask [, dim])

Required Arguments
mask is an INTENT(IN) array of type LOGICAL.  It cannot be scalar.

Optional Arguments
dim is an INTENT(IN) scalar INTEGER with a value within the range , where n is 
the rank of mask.  The corresponding actual argument cannot be an optional dummy 
argument.

Result
The result is of type LOGICAL and the same kind as MASK.  Its value and rank are deter-
mined as follows:

1. The function will return a scalar logical value if mask has rank one, or if dim is 
absent.  The result has the value true if all elements of mask are true.

1 x n≤ ≤
LF Fortran 95 Language Reference 65



Chapter 2    Alphabetical Reference
2. The function will return a logical array of rank n-1 if dim is present and mask has rank 
two or greater.  The resulting array is of shape  
where  is the shape of mask and n is the rank of mask.  The result 
has the value true for each corresponding vector in mask that evaluates to true for all 
elements in that vector.

Example  1
real, dimension(4) :: o=0.,p=1.,q=(/1.,-2.,3.,4./)

if (all(q /= 0.)) o=p/q 

write(*,*) o ! writes 1.000000 -.5000000 .3333333 .2500000

Example  2
integer, dimension (2,3) :: a, b

a = reshape((/1,2,3,4,5,6/), (/2,3/)) 

write(*,'(2i3)') a ! writes 1 2

                   !        3 4 

                   !        5 6 

b = reshape((/1,2,3,5,6,4/), (/2,3/))  

write(*,'(2i3)') b ! writes 1 2

                   !        3 4 

                   !        5 6 

write(*,*) all(a==b)   ! writes F

write(*,*) all(a==b, 1)! writes T F F

write(*,*) all(a==b, 2)! writes F F

ALLOCATABLE Statement
Description
The ALLOCATABLE statement declares arrays as having the allocatable attribute, and may 
also define the rank of an allocatable array.  The shape of an allocatable array is determined 
when space is allocated for it by executing an ALLOCATE statement.

Syntax
ALLOCATABLE [::] array-name [( deferred-shape )] [, array-name ( deferred-
shape )] ...

Where:
array-name is the name of an array variable.

deferred-shape is : [, :] ...  where the number of colons is equal to the rank of array-name.

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( )
d1 d2 … dn, , ,( )
66 LF Fortran 95 Language Reference



ALLOCATE Statement
Remarks
The Fortran 95 standard states that the object of the ALLOCATABLE statement must not be 
a dummy argument or function result. As an extension, dummy arrays are allowed to have 
the allocatable attribute.

If the DIMENSION of array-name is specified elsewhere in the scoping unit, it must be spec-
ified as a deferred-shape.  

Example
integer :: a, c(:,:,:)
integer, allocatable :: b(:,:) ! allocatable attribute
allocatable a(:), c            ! allocatable statement
allocate (a(2),b(3,-1:1),c(10,10,10))! space allocated
write(*,*) shape(a),shape(b),shape(c)! writes 2 3 3 10 10 10
deallocate (a,b,c)                   ! space deallocated

ALLOCATE Statement
Description
The ALLOCATE statement dynamically creates storage for array variables having the 
ALLOCATABLE or POINTER attribute.  If the object of an ALLOCATE statement is a 
pointer, execution of the ALLOCATE statement causes the pointer to become associated.  If 
the object of an ALLOCATE statement is an array, the ALLOCATE statement defines the 
shape of the array.

Syntax
ALLOCATE (allocation-list [, STAT=stat-variable])

Where:
allocation-list is a comma-separated list of pointer or allocatable variables.  Each allocatable 
or pointer array in the allocation-list will have a list of dimension bounds, ( [lower-bound :] 
upper-bound [, ...] )

upper bound and lower-bound are scalar INTEGER expressions.

stat-variable is a scalar INTEGER variable.

Remarks
When the ALLOCATE statement is executed, the number of dimensions being allocated 
must agree with the declared rank of the array.  

If the optional STAT= is present and the ALLOCATE statement succeeds, stat-variable is 
assigned the value zero.  If STAT= is present and the ALLOCATE statement fails, stat-vari-
able is assigned the number of the error message generated at runtime.
LF Fortran 95 Language Reference 67



Chapter 2    Alphabetical Reference
If an error condition occurs during execution of an ALLOCATE statement that does not con-
tain the STAT= specifier, execution of the program is terminated.

The default lower-bound value is one.

If upper-bound is less than lower-bound, the extent of that dimension is zero and the entire 
array has zero size.

The ALLOCATED intrinsic function determines whether an allocatable array is currently 
allocated.

The ASSOCIATED intrinsic function determines whether a pointer is currently associated 
with a target.

Attempting to allocate a currently allocated variable causes an error condition to occur.

If a pointer that is currently associated with a target is allocated, a new pointer target is cre-
ated and the pointer is associated with that target.  If there is no other reference to the original 
target, the storage associated with the original target is lost and cannot be recovered.

If local allocatable or pointer arrays do not have the SAVE attribute, they may be automati-
cally deallocated upon execution of a RETURN statement. 

Example  1
integer,pointer,dimension(:,:) :: i => null()
integer,allocatable,dimension (:) :: j
integer,pointer :: k                    ! scalar pointer
write(*,*) associated(i), associated(k) ! writes F F
allocate (i(10,20),k) 
write(*,*) associated(i), shape(i)      ! writes T 10 20
write(*,*) associated(k)                ! writes T  
deallocate (i,k)
write(*,*) allocated(j)                 ! writes F
allocate (j(10))   
write(*,*) allocated(j), shape(j)       ! writes T 10
deallocate (j)                          ! space deallocated

Example  2
integer :: alloc_stat
real,allocatable,dimension (:) :: r
write(*,*) allocated(r)                ! writes F
allocate (r(10),stat=alloc_stat)
write(*,*) allocated(r),alloc_stat     ! writes T 0
allocate (r(20),stat=alloc_stat)
write(*,*) allocated(r),alloc_stat     ! writes T 1001
deallocate (r)                         ! space deallocated
allocate (r(20:-20),stat=alloc_stat)   ! zero size array
write(*,*) size(r),shape(r),alloc_stat ! writes 0 0 0
68 LF Fortran 95 Language Reference



ALLOCATED Function
ALLOCATED Function
Description
The ALLOCATED function returns a true or false value indicating the status of an allocat-
able variable.

Syntax
ALLOCATED (array)

Arguments
array is an INTENT(IN) array with the allocatable attribute.

Result
The result is a scalar of default LOGICAL type.  It has the value true if array is currently 
allocated and false if array is not currently allocated.

Example
integer, allocatable :: i(:)
write(*,*) allocated(i)  ! writes F
allocate (i(2))
write(*,*) allocated(i) ! writes T

ANINT Function
Description
The ANINT function rounds a REAL number up or down to the nearest whole number.

Syntax
ANINT (a [, kind])

Required Arguments
a is an INTENT(IN) scalar or array of type REAL.

Optional Arguments
kind is INTENT(IN) and determines the kind of the result. It must be a scalar INTEGER 
expression that can be evaluated at compile time.  To maintain portability, this argument 
should be the result of a “KIND Function” or “SELECTED_REAL_KIND Function”.

Result
The result is a type REAL number representing the whole number nearest to the argument.   
If a > 0, the result has the value INT(a + 0.5); if , the result has the value INT(a - 0.5).a 0≤
LF Fortran 95 Language Reference 69



Chapter 2    Alphabetical Reference
If kind is present, the result is the same kind as kind.

If kind is absent, the result is the same kind as a.

Example
real :: x=7.73,y=1.5,z=-1.5
write(*,*) anint(x,kind(1.d0)) ! writes 8.000000000000000
write(*,*) anint(y)            ! writes 2.0000000
write(*,*) anint(z)            ! writes -2.0000000

ANY Function
Description:
The ANY function determines whether any values in a logical mask are true either for an 
entire mask or along a given dimension of the mask.

Syntax
ANY (mask [, dim])

Required Arguments
mask is an INTENT(IN) array of type LOGICAL.  It must not be scalar.

Optional Arguments
dim is an INTENT(IN) scalar INTEGER with a value within the range , where n is 
the rank of mask.  The corresponding actual argument cannot be an optional dummy 
argument.

Result
The result is of type LOGICAL and the same kind as MASK.  Its value and rank are deter-
mined as follows:

1. The function will return a scalar logical value if mask has rank one, or if dim is 
absent.  The result has the value true if any elements of mask are true.

2. The function will return a logical array of rank n-1 if dim is present and mask has rank 
two or greater.  The resulting array is of shape  
where  is the shape of mask and n is the rank of mask.  The result 
has the value true for each corresponding vector in mask that evaluates to true for any 
elements in that vector.

Example  1
real,dimension(4) :: q=(/1.,-2.,3.,4./)
write(*,*) any(q < 0.) ! writes T

1 x n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( )
d1 d2 … dn, , ,( )
70 LF Fortran 95 Language Reference



Arithmetic IF Statement (obsolescent)
Example  2
integer, dimension (2,3) :: a, b
a = reshape((/1,2,3,4,5,6/), (/2,3/)) 
write(*,'(2i3)') a ! writes 1 2
                   !        3 4 
                   !        5 6 
b = reshape((/1,2,3,5,6,4/), (/2,3/))  
write(*,'(2i3)') b ! writes 1 2
                   !        3 4 
                   !        5 6 
write(*,*) any(a==b)    ! writes T
write(*,*) any(a==b, 1) ! writes T T F
write(*,*) any(a==b, 2) ! writes T T

Arithmetic IF Statement  (obsolescent)
Description
Execution of an arithmetic IF statement causes evaluation of an expression followed by a 
transfer of control.  The branch target statement identified by the first, second, or third label 
is executed if the value of the expression is less than zero, equal to zero, or greater than zero, 
respectively.  

Syntax
IF (expr) label, label, label

Where:
expr is a scalar numeric expression.

label is a statement label.

Remarks
Each label must be the label of a branch target statement that appears in the same scoping 
unit as the arithmetic IF statement.

expr must not be of type COMPLEX.

The same label can appear more than once in one arithmetic IF statement.

The arithmetic IF statement is an ancient construct created in the early days of Fortran, and 
was suitable for the tiny programs which the machines of that era were able to execute.  As 
hardware got better and programs grew larger, the arithmetic IF statement was identified as 
one of the main contributors to a logic snarled condition known as "spaghetti code", which 
made a program difficult to read and debug.  The arithmetic IF statement was replaced by the  
“IF Construct”.  While the arithmetic IF statement is obsolescent and should never be used 
when writing new code, it is fully supported.
LF Fortran 95 Language Reference 71



Chapter 2    Alphabetical Reference
Example
   real :: b=1.d0

10 write(*,*) " arithmetic if construct"

   if (b) 20,10,30 

20 write(*,*) " if b < 0, control is transferred here" 

30 write(*,*) " if b > 0, control is transferred here"

   write(*,*) " equivalent if construct"

   if( b < 0. ) then

     write(*,*) "if b < 0, control is transferred here"

   else if ( b > 0. ) then

     write(*,*) " if b > 0, control is transferred here"

   else

     write(*,*) " if b=0, control is transferred here" 

   end if

ASIN Function

Description
The ASIN function returns the trigonometric arcsine of a real number, in radians.

Syntax
ASIN (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL and must be within the range .  
If the argument is outside this range, an error message is printed and program execution is 
terminated.

Result
A REAL representation, expressed in radians, of the arcsine of x.

Example
real :: x=.5

write(*,*) asin(x)  ! writes .523599

1– x 1≤ ≤
72 LF Fortran 95 Language Reference



Assigned GOTO Statement (obsolescent)
Assigned GOTO Statement  (obsolescent)
Description
The assigned GOTO statement causes a transfer of control to the branch target statement indi-
cated by a variable that was assigned a statement label in an ASSIGN statement.  If the 
parenthesized list of labels is present, the variable must be one of the labels in the list.

Syntax
GOTO assign-variable [[,] (labels)]

Where:
assign-variable is a scalar INTEGER variable that was assigned a label in an ASSIGN 
statement.

labels is a comma-separated list of statement labels.

Remarks
At the time of execution of the GOTO statement, assign-variable must be defined with the 
value of a label of a branch target statement in the same scoping unit.

The assigned GOTO statement is a construct created in the early days of Fortran, and was 
suitable for the tiny programs which the machines of that era were able to execute.  As hard-
ware got better and programs grew larger, the assigned GOTO statement was identified as a 
major contributor to a logic snarled condition known as "spaghetti code", which made a pro-
gram difficult to read and debug.  The assigned GOTO statement may be replaced by the 
“CASE Construct” or the “IF Construct”.  Although the assigned GOTO statement is obso-
lescent and should never be used when writing new code, it is fully supported.

Example
   assign 10 to i

   goto i

20 assign 30 to i

   goto i
10 write(*,*) " assigned goto construct"

   assign 20 to i

   goto i, (10,20,30)

30 continue

ASSIGN Statement  (obsolescent)
Description
The ASSIGN statement assigns a statement branch label to an INTEGER variable.
LF Fortran 95 Language Reference 73



Chapter 2    Alphabetical Reference
Syntax
ASSIGN label TO assign-variable

Where:
label is a statement label.

assign-variable is a scalar INTEGER variable.

Remarks
assign-variable must be a named variable of default INTEGER kind.  It must not be a struc-
ture component or an array element.

label must be the target of a branch target statement or the label of a FORMAT statement in 
the same scoping unit.

When defined with an INTEGER value, assign-variable must not be used as a label.

When assigned a label, assign-variable must not be used as anything except a label.

The ASSIGN statement is an ancient construct that induces the coder to write "spaghetti 
code", leading to difficult to read and debug programs.  The assigned GOTO construct has 
been replaced by the structured “CASE Construct” or “IF Construct”.  The ASSIGN state-
ment  is obsolescent and should never be used when writing new code.  However, it is fully 
supported by the compiler.

Example
      assign 100 to i

100   continue

      goto i

Assignment Statement
Description
The assignment statement assigns the value of the expression on the right side of an equal 
sign to the variable on the left side of the equal sign.

Syntax
variable=expression

Where:
variable is a scalar variable, an array, or a variable of derived type.

expression is an expression whose result is conformable with variable.
74 LF Fortran 95 Language Reference



Assignment Statement
Remarks
A numeric variable can only be assigned a numeric value; a CHARACTER variable can only 
be assigned a CHARACTER value of the same kind; a LOGICAL variable can only be 
assigned a LOGICAL value; a derived type variable can only be assigned a value of the same 
derived type.

Evaluation of expression takes place before the assignment is made.  

If the kind of expression is different from that of variable, the result of expression undergoes 
an implicit type conversion to the kind and type of variable, possibly causing a loss of 
precision.

If expression is an array, then variable must be an array.  If expression is scalar and variable 
is an array, all elements of variable are assigned the value of expression.

If variable is a pointer, it must be associated with a target.  The target is assigned the value 
of expression.

If variable and expression are of CHARACTER type with different lengths, expression is 
truncated if longer than variable, and padded on the right with blanks if expression is shorter 
than variable.

Example  1
! Basic assignment examples

integer :: i1,i2

real :: r1,r2

real(kind(1.d0)) :: d1,d2

complex :: q1,q2

logical :: l1,l2

character(len=6) :: c1,c2

! assignment to a constant

i1=12345

r1=12345.

d1=12345.d0

q1=cmplx(1.2345e0,-1.2345e0)

l1=.true.

c1="Howdy!"

write(*,*) i1,r1,d1,q1,l1,c1

! assignment to an expression

i2=i1/10

r2=r1*10.

d2=d1**10.d0

q2=q1/r1

l2=(r1 < d1)

c2=c1(1:1) // "ow" // c2(4:6)

write(*,*) i2,r2,d2,q2,l2,c2
LF Fortran 95 Language Reference 75



Chapter 2    Alphabetical Reference
Example  2
! Conversion examples
integer(kind=selected_int_kind(4)) :: ishort=12345
integer(kind=selected_int_kind(6)) :: ilong
real(kind(1.e0)) :: a=1.234567e6, b1, b2
real(kind(1.d0)) :: d1, d2
! safe conversions
ilong=ishort
b1=ishort
b2=ilong
d1=ishort
write(*,*) ishort,ilong,b1,b2,d1
! dangerous conversions
ilong=a      ! succeeds this time
ishort=ilong ! overflows
write(*,*) a,ishort,ilong
ishort=a     ! overflows
write(*,*) ishort,a
ilong=a*b1 ! overflows
write(*,*) ilong,a*b1
! loss of precision
d1=exp(1.5d0)  ! no loss of precision
b1=d1          ! loses precision
d2=b1          ! d2 given a single precision value
write(*,'(4(/,g21.14))') exp(1.5d0),d1,d2,b1
b2=huge(ilong) ! loses precision
write(*,*) b2,huge(ilong)

Example  3
! array and derived type assignments
   real :: a=0.
   real,dimension(3) :: a_a1=0.
   real,dimension(3,3) :: a_a2=0.
   type realtype1                  ! derived type definition
     real :: a=0.
     real,dimension(3) :: a_a1=0.
     real,dimension(3,3) :: a_a2=0.
   end type realtype1  
   type realtype2                  ! derived type definition
     real :: a=0.
     real,dimension(3) :: a_a1=0.
     real,dimension(3,3) :: a_a2=0.
   end type realtype2
   type (realtype1) :: rt1         ! derived type declaration
   type (realtype2) :: rt2         ! derived type declaration
! array assignment to a scalar constant
   a_a1=13.
   a_a2=16.
76 LF Fortran 95 Language Reference



ASSOCIATED Function
   rt1%a_a2=19.
   write(*,10) a_a1, a_a2, rt1%a_a2
! Array assignment to a scalar variable
   a_a1=a
   a_a2=a
   rt1%a_a2=a
   write(*,10) a_a1,a_a2,rt1%a_a2
! Array assignment to an array constant
   a_a1=(/1.,2.,3./)
   a_a2=reshape((/1.,2.,3.,4.,5.,6.,7.,8.,9./),(/3,3/))
   rt1%a_a2=reshape((/9.,8.,7.,6.,5.,4.,3.,2.,1./),(/3,3/))
   write(*,10) a_a1,a_a2,rt1%a_a2
! Array assignment to a derived type constant
   rt2=realtype2 (0.,(/1.,2.,3./),&
       reshape((/1.,2.,3.,4.,5.,6.,7.,8.,9./),(/3,3/)))
   write(*,20) rt2%a, &
         rt2%a_a1,rt2%a_a2
! Conformable assignments
   rt2%a=sum(a_a1)
   rt1%a_a1=a_a1
   rt2%a_a1=rt1%a_a1
   rt2%a_a2(3,:)=a_a1
   rt2%a_a2(1:2,1:2)=rt1%a_a2(1:2,2:3)
   write(*,20) rt2%a, rt2%a_a1, rt2%a_a2
10 format(/,3f7.3,2(/,3(/,3f7.3)),/)         
20 format(/,f7.3,//,3f7.3,/,3(/,3f7.3),/)
! nonconformable assignments
! will produce error messages
!   a=a_a2
!   rt1=0.
!   rt1=a
!   rt1=rt2
!   rt1%a_a1=a_a2
!   rt1%a_a2=a_a1

ASSOCIATED Function
Description
The ASSOCIATED function indicates whether a pointer is associated or disassociated.  It 
may also test a pointer for association with a particular target.

Syntax
ASSOCIATED (pointer[, target])
LF Fortran 95 Language Reference 77



Chapter 2    Alphabetical Reference
Required Arguments
pointer is an INTENT(IN) variable with the pointer attribute whose association status is 
either associated or disassociated. The association status of pointer must not be undefined.

Optional Arguments
target is INTENT(IN) and must have either the pointer or target attribute.  If it is a pointer, 
its pointer association status must not be undefined.

Result
The result is of type default LOGICAL.

When target is absent, the result is true if pointer is currently associated with a target.  If 
pointer is disassociated, the result is false.

When target is present, the result is true if pointer is currently associated with target. The 
result is false if pointer is disassociated or associated with a different target.

If target has the pointer attribute, the result is true if both pointer and target are currently 
associated with the same target. If either pointer or target is disassociated, or if they are asso-
ciated with different targets, the result is false.  

Example
real,pointer :: a(:)
real,allocatable, target :: b(:)
write (*,*) associated(a) ! pointer disassociated by default
allocate(a(4))            ! a is associated
write (*,*) associated(a)
deallocate(a)             ! a is disassociated
write (*,*) associated(a)
allocate(b(5))
a => b                    ! a is associated with b
write (*,*) associated(a,b)
deallocate(b)             ! careful, a is undefined!!!
a => null()               ! a is disassociated
write(*,*) associated(a)

ATAN Function
Description
The ATAN function returns the arctangent of a real number, in radians.

Syntax
ATAN (x)
78 LF Fortran 95 Language Reference



ATAN2 Function
Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is a REAL representation of the arctangent of x, expressed in radians.  The result 
always falls within the range .

Example
real :: a=0.5

write(*,*) atan(a)  ! writes 0.4636476

ATAN2 Function

Description
The ATAN2 function returns the arctangent of y/x, expressed as radians.  The ATAN2 func-
tion is able to return a greater range of values than the ATAN function, because it considers 
the sign of x and y.

Syntax
ATAN2 (y, x)

Arguments
y is an INTENT(IN) scalar or array of type REAL.

x is INTENT(IN) and of the same kind as y. If y is an array, x must be an array conformable 
to y.  If y is zero, x cannot be zero.

Result
The result is of the same kind as y.  Its value is a REAL representation, expressed in radians, 
of the principal value of the argument of the complex number x + iy.  The result falls within 
the range .

If y is positive, the result is positive.  If y is negative, the result is negative.  If y is zero and x 
> 0, the result is zero.  If y is zero and x < 0, the result is pi.  If x is zero, the result is a repre-
sentation of the value   having the sign of y.

π 2⁄– x π 2⁄≤ ≤

π– x< π≤

π 2⁄
LF Fortran 95 Language Reference 79



Chapter 2    Alphabetical Reference
Example
real :: y=1.,x=1.

write(*,*) atan2(y,x)   ! writes 0.78539818

write(*,*) atan2(-y,x)  ! writes -0.78539818

write(*,*) atan2(y,-x)  ! writes 2.3561945

write(*,*) atan2(-y,-x) ! writes -2.3561945

write(*,*) atan2(0.,x)  ! writes 0.0000000

write(*,*) atan2(0.,-x) ! writes 3.1415927

write(*,*) atan2(y,0.)  ! writes 1.5707963

write(*,*) atan2(-y,0.) ! writes -1.5707963

BACKSPACE Statement
Description
The BACKSPACE statement moves the position of a file opened for sequential access to the 
beginning of the current record.  If there is no current record, the file position is moved to the 
beginning of the preceding record.  If there is no preceding record, the file position is 
unchanged.

Syntax
BACKSPACE unit-number

or
BACKSPACE (position-spec-list)

Where:
unit-number is a scalar INTEGER expression corresponding to the input/output unit number 
of an external file.

position-spec-list is [[UNIT =] unit-number][, ERR=label][, IOSTAT=stat] where UNIT=, 
ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number must 
be first.

label is a statement label that is branched to if an error condition occurs during execution of 
the statement.

stat is a variable of type INTEGER that is assigned a positive value if an error condition 
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero 
otherwise.  

Remarks
If there is no current record and no preceding record, the file position is left unchanged.

If the preceding record is an endfile record, the file is positioned before the endfile record.
80 LF Fortran 95 Language Reference



BIT_SIZE Function
If the BACKSPACE statement causes the implicit writing of an endfile record, the file is 
positioned before the record that precedes the endfile record.

Backspacing a file that is connected but does not exist is prohibited.

Backspacing over records using list-directed or namelist formatting is prohibited.

Note that BACKSPACE may only be used on sequential access files.

Example
integer :: ios
backspace 10             ! backspace file on unit 10 
backspace(10,iostat=ios) ! backspace with status return

BIT_SIZE Function
Description
The BIT_SIZE function returns the number of bits in a data object of type INTEGER.

Syntax
BIT_SIZE (i)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

Result
The result is the same kind as i.  Its value is equal to the number of bits in an integer of kind i.

Example
integer(kind=selected_int_kind(4)) :: i
integer(kind=selected_int_kind(12)) :: j
integer,dimension(2) :: k
write(*,*) bit_size(i) ! writes 16
write(*,*) bit_size(j) ! writes 64
write(*,*) bit_size(k) ! writes 32

BLOCK DATA Statement
Description
The BLOCK DATA statement begins a block data program unit.  The block data program 
unit initializes data that appears in named common blocks.
LF Fortran 95 Language Reference 81



Chapter 2    Alphabetical Reference
Syntax
BLOCK DATA [block-data-name]

Where:
block-data-name is an optional name given to the block data program unit.

Remarks
There can only be one unnamed BLOCK DATA program unit in a program.

A block data program unit may only initialize variables that appear in a named common 
block.

The same named common block may not appear in more than one block data subprogram.

A block data subprogram may only contain type declaration statements; the attribute speci-
fiers PARAMETER, DIMENSION, POINTER, SAVE and TARGET;  the specification 
statements USE, IMPLICIT, COMMON, DATA, EQUIVALENCE and INTRINSIC.

A type declaration statement in a block data subprogram may not specify the attributes 
ALLOCATABLE, EXTERNAL, INTENT, OPTIONAL, PRIVATE or PUBLIC.

Example
block data mydata

  common /d/ a,b,c

  data a,b,c /1.0,2.0,3.0/

end block data mydata

BTEST Function
Description
The BTEST function will test the bit in position pos in an INTEGER data object.

Syntax
BTEST (i, pos)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER to be tested.

pos is an INTENT(IN) scalar or array of type INTEGER.  It must be non-negative and less 
than BIT_SIZE (i).  Bits are numbered from least significant to most significant, beginning 
with 0.

If both i and pos are arrays, they must be conformable.
82 LF Fortran 95 Language Reference



CALL Statement
Result
The result is of type default LOGICAL.  

If both i and pos are scalar, BTEST returns the value true if bit pos has the value 1 and false 
if bit pos has the value zero.

If i is scalar and pos is an array, the result is a LOGICAL array the same shape as pos.  Each 
element of the array contains the result of testing i for each bit position contained in each ele-
ment of pos. 

If i is an array and pos is scalar, the result is a LOGICAL array the same shape as i.  Each 
element of the array contains the result of testing bit position pos for each element of array i.

If i and pos are conformable arrays, The result is a LOGICAL array the same shape as i.  Each 
element of the array contains the result of testing each element of i using the bit position from 
the corresponding element of pos.

Example
integer :: i=-1,j=4,spos=bit_size(i)-1

integer :: k(4)=(/1,2,4,8/),pos(4)=(/0,1,2,3/)
write(*,*) btest(i,spos),btest(j,spos) ! test sign bit

write(*,*) btest(i,pos) ! test first 4 bits of i

write(*,*) btest(k,2)   ! test bit #2 for each element of k
write(*,*) btest(k,pos) ! test each element of k using the

                        ! corresponding element of pos

CALL Statement
Description
The CALL statement invokes a subroutine and passes it an arguments list.

Syntax
CALL subroutine-name [( [actual-arg-list] )]

Where:
subroutine-name is the name of a subroutine.

actual-arg-list is [[keyword =] actual-arg] [, ...]  

keyword is the name of a dummy argument to subroutine-name.

actual-arg is an expression, a variable, a procedure name, or an alternate-return-spec.

alternate-return-spec is *label 

label is a statement label.
LF Fortran 95 Language Reference 83



Chapter 2    Alphabetical Reference
Remarks
General:
actual-arg-list defines the correspondence between the actual-args supplied and the dummy 
arguments of the subroutine.  

If keyword= is present, the actual argument is passed to the dummy argument whose name 
is the same as keyword.  If a keyword= is absent, the actual argument is passed to the dummy 
argument in the corresponding position in the dummy argument list.  

keyword= must appear with an actual-arg unless no previous keyword= has appeared in the 
actual-arg-list.

keyword= can only appear if the interface of the procedure is explicit in the scoping unit.

An actual-arg can be omitted if the corresponding dummy argument has the OPTIONAL 
attribute.  Each actual-arg must be associated with a corresponding dummy argument.

Data objects as arguments:
An actual argument must be of the same kind as the corresponding dummy argument.  

If the dummy argument is an assumed-shape array of type default CHARACTER, its length 
must agree with that of the corresponding actual argument.  

The total length of a dummy argument of type default CHARACTER must be less than or 
equal to that of the corresponding actual argument.

If the dummy argument is a pointer, the actual argument must also be a pointer of the same 
type, attributes, and rank.  At the invocation of the subroutine, the dummy argument pointer 
receives the pointer association status of the actual argument.  At the end of the subroutine, 
the actual argument receives the pointer association status of the dummy argument.

If the actual argument has the TARGET attribute, any pointers associated with it remain asso-
ciated with the actual argument.  If the dummy argument has the TARGET attribute, any 
pointers associated with it become undefined when the subroutine completes.

The ranks of dummy arguments and corresponding actual arguments must agree unless the 
actual argument is an element of an array that is not an assumed-shape or pointer array, or a 
substring of such an element.

If an actual argument has the INTENT(OUT) attribute, and its value is not set within the sub-
routine, upon return from the subroutine, its value will be undefined. 

Procedures as arguments:
If a dummy argument is a dummy procedure, the associated actual argument must be the spe-
cific name of an external, module, dummy, or intrinsic procedure.  

The intrinsic functions AMAX0, AMAX1, AMIN0, AMIN1, CHAR, DMAX1, DMIN1, 
FLOAT, ICHAR, IDINT, IFIX, INT, LGE, LGT, LLE, LLT, MAX0, MAX1, MIN0, MIN1, 
REAL, and SNGL may not be associated with a dummy procedure.  The results of these func-
tions may be used as actual arguments.
84 LF Fortran 95 Language Reference



CALL Statement
If a generic intrinsic function name is also a specific name, only the specific procedure is 
associated with the dummy argument.

If a dummy procedure has an implicit interface either the name of the dummy argument is 
explicitly typed or the procedure is referenced as a function.  The dummy procedure must not 
be called as a subroutine and the actual argument must be a function or dummy procedure.

If a dummy procedure has an implicit interface and the procedure is called as a subroutine, 
the actual argument must be a subroutine or a dummy procedure.

Alternate returns as arguments:
If a dummy argument is an asterisk, the corresponding actual argument must be an alternate-
return-spec.  The label in the alternate-return-spec must identify an executable construct in 
the scoping unit containing the procedure reference.

Example  1
! basic calling syntax
  real :: x=1.,y=2.
  call alpha(x,y)
end program
subroutine alpha(a,b)
  real :: a,b
  write(*,*) a,b
end subroutine alpha

Example  2
! calling with optional arguments
  interface
    subroutine alpha(a,b) ! define keywords here
      real :: a  ! use of optional arguments 
      real,optional :: b  ! requires an interface
    end subroutine
  end interface
  real :: x=1., y=2.
  call alpha(x)        ! call with no options
  call alpha(x,y)      ! positional call
  call alpha(b=x, a=y) ! keyword call
end program
subroutine alpha (a,b)
  real :: a
  real,optional :: b
  if(present(b)) then ! b must not appear unless it
    write(*,*) a,b    !   is inside a construct that
  else                !   tests for its presence
    write(*,*) a
  end if
end subroutine alpha
LF Fortran 95 Language Reference 85



Chapter 2    Alphabetical Reference
Example  3
! calling with a procedure argument
  real,external :: euler
  call alpha(euler)
end program
subroutine alpha(f)
  real,external :: f
  write(*,*) f()
end subroutine alpha
real function euler()
  euler=exp(cmplx(0.,atan2(0.,-1.)))
end function euler

Example  4
! calling with the intent attribute
  real :: x=1.,y=2.
  call alpha(x,y)
  write(*,*) x,y
end program
subroutine alpha(a,b)
  real,intent(in) :: a  ! a cannot be changed inside alpha
  real,intent(out) :: b ! b must be initialized before
  b=a                   ! the dummy argument or actual
end subroutine alpha    ! argument is referenced

CARG Function
Description
The CARG function passes a numeric or logical argument by value, rather than using the For-
tran standard of passing arguments by reference.  If the argument is of type CHARACTER, 
the CARG function will convert the argument to a C string.  CARG can only be used as an 
actual argument when invoking a subroutine or function.

Syntax
CARG (item)

Arguments
item is an INTENT(IN) named data object of any intrinsic type except COMPLEX and four-
byte LOGICAL.  It is the data object for which to return a value.

Result
If the argument is numeric or logical, the value of item is placed on the calling stack, rather 
than its address.
86 LF Fortran 95 Language Reference



CARG Function
If the argument is of type CHARACTER, the Fortran length descriptor is removed and the 
character string is null terminated.  

The C data type of the result is shown in Table 8.

Example
real :: a=1.0
character :: c="howdy"
i=my_c_function(carg(a))      ! a is passed by value
call my_c_subroutine(carg(c)) ! c is passed as a C string

Table 8: CARG result types

Fortran Type Fortran Kind C type

INTEGER 1 signed char

INTEGER 2 signed short int

INTEGER 4 signed long int

REAL 4 float

COMPLEX 4

must not be passed by value; if 
passed by reference (without 
CARG) it is a pointer to a structure 
of the form:

  struct complex {
    float real_part;
    float imaginary_part;};

LOGICAL 1 unsigned char

LOGICAL 4 must not be passed by value or by 
reference

CHARACTER 1 char *
LF Fortran 95 Language Reference 87



Chapter 2    Alphabetical Reference
CASE Construct
Description
The CASE construct selects blocks of executable code based on the value of an expression.  
A default case may be provided.

The SELECT CASE statement signals the beginning of a CASE construct.  It contains an 
expression that, when evaluated, produces a case index.  The case index in the CASE con-
struct determines which block in a CASE construct, if any, is executed.

The CASE statement defines a case selector which, when matched with the value from a 
SELECT CASE statement, causes the following block of code to be executed.

The END SELECT statement signals the end of the innermost nested CASE construct.

Syntax
[construct-name :] SELECT CASE (case-expr)
CASE (case-selector [, case-selector] ...  ) [construct-name]
                 block
                 ...
[CASE DEFAULT [construct-name]]
                 block
                 ...
END SELECT [construct-name]

Where:
construct-name is an optional name for the CASE construct

case-expr is a scalar expression of type INTEGER, LOGICAL, or CHARACTER

case-selector is case-value
or : case-value
or case-value :
or case-value : case-value

case-value is a constant scalar LOGICAL, INTEGER, or CHARACTER expression.

block is a sequence of zero or more statements or executable constructs.

Remarks
Execution of a SELECT CASE statement causes the case expression to be evaluated.  The 
resulting value is called the case index.

Execution of a CASE code block occurs if the case index derived from the SELECT CASE 
statement is in the range specified by the CASE statement's case-selector.  Execution of the 
code block ends when any subsequent CASE or END CASE statement is encountered, and 
the innermost case construct is exited.
88 LF Fortran 95 Language Reference



CASE Construct
The case-selector is evaluated as follows:

case-value means equal to case-value;

:case-value means less than or equal to case-value;

case-value: means greater than or equal to case-value; and

case-value:case-value means greater than or equal to the left case-value, 

                                       and less than or equal to the right case-value.

Each case-value must be of the same type and kind as the case construct's case index.

The ranges of case-values in a case construct must not overlap.

If case-value is of type LOGICAL, it cannot have a range.

The block following a CASE DEFAULT, if any, is executed if the case index matches none 
of the case-values in the case construct.  CASE DEFAULT can appear before, among, or 
after other CASE statements, or can be omitted.

The case-values in a case construct must not overlap.

Only one CASE DEFAULT is allowed in a given case construct.

If the SELECT CASE statement is identified by a construct-name, the corresponding END 
SELECT statement must be identified by the same construct name.  If the SELECT CASE 
statement is not identified by a construct-name, the corresponding END SELECT statement 
must not have a construct-name.

Example  1
integer :: i=3 

select case (i)

case (:-2)

  write(*,*) "i is less than or equal to -2"

case (0)

  write(*,*) "i is equal to 0"

case (1:97)

  write(*,*) "i is in the range 1 to 97, inclusive"

case default

  write(*,*) "i is either -1 or greater than 97"

end select
LF Fortran 95 Language Reference 89



Chapter 2    Alphabetical Reference
Example  2
character(len=5) :: c="Howdy" 
select case (c)
case ("Hi","Hello","Howdy")
  write(*,*) "Hello, how are you?"
case ("Good Morning")
  write(*,*) "Nice morning, isn't it?"
case ("Good Night")
  write(*,*) "Goodbye."
case default
  write(*,*) "What time is it?"
end select

CEILING Function
Description
The CEILING function returns the smallest INTEGER number greater than or equal to a 
REAL number.

Syntax
CEILING (a [, kind] )

Required Arguments
a is an INTENT(IN) scalar or array of type REAL.

Optional Arguments
kind is INTENT(IN) and determines the kind of the result. It must be a scalar INTEGER 
expression that can be evaluated at compile time.  To maintain portability, this argument 
should be the result of a “KIND Function” or “SELECTED_INT_KIND Function”.

Result
The result is an INTEGER number whose value is the smallest integer greater than or equal 
to a.

If kind is present, it specifies the kind of the result.

If kind is absent, the result is type default INTEGER.

Example
real :: r=4.7, x(3)=(/-.5,0.,.5/)
write(*,*) ceiling(r)                       ! writes 5
write(*,*) ceiling(-r,selected_int_kind(2)) ! writes -4
write(*,*) ceiling(x)                       ! writes 0 0 1
90 LF Fortran 95 Language Reference



CHAR Function
CHAR Function
Description
The CHAR function returns a character from a specified character set.

Syntax
CHAR (i [, kind] )

Required Arguments
i is an INTENT(IN) scalar or array of type INTEGER.  Each i value must be positive and not 
greater than the number of characters in the collating sequence of the character set specified 
by kind.

Optional Arguments
kind is INTENT(IN) and determines which character set is chosen.  It must be a scalar INTE-
GER expression that can be evaluated at compile time.  Only the ASCII character set is 
supported, with a kind number of 1.  See “ASCII Character Set” on page 319.

Result
The result is a CHARACTER value of length one corresponding to the ith character of the 
given character set.

If kind is present, the resulting kind is specified by kind.  Only the default kind is supported.

If kind is absent, the kind is of type default CHARACTER.

Example
integer,dimension(6) :: i=(/72,111,119,100,121,33/)

write(*,*) char(i)  ! writes "Howdy!"

CHARACTER Statement
Description
The CHARACTER statement declares entities having the CHARACTER data type.

Syntax
CHARACTER [char-selector] [, attribute-list ::] entity [, entity] ...
LF Fortran 95 Language Reference 91



Chapter 2    Alphabetical Reference
Where:
char-selector is:
char-selector is ([LEN=] length [, KIND=kind])
or (KIND=kind [, LEN=length])
or * char-length [,]

kind is a scalar INTEGER expression that can be evaluated at compile time.

length is a scalar INTEGER expression that can be evaluated on entry to the program unit.
or *

char-length is a scalar INTEGER literal constant
or (*)

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or 
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE, 
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is:
entity-name [(array-spec)] [* char-length] [=initialization-expr]
or function-name [(array-spec)] [* char-length]

array-spec is an array specification

initialization-expr is a CHARACTER-valued expression that can be evaluated at compile 
time

entity-name is the name of the entity being declared

function-name is the name of a function being declared

Remarks
If char-length is not specified, the length is one.

An asterisk can be used for char-length only in the following ways:

1. If the entity is a dummy argument.  The dummy argument assumes the length of the 
associated actual argument.

2. To declare a named constant.  The length is that of the constant value.

3. In an external function, as the length of the function result.  In this case, the function 
name must be declared in the calling scoping unit with a length other than *, or access 
such a definition by host or use association.  The length of the result variable is 
assumed from this definition.

char-length for CHARACTER-valued statement functions and statement function dummy 
arguments must be a constant INTEGER expression.

The optional comma following * char-length in a char-selector is permitted only if no double 
colon appears in the statement.
92 LF Fortran 95 Language Reference



CHARACTER Statement
The value of kind must specify a character set that is valid for this compiler.

char-length must not include a kind parameter.

The * char-length in entity specifies the length of a single entity and overrides the length 
specified in char-selector.

function-name must be the name of an external, intrinsic, or statement function, or a function 
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, a double colon must appear before the list of entities.  Each 
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-expr must not appear if entity-name is a dummy argument, a function  
result, an object in a named common block unless the type declaration is in a block data  pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an 
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must 
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC 
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or 
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable 
arrays, functions, or objects in a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be 
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy 
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unless it is a 
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be a dummy argument or a function 
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.
LF Fortran 95 Language Reference 93



Chapter 2    Alphabetical Reference
If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC, 
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

If char-length is a non-constant expression, the length is declared at the entry of the proce-
dure and is not affected by any redefinition of the variables in the specification expression 
during execution of the procedure.

Example
character :: c1                           ! length one
character(len=4) :: c3="Yow!"
character(len=*),parameter :: c6=" Howdy" ! length six
character(len=3),dimension(2) :: ca2=(/" Fo","lks"/)
character :: ca4*4(2) ! ca4 has len=4, dimension=2

CLOSE Statement
Description
The CLOSE statement terminates the connection between a specified input/output unit num-
ber and an external file.

Syntax
CLOSE ( close-spec-list )

Where:
close-spec-list is a comma-separated list of close-specs.

close-specs are:
[UNIT =] external-file-unit,
[IOSTAT=iostat],
[ERR=label],
[STATUS=status]

external-file-unit is the input/output unit number of an external file.

iostat is a scalar default INTEGER variable.  It signals either success or failure after execu-
tion of the CLOSE statement.

label is the label of a branch target statement to which the program branches if there is an 
error in executing the CLOSE statement.

status is a CHARACTER expression that evaluates to either 'KEEP' or 'DELETE'.

Remarks
The CLOSE statement must specify an external-file-unit.
94 LF Fortran 95 Language Reference



CMPLX Function
If UNIT=is omitted, external-file-unit must be the first specifier in close-spec-list.

If IOSTAT=iostat is present, iostat has a value of zero if the unit was successfully closed.  If 
an error occurs when executing the CLOSE statement, iostat is assigned an error number 
which identifies which error occurred.

A specifier must not appear more than once in a CLOSE statement.

STATUS='KEEP' must not be specified for a file whose status is ’SCRATCH’.  If ’KEEP’ 
is specified for a file that exists, the file continues to exist after a CLOSE statement.  This is 
the default behavior.

If STATUS='DELETE' is specified, the file associated with the unit number will be deleted 
upon execution of the CLOSE statement.

Example  1
integer :: ios

close(8,iostat=ios,status='DELETE')

if(ios == 0) then

  write(*,*) " No error occurred."

else

  write(*,*) " IOSTAT= encourages structured programming."

end if

Example  2
close(unit=8,err=200)

write(*,*) " No error occurred."

goto 300

200 write(*,*) " An error occurred"

300 continue

CMPLX Function
Description
The CMPLX function uses REAL or INTEGER arguments to compose a result of type COM-
PLEX.  It may also convert between different kinds of COMPLEX numbers, possibly 
resulting in a loss of precision.

Syntax
CMPLX (x [, y] [, kind] )

Required Arguments
x is an INTENT(IN) scalar or array of type REAL, INTEGER, or COMPLEX.
LF Fortran 95 Language Reference 95



Chapter 2    Alphabetical Reference
Optional Arguments
y is INTENT(IN) and of type REAL or INTEGER.  If x is of type COMPLEX, y cannot be 
present.

kind determines the kind of the result. It must be a scalar INTEGER expression that can be 
evaluated at compile time.  To maintain portability, this argument should be the result of a 
“KIND Function”, or “SELECTED_REAL_KIND Function”.

Result
The result is of type COMPLEX.

If x is INTEGER or REAL, the value of the result is the complex number whose real part has 
the value of x,  and whose imaginary part has the value of y. If y is absent, the imaginary part 
of the result is zero.

If x is COMPLEX, it is as if x and y were present with the values REAL(x), AIMAG(x)).

If kind is present, the result is of the kind specified by kind.

If kind is absent, the result is default kind.  

Example
real :: x=1.,y=1.

integer :: ix=1,iy=1

complex(kind(1.d0)) :: z=(1.d0,1.d0)

write(*,*) cmplx(x)    ! y assumed to be zero               

write(*,*) cmplx(x,y)             

write(*,*) cmplx(ix,iy,kind(1.d0))

write(*,*) cmplx(ix,y)       
write(*,*) z, cmplx(z) ! precision is lost

COMMON Statement
Description
The COMMON statement provides a global data facility.  It specifies contiguous blocks of 
physical storage, called common blocks, that are available to any program unit that refer-
ences the common block.

Syntax
COMMON [/ [common-name] /] common-object-list [[,] / [common-name] / 
common-object-list] ...

Where:
common-name is the name of the common block being declared.
96 LF Fortran 95 Language Reference



COMMON Statement
common-object-list is a comma-separated list of data objects that are to be included in the 
common block.

Remarks
If common-name is present, all data objects in the corresponding common-object-list are 
specified to be in the named common block common-name.

If common-name is omitted, all data objects in the following common-object-list are specified 
to be in blank common.

For each common block, a contiguous storage sequence is formed for all data objects, in the 
order they appear in common-object-lists in the program unit.

A given data object can appear only once in all common-object-lists in a program unit.

A blank common has the same properties as a named common, except:

1. Execution of a RETURN or END statement may cause data objects in a named com-
mon to become undefined unless the common block name has been declared in a 
SAVE statement.

2. Named common blocks of the same name must be the same size in all scoping units 
of a program in which they appear, but blank commons can be of different sizes.

3. A data object in named common can be initialized in a BLOCK DATA program unit, 
but data objects in a blank common must not be initially defined.

A common block name or blank common can appear multiple times in one or more COM-
MON statements in a program unit.  In such case, the common-object-list is treated as a 
continuation of the common-object-list for that common block.

A data object in a common-object-list must not be a dummy argument, an allocatable array, 
an automatic object, a function name, an entry name, or a result name, and it must have a 
name made available by use association.

Each bound in an array-valued data object in a common-object-list must be an initialization 
expression.

Any data object must only become associated with an object having the same attributes, type, 
kind, length, or rank.

If a data object in a common-object-list has an explicit shape, it cannot have the pointer 
attribute.

If a data object in a common-object-list is of a derived type, the derived type must have the 
sequence attribute.

Derived type data objects in which all components are of default numeric or LOGICAL types 
can become associated with data objects of default numeric or LOGICAL types.
LF Fortran 95 Language Reference 97



Chapter 2    Alphabetical Reference
Derived type data objects in which all components are of default CHARACTER type can 
become associated with data objects of type CHARACTER.

An EQUIVALENCE statement must not cause the storage sequences of two different com-
mon blocks to become associated.

An EQUIVALENCE statement must not cause storage units to be added before the first stor-
age unit of the common block.

If any storage sequence is associated by equivalence association with the storage sequence 
of the common block, the sequence can be extended only by adding storage units beyond the 
last storage unit.

Example
common /first/ a,b,c       ! a, b, and c are in named 
                           ! common /first/
common d,e,f, /second/, g  ! d, e, and f are in blank
                           ! common, g is in named 
                           ! common /second/
common /first/ h           ! h is appended to /first/

COMPLEX Statement
Description
The COMPLEX statement declares entities having the COMPLEX data type.

Syntax
COMPLEX [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ( [KIND=] scalar-int-initialization-expr )

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at com-
pile time.  To maintain portability, the value of this descriptor should be the result of a “KIND 
Function” or a “SELECTED_REAL_KIND Function”.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or 
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE, 
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [( array-spec )] [=initialization-expr]
or function-name [( array-spec )]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.
98 LF Fortran 95 Language Reference



COMPLEX Statement
entity-name is the name of an entity being declared.

function-name is the name of a function being declared.

Remarks
function-name must be the name of an external, intrinsic, or statement function, or a function 
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, a double colon must appear before the list of entities.  Each 
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-expr must not appear if entity-name is a dummy argument, a function  
result, an object in a named common block unless the type declaration is in a block data  pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an 
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must 
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC 
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or 
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable 
arrays, functions, or objects in a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be 
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy 
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unless it is a 
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be a dummy argument or a function 
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.
LF Fortran 95 Language Reference 99



Chapter 2    Alphabetical Reference
If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC, 
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

Example
complex :: a, b

complex,parameter :: c=(2.0,3.14159)! c must be initialized

complex :: d(2)=(/(1.,0.),(0.,0.)/) ! array initialization

complex,pointer :: e(:,:,:)         ! deferred shape rank 3

Computed GOTO Statement  (obsolescent)

Description
The computed GOTO statement causes transfer of control to one of a list of labeled 
statements.  

Syntax
GO TO ( labels ) [,] scalar-int-expr

Where:

labels is a comma-separated list of labels.

scalar-int-expr is a scalar INTEGER expression.

Remarks
Execution of a computed GOTO statement causes evaluation of scalar-int-expr.  If this value 
is i such that , where n is the number of labels in labels, a transfer of control occurs 
so that the next statement executed is the one identified by the ith label in labels.  If i is less 
than 1 or greater than n, the execution sequence continues as though a CONTINUE statement 
were executed.

Each label in labels must be the label of a branch target statement in the current scoping unit.

The computed GOTO statement has been identified as a major contributor to a logic-snarled 
condition known as "spaghetti code", which makes a program difficult to read and debug.  
The computed GOTO statement is best replaced by the “CASE Construct” although the “IF 
Construct” could be used as well.  Although the computed GOTO statement is obsolescent 
and should never be used when writing new code, it is fully supported.

1 i n≤ ≤
100 LF Fortran 95 Language Reference



CONJG Function
Example
   integer :: i=1

40 write(*,*) " computed goto construct"

   goto (20,30,40) i

   write(*,*) " transfer here if no match" 

   goto 10

30 write(*,*) " if i=2 control transfers here"

20 write(*,*) " if i=1 control transfers here"

10 write(*,*) " equivalent case construct"

   select case (i)

   case(1)

     write(*,*) " if i=1 control transfers here"

   case(2)

     write(*,*) " if i=2 control transfers here"

   case(3)

     write(*,*) " if i=3 control transfers here"

   case default

     write(*,*) " transfer here if no match" 

   end select

CONJG Function
Description
The CONJG function returns the conjugate of a complex number.

Syntax
CONJG (z)

Arguments
z is an INTENT(IN) scalar or array of type COMPLEX.

Result
The result is of type COMPLEX and has the same kind as z.  Its value is z with the imaginary 
part negated.

Example
complex :: x=(.1,-.2),y(2)=(/(1.,0.),(0.,1.)/)

write(*,*) conjg(x) ! writes (.1, .2)

write(*,*) conjg(y) ! writes (1.,0.) (0.,-1.)
LF Fortran 95 Language Reference 101



Chapter 2    Alphabetical Reference
CONTAINS Statement
Description
The CONTAINS statement separates the body of a main program, module, or subprogram 
from any internal or module subprograms it contains.

Syntax
CONTAINS

Remarks
When used in a MODULE, the CONTAINS statement separates a global data area from any 
module procedures.  Any variables, type definitions, interfaces or initialization expressions 
that appear above the CONTAINS statement are globally available within the module, and 
are also available to any program unit that uses the module, provided that the entity in ques-
tion has the PUBLIC attribute.

When appearing in a main program, subprogram or module procedure, the CONTAINS 
statement separates the main body of code from any internal procedures.  Any variables, type 
definitions, interfaces or initialization expressions that appear above the CONTAINS state-
ment are available to all internal procedures that appear below the CONTAINS statement.

Any variables, type definitions, interfaces, or initialization expressions that appear below a 
CONTAINS statement are local in scope.

The CONTAINS statement is not executable.

Internal procedures cannot contain other internal procedures.

Example
module mod1
  real :: a=1.   ! a is globally available
contains         ! separates global from procedures
  subroutine sub1()
    real :: b=3. ! b is only available inside sub1() 
    write(*,*) a ! global a is available inside sub1()
    call internal()
  contains       ! separates sub1 body from internal proc
    subroutine internal() ! internal() is local to sub1
      real :: a=2. ! this a is local to internal()
      write(*,*) b ! b is available by host association
      write(*,*) a ! global a is not available because 
                   ! it is overridden by local a
    end subroutine internal
  end subroutine sub1
end module mod1
102 LF Fortran 95 Language Reference



CONTINUE Statement
program prog1

  use mod1

  call internal()

contains

  subroutine internal()

    write(*,*) a ! global a is available by host association

    call sub1()

  end subroutine internal

end program

CONTINUE Statement
Description
The CONTINUE statement is traditionally used in conjunction with a statement label, as the 
target of a branch statement or a do loop terminus.  Execution of a CONTINUE statement has 
no effect.

Syntax
CONTINUE

Remarks
If a labeled CONTINUE statement marks the terminus of a do loop, it must not be the target 
of a branch statement and it cannot be used as the terminus of any other do loop.

Example
   integer :: i 

20 continue

   do 10 i=1,10

10 continue

   goto 20

COS Function
Description
The COS function returns the trigonometric cosine of a REAL or COMPLEX argument.

Syntax
COS (x)
LF Fortran 95 Language Reference 103



Chapter 2    Alphabetical Reference
Arguments
x is an INTENT(IN) scalar or array of type REAL or COMPLEX and must be expressed in 
radians.

Result
The result is of the same type and kind as x.  Its value is a REAL or COMPLEX representa-
tion of the cosine of x.

Example
real :: x=.5,y(2)=(/1.,1./)
complex :: z=(1.,1.)
write(*,*) cos(x) ! writes .8775826 
write(*,*) cos(y) ! writes .9950042 .9950042
write(*,*) cos(z) ! writes (.8337300. -.9888977)

COSH Function
Description
The COSH function returns the hyperbolic cosine of a REAL argument.

Syntax
COSH (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is of the same type and kind as x.  Its value is a REAL representation of the hyper-
bolic cosine of x.

Example
real :: x=.5,y(2)=(/1.,1./)
write(*,*) cosh(x) ! writes 1.127626 
write(*,*) cosh(y) ! writes 1.543081 1.543081

COUNT Function
Description
The COUNT function counts the number of true elements in a logical mask either for an 
entire mask or along a given dimension of the mask.
104 LF Fortran 95 Language Reference



CPU_TIME Subroutine
Syntax
COUNT (mask [, dim] )

Required Arguments
mask is an INTENT(IN) array of type LOGICAL.  It must not be scalar.

Optional Arguments
dim is an INTENT(IN) scalar of type INTEGER with a value within the range , 
where n is the rank of mask.  The corresponding actual argument must not be an optional 
dummy argument.

Result
The result is of type default INTEGER.  Its value and rank are computed as follows:

1. The function will return a scalar logical value if mask has rank one, or if dim is 
absent.  The result is the number of elements for which mask is true.

2. The function will return a logical array of rank n-1 if dim is present and mask has rank 
two or greater.  The resulting array is of shape  
where  is the shape of mask and n is the rank of mask.  The result is 
the number of true elements for each corresponding vector in mask.

Example
integer,dimension(2,3) :: a,b

a=reshape((/1,2,3,4,5,6/),shape(a))  

write(*,'(2i3)') a ! writes 1  2

                   !        3  4

                   !        5  6

b=reshape((/1,2,3,5,6,4/), (/2,3/))  

write(*,'(2i3)') b ! writes 1  2

                   !        3  4

                   !        5  6

write(*,*) count(a==b)       ! writes 3

write(*,*) count(a==b,dim=1) ! writes 2 1 0

write(*,*) count(a==b,dim=2) ! writes 2 1

CPU_TIME Subroutine
Description
The CPU_TIME subroutine returns the amount of processor time used by a program, 
expressed as a REAL number.  

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( )
d1 d2 … dn, , ,( )
LF Fortran 95 Language Reference 105



Chapter 2    Alphabetical Reference
Syntax
CPU_TIME (time)

Required Arguments
time is an INTENT(OUT) scalar REAL variable.  It is assigned the processor time in seconds.

Remarks
CPU_TIME only reflects the actual CPU usage when the application is executed in an envi-
ronment that makes this information available.  Windows NT, 2000, XP and Linux systems 
support this facility.  If the operating system does not track CPU usage, CPU_TIME returns 
the elapsed time between calls.

Example
integer :: i
real :: start_time,end_time, x(1000000)
call cpu_time(start_time)
do i=1,1000000
  x=cosh(real(i))
end do  
call cpu_time(end_time)
write(*,*) end_time-start_time ! writes elapsed time

CSHIFT Function
Description
The CSHIFT function performs a circular shift of all rank one sections in an array.  Elements 
shifted out at one end are shifted in at the other.  Different sections can be shifted by different 
amounts and in different directions by using an array-valued shift.

Syntax
CSHIFT (array, shift [, dim] )

Required Arguments
array is an INTENT(IN) array of any type.  It must not be scalar.

shift is an INTENT(IN) INTEGER and must be scalar if array is of rank one; otherwise it can 
either be scalar or of rank n-1 and shape , where 

 is the shape of array.

Optional Arguments
dim is an INTENT(IN) scalar INTEGER with a value in the range , where n is 
the rank of array.  If dim is omitted, it is as if it were present with the value one.

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( )
d1 d2 … dn, , ,( )

1 dim n≤ ≤
106 LF Fortran 95 Language Reference



CYCLE Statement
Result
The result is of the same type, kind, and shape as array.  

If array is of rank one, the value of the result is the value of array circularly shifted shift ele-
ments.  A shift of n performed on array gives a result value of array(1 + MODULO(i + n - 
1, SIZE(array))) for element i.

If array is of rank two or greater, each complete vector along dimension dim is circularly 
shifted shift elements.  shift can be an array.

Example
integer :: a(3), b(3,3)

a = (/1,2,3/)

b = reshape ((/1,2,3,4,5,6,7,8,9/), (/3,3/))

write(*,10) a                   ! writes 1 2 3

write(*,10) cshift(a, 1)        ! writes 2 3 1

write(*,20) b                   ! writes 1 2 3

                                !        4 5 6

                                !        7 8 9 

write(*,20) cshift(b,-1)        ! writes 3 1 2

                                !        6 4 5

                                !        9 7 8 

write(*,20) cshift(b,(/1,-1,0/))! writes 2 3 1

                                !        6 4 5

                                !        7 8 9

write(*,20) cshift(b,1,dim=2)   ! writes 4 5 6

                                !        7 8 9

                                !        1 2 3 

10 format(3i3)

20 format(3(/,3i3))

CYCLE Statement
Description
The CYCLE statement skips to the next iteration of a DO loop.  

Syntax
CYCLE [do-construct-name]

Where:
do-construct-name is the name of a DO construct that contains the CYCLE statement.  If do-
construct-name is omitted, it is as if do-construct-name were the name of the innermost DO 
construct in which the CYCLE statement appears.
LF Fortran 95 Language Reference 107



Chapter 2    Alphabetical Reference
Remarks
The CYCLE statement may only appear within a DO construct.

Example
       integer :: i, j

outer: do i=1, 10

         if(i < 3) cycle          ! cycles outer

inner:   do j=1, 10

           if (i < j) cycle       ! cycles inner

           if (i > j) cycle outer ! cycles to outer

         end do inner

       end do outer

DATA Statement
Description
The DATA statement provides initial values for data objects.

Syntax
DATA data-stmt-set [[,] data-stmt-set] ...

Where:
data-stmt-set is object-list / value-list /

object-list is a comma-separated list of variable names or implied-dos.

value-list is a comma-separated list of [repeat *] data-constant

repeat is a scalar INTEGER constant.

data-constant is a scalar constant (either literal or named) 
or a structure constructor.

implied-do is (implied-do-object-list , implied-do-var=expr, expr[, expr])

implied-do-object-list is a comma-separated list of array elements, scalar structure compo-
nents, or implied-dos.

implied-do-var is a scalar INTEGER variable.

expr is a scalar INTEGER expression.

Remarks
Each object in object-list must have a corresponding value in value-list.
108 LF Fortran 95 Language Reference



DATA Statement
Each value in value-list must be a constant that is either previously defined or made accessi-
ble by host or use association.  Each constant should be of the same kind as the corresponding 
object being initialized.

A variable, or part of a variable, must not be initialized more than once in an executable 
program.

If the type of a variable that is being initialized is not declared prior to its appearance in a 
DATA statement, it is of default type.  Any subsequent declaration of the type of the variable 
must be of default kind.

A whole array that appears in an object-list is equivalent to a complete sequence of its array 
elements in array element order.  An array section is equivalent to the sequence of its array 
elements in array element order.

An implied-do is expanded to form a sequence of array elements and structure components, 
under the control of the implied-do-var, as in the DO construct.

repeat indicates the number of times the following constant is to be included in the sequence; 
omission of repeat defaults to a repeat factor of 1.

A variable that is initialized in a DATA statement cannot also be any of the following: a 
dummy argument; accessible by host or use association; in a blank common block; be a func-
tion name or function result name; an automatic object; a pointer; or an allocatable array.

Variables that are initialized using the DATA statement in a block data program unit may 
appear in a named common block.  Variables that are initialized using the DATA statement 
in program units other than block data cannot appear in a named common block.

If an object in an object-list is of type INTEGER, its corresponding value may be a binary, 
octal, or hexadecimal constant.

Example
integer, parameter :: arrsize=100000,init=0
real,parameter :: rinit=0.

real :: r1,r2,r3,array1(2,2),array2(arrsize)

real(kind(1.d0)) :: r4,r5

complex :: q

integer :: l,b,o,z,array3(10)

data r1,r2,r3 /1.,2.,3./, array1 /1.,2.,3.,4./

data r4 /1.23456789012345d0/ ! correct initialization

data r5 /1.23456789012345/   ! loses precision

data array2 /arrsize*rinit/,q /(0.,0.)/

data (array3(l),l=1,10) /10*init/
data b /B'01101000100010111110100001111010'/

data o /O'15042764172'/

data z /Z'688be87a'/

write(*,*) r4,r5
LF Fortran 95 Language Reference 109



Chapter 2    Alphabetical Reference
DATE_AND_TIME Subroutine
Description
The DATE_AND_TIME subroutine retrieves information concerning a computer’s calendar 
date, time of day and time zone at the time the subroutine is invoked.

Syntax
DATE_AND_TIME ([date [,]] [time[,]] [zone[,]] [values[,]] )

Optional Arguments
date is an INTENT(OUT) scalar of type CHARACTER, with a minimum length of eight.  Its 
leftmost eight characters are set to a value of the form yyyymmdd, where yyyy is the year, mm 
the month, and dd the day.  If there is no date available, date is blank.

time is an INTENT(OUT) scalar of type CHARACTER, with a minimum length of ten.  Its 
leftmost ten characters are set to a value of the form hhmmss.sss, where hh is the hour, mm 
the minutes, and ss.sss is seconds and milliseconds.  If there is no clock available, time is 
blank.

zone is an INTENT(OUT) scalar of type CHARACTER, with a minimum length of five.  Its 
leftmost five characters are set to a value of the form +-hhmm, where hh and mm are the time 
difference with respect to Coordinated Universal Time (UTC, also known as Greenwich 
Mean Time) in hours and minutes.  If there is no clock or time zone information available, 
zone is blank.

values an INTENT(OUT) rank one array of type default INTEGER with a minimum size of 
eight.  If any date or time value is unavailable, its corresponding element in values will be set 
to -huge(0).  Otherwise, the first eight elements of values are as follows:

values (1) the year (for example, 2002)
values (2) the month of the year
values (3) the day of the month
values (4) the time difference with respect to Coordinated Universal Time (UTC) in minutes
values (5) the hour of the day, in the range of 0 to 23
values (6) the minutes of the hour, in the range of 0 to 59
values (7) the seconds of the minute, in the range 0 to 59
values (8) the milliseconds of the second, in the range 0 to 999

Remarks
If keyword arguments are not used, the date value will always be returned in the first argu-
ment of the calling list, time in the second argument, zone in the third argument, and values 
in the fourth argument.
110 LF Fortran 95 Language Reference



DBLE Function
Example
character(len=10) :: time,date,zone

integer :: dt(8)

call date_and_time(time=time) ! keyword arguments

call date_and_time(date=date) !

call date_and_time(zone=zone) !

write(*,*) time,date,zone

call date_and_time(date,time,zone) ! positional arguments 

write(*,*) time,date,zone

call date_and_time(values=dt)

write(*,*) dt

call date_and_time(date) ! if no keywords are used, always

call date_and_time(time) ! returns the date

call date_and_time(zone) !

write(*,*) time,date,zone

DBLE Function
Description
The DBLE function returns a double-precision REAL value given a numeric argument.

Syntax
DBLE (a)

Arguments
a is an INTENT(IN) scalar or array of type INTEGER, REAL or COMPLEX.

Result
The result is of double-precision REAL type.  Its value is a double precision representation 
of a.  If a is of type COMPLEX, the result is a double precision representation of the real part 
of a.

Example
integer :: i=1

real :: r=1.

complex :: q=(1.,1.)

write(*,*) i,dble(i)

write(*,*) r,dble(r)

write(*,*) q,dble(q)
LF Fortran 95 Language Reference 111



Chapter 2    Alphabetical Reference
DEALLOCATE Statement

Description
The DEALLOCATE statement deallocates allocatable arrays and pointer targets and disas-
sociates pointers.

Syntax
DEALLOCATE ( object-list [, STAT=stat-variable] )

Where:

object-list is a comma-separated list of pointers or allocatable arrays.

stat-variable is a scalar INTEGER variable that returns a status value.

Remarks
If the optional STAT= is present and the DEALLOCATE statement succeeds, stat-variable 
is assigned the value zero.  If STAT= is present and the DEALLOCATE statement fails, stat-
variable is assigned the number of the error message generated at runtime.

If an error condition occurs during execution of a DEALLOCATE statement that does not 
contain the STAT= specifier, the executable program is terminated.

Deallocating an allocatable array that is not currently allocated or a pointer that is disassoci-
ated or whose target was not allocated causes an error condition in the DEALLOCATE 
statement.

If a pointer is currently associated with an allocatable array, the pointer must not be 
deallocated.

Deallocating an allocatable array or pointer causes the status of any pointer associated with 
it to become undefined.

Example
integer,pointer,dimension(:,:) :: ip => null()

integer,allocatable,dimension(:) :: jp

integer :: allostat

allocate (ip(10,20),jp(10)) 

deallocate(ip)

deallocate(jp,stat=allostat)

write(*,*) allostat
112 LF Fortran 95 Language Reference



DIGITS Function
DIGITS Function
Description
The DIGITS function returns the number of significant binary digits in a real or integer data 
object.

Syntax
DIGITS (x)

Arguments
x an INTENT(IN) scalar or array of type INTEGER or REAL.

Result
The result is of type default INTEGER.  Its value is the number of binary digits composing 
the significant value of x.

Example
real :: r

real(kind(1.d0)) :: d

integer :: i

write(*,*) digits(i),digits(r),digits(d)

DIM Function
Description
The DIM function returns the difference between two numbers if the difference is positive; 
zero otherwise.

Syntax
DIM (x, y)

Arguments
x is an INTENT(IN) scalar or array of type INTEGER or REAL.

y is INTENT(IN) and of the same type and kind as x.

Result
The result is of the same type as x.  Its value is x - y if x is greater than y and zero otherwise.
LF Fortran 95 Language Reference 113



Chapter 2    Alphabetical Reference
Example
integer :: i=1,j=2
real :: x=1.,y=.5
write(*,*) dim(x,y) ! writes 0.5
write(*,*) dim(i,j) ! writes 0.0

DIMENSION Statement
Description
The DIMENSION statement specifies the shape or rank of an array.

Syntax
DIMENSION [::] array-name (array-spec) [, array-name (array-spec)] ...

Where:
array-name is the name of an array.

array-spec is explicit-shape-specs
or assumed-shape-specs
or deferred-shape-specs
or assumed-size-spec

explicit-shape-specs is a comma-separated list of [lower-bound :] upper-bound that specifies 
the shape and bounds of an explicit-shape array.

assumed-shape-specs is a comma-separated list of [lower-bound] : that, with the dimensions 
of the corresponding actual argument, specifies the shape and bounds of an assumed-shape 
array.

deferred-shape-specs is a comma-separated list of colons that specifies the rank of a 
deferred-shape array.

assumed-size-spec is [explicit-shape-specs,] [lower-bound :] *

assumed-size-spec specifies the shape of a dummy argument array whose size is assumed 
from the corresponding actual argument array.

lower-bound is a scalar INTEGER expression that can be evaluated on entry to the program 
unit that specifies the lower bound of a given dimension of the array.

upper-bound is a scalar INTEGER expression that can be evaluated on entry to the program 
unit that specifies the upper bound of a given dimension of the array.

Remarks
If the object being dimensioned also has the ALLOCATABLE or POINTER attribute, array-
spec must be specified as a deferred-shape.  
114 LF Fortran 95 Language Reference



DLL_EXPORT Statement
Example  1
program prog1
  dimension :: a(3,2,1)       ! dimension statement
  real, dimension(3,2,1) :: b ! dimension attribute
  dimension c(-3:3)           ! bounds specified  
  real d
  allocatable d
  dimension d(:,:,:)          ! deferred shape with rank 3

Example  2
subroutine sub1(x,y,z)
  dimension :: x(:,:,:) ! assumed shape with rank 3
  dimension y(-3:)      ! lower bound specified  
  dimension z(*)        ! assumed size array

DLL_EXPORT Statement
Description
The DLL_EXPORT statement makes a procedure that resides in a dynamic-link library 
externally available.

Syntax
DLL_EXPORT [::] dll-export-names

Where:
 dll-export-names is a list of procedures defined in the current scoping unit.

Remarks
The procedures in dll-export-names must not be module procedures.

The procedures names listed in a DLL_EXPORT statement are "decorated" to match one of 
several calling conventions by using the "-ml xxxx"  switch at compile time.

Example
function half(x)
  integer :: half,x
  dll_export half             ! dll_export statement
  half=x/2
end function half
function twice(x)
  integer,dll_export :: twice ! dll_export attribute
  integer :: x
  twice=x*2
end function twice
LF Fortran 95 Language Reference 115



Chapter 2    Alphabetical Reference
DLL_IMPORT Statement
Description
The DLL_IMPORT statement specifies which procedures are to be imported from a 
dynamic-link library.

Syntax
DLL_IMPORT [::] dll-import-names

Where:
dll-import-names is a comma-separated list of procedure names.

The procedures names listed in a DLL_IMPORT statement are "decorated" to match one of 
several calling conventions by using the "-ml xxxx"  switch at compile time.

Example
program main
  integer :: half,i
  dll_import half             ! dll_import statement
  integer,dll_import :: twice ! dll_import attribute
  i=half(i)
end program main

DO Construct
Description
The DO construct specifies the repeated execution (loop) of a block of code.

A DO statement begins a DO construct.

An END DO statement ends the innermost nested DO construct.

Syntax
[construct-name :] DO [label] [loop-control]

block
do-termination

Where:
construct-name is an optional name given to the DO construct.
label is the optional label of a statement that terminates the DO construct.
loop-control is [,] do-variable=expr, expr [, expr]
or [,] WHILE (while-expr)
do-variable is a scalar variable of type INTEGER.
116 LF Fortran 95 Language Reference



DO Construct
expr is a scalar expression of type INTEGER.  The first expr is the initial value of do-vari-
able; the second expr is the final value of do-variable; the third expr is the increment value 
for do-variable.
while-expr is a scalar LOGICAL expression.
block is a sequence of zero or more statements or executable constructs.
do-termination is END DO [construct-name]
or label action-stmt
action-stmt is a statement other than GOTO, RETURN, STOP, EXIT, CYCLE, assigned 
GOTO, arithmetic IF, or END.

Remarks
If a do-variable is present, the expressions in are evaluated, and do-variable is assigned an 
initial value and an iteration count.  An iteration count of zero is possible.  Note that because 
the iteration count is established before execution of the loop, changing the do-variable 
within the range of the loop has no effect on the number of iterations.

If loop-control is WHILE (while-expr), while-expr is evaluated and if false, the loop 
terminates.  

If there is no loop-control it is as if the iteration count were effectively infinite.  

Use of default or double-precision REAL for the do-variable has been removed from the For-
tran 95 language.

The “CYCLE Statement” skips to the next iteration of a DO loop.

The “EXIT Statement” exits a DO loop altogether.

If the DO statement specifies a label, the corresponding do-termination statement must be 
identified with the same label.

If a construct name is specified in the DO statement, the same construct name must be spec-
ified in a corresponding END DO statement.

If the DO statement is not identified by a construct-name, the do-termination statement must 
not specify a construct-name.

Ending a DO construct with a labeled action statement is obsolescent, the use of END DO is 
preferred.

Example  1
integer :: i
real :: a=20.,b=10.
do i=1,10
                 ! code block goes here
end do
do               ! infinite do loop
                 ! better have some way to leave
   exit 
LF Fortran 95 Language Reference 117



Chapter 2    Alphabetical Reference
end do
do while (a > b) ! does while condition is true
  a=a-1.
  write(*,*) a > b
end do
do i=10,1,-1     ! backward iteration of index i
                 ! code block goes here
end do 

Example  2
integer :: i, j
outer_loop: do i=1,5
   inner_loop: do j=1,5 
                  if(i>j) then
                     write(*,*) ' cycling inner'
                     cycle inner_loop
                  else if (i<j) then
                     write(*,*) ' cycling outer'
                     cycle outer_loop
                  else
                     write(*,*) i,j
                  end if  
               end do inner_loop
            end do outer_loop

Example  3
    integer :: i
    do 10, i=1,10
10  end do          ! label number required
    do i=1,10
    end do
lp: do while(i>10)
        i=i-1
    end do lp       ! construct name required

Example  4
integer :: i
real :: a=20., b=10.
do i=1,5
   write(*,*) 'simple indexed do'
end do
do i=1,5,2
   write(*,*) 'indexed do with stride'
end do
do i=5,1
   write(*,*) 'zero trip loop'
end do
118 LF Fortran 95 Language Reference



DOT_PRODUCT Function
do while (a > b) ! does while condition is true

  a=a-1.

  write(*,*) a > b

end do

DOT_PRODUCT Function
Description
The DOT_PRODUCT function returns the dot product of two vectors of type INTEGER, 
REAL OR COMPLEX.

Syntax
DOT_PRODUCT (vector_a, vector_b)

Arguments
vector_a is an INTENT(IN) rank one array of type INTEGER, REAL, COMPLEX, or 
LOGICAL. 

vector_a is INTENT(IN) and the same size as vector_b.

If vector_a is a numeric type, vector_b must also be a numeric type.

If vector_a is LOGICAL, vector_b must also be LOGICAL.  

Result
If both vector_a and vector_b are REAL or INTEGER, the result is equal to
 SUM (vector_a * vector_b) .

If either argument is of type COMPLEX, the result value is 
SUM (CONJG (vector_a) * vector_b) .  
If one of the arguments is not COMPLEX, it is treated as if it were complex with an imagi-
nary part of zero.

If the arguments are of type LOGICAL, then the result value is 
ANY (vector_a .AND.  vector_b).  

If the arguments are of different numeric types, the result type is taken from the argument 
with the higher type, where COMPLEX is higher than REAL, and REAL is higher than 
INTEGER.

The kind of the result is taken from the argument that offers the greatest range.

If the argument arrays size is zero, the result is zero for numeric types, and false for logical 
types.
LF Fortran 95 Language Reference 119



Chapter 2    Alphabetical Reference
Example
integer :: ivec(3)=(/1,2,3/), &
           jvec(3)=(/4,5,6/)
real :: rvec(3)=(/1.,2.,3./)
real(kind(1.d0)) :: svec(3)=(/4.d0,5.d0,6.d0/)
complex :: pvec(3)=(/(0.,1.),(0.,2.),(0.,3.)/), &
           qvec(3)=(/(0.,4.),(0.,5.),(0.,6.)/)
write(*,*) dot_product(ivec,jvec) ! integer result
write(*,*) dot_product(rvec,jvec) ! real result
write(*,*) dot_product(rvec,svec) ! D.P. result
write(*,*) dot_product(pvec,jvec) ! Complex result
write(*,*) dot_product(pvec,svec) ! D.P. complex result
write(*,*) dot_product(pvec,qvec) ! Complex result

DOUBLE PRECISION Statement
Description
The DOUBLE PRECISION statement declares entities of type double precision REAL.

Syntax
DOUBLE PRECISION [[, attribute-list] ::] entity [, entity] ...

Where:
attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or 
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE, 
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of an entity being declared.

function-name is the name of a function being declared.  It must be the name of an external, 
intrinsic, or statement function, or a function dummy procedure.

Remarks
function-name must be the name of an external, intrinsic, or statement function, or a function 
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.
120 LF Fortran 95 Language Reference



DOUBLE PRECISION Statement
If =initialization-expr appears, a double colon must appear before the list of entities.  Each 
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-expr must not appear if entity-name is a dummy argument, a function  
result, an object in a named common block unless the type declaration is in a block data  pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an 
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must 
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC 
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or 
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable 
arrays, functions, or objects in a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be 
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy 
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unless it is a 
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be a dummy argument or a function 
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC, 
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

Example
double precision a,b(10) 
double precision,dimension(2,4) :: d
double precision :: e=2.0d0 
LF Fortran 95 Language Reference 121



Chapter 2    Alphabetical Reference
DPROD Function
Description
The DPROD function returns a double precision REAL product, given two single precision 
REAL arguments.

Syntax
DPROD (x, y)

Arguments
x is an INTENT(IN) scalar or array of type default REAL.

y is INTENT(IN) and scalar if x is a scalar, or an array if x is an array.  y is of type default 
REAL.

Result
The result is of type double-precision REAL.  Its value is an approximation of the double-
precision product of x and y.

Example
real :: x=1.25,y=1.25
write(*,*) x*y,dprod(x,y) ! writes 1.56250000000000

DVCHK Subroutine (Windows Only)
Description
The DVCHK subroutine masks and detects divide by zero exceptions. 

Syntax
DVCHK (lflag)

Arguments
lflag must be a scalar of type LOGICAL.  

lflag must be set to true on the first invocation.  

On subsequent invocations lflag is assigned the value true if a divide-by-zero exception has 
occurred, and false otherwise.

Remarks
The initial invocation of the DVCHK subroutine masks the divide-by-zero interrupt on the 
floating-point unit.
122 LF Fortran 95 Language Reference



ELEMENTAL Procedure
DVCHK will not check or mask zero divided by zero.  Use INVALOP to check for a zero 
divided by zero.

Example
logical :: lflag=.true.
call dvchk(lflag)  ! mask the divide-by-zero interrupt
write(*,*) lflag   ! writes F
write(*,*) 1./0.   ! writes Inf
call dvchk (lflag)
write(*,*) lflag   ! writes T

ELEMENTAL  Procedure
Description
An ELEMENTAL procedure declaration implies that the procedure may be called using sca-
lar or array arguments.

Syntax
ELEMENTAL SUBROUTINE  subroutine-name ( [dummy-arg-names] ) 

or

ELEMENTAL [type-spec] FUNCTION function-name ( [dummy-arg-names] ) 
[RESULT (result-name)]

Where:
subroutine-name is the name of the subroutine.

dummy-arg-names is a comma-separated list of dummy argument names.

type-spec is INTEGER [kind-selector]
or REAL [kind-selector]
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector]
or LOGICAL [kind-selector]
or TYPE (type-name)

kind-selector is ( [KIND=] kind )

char-selector is ([LEN=] length [, KIND=kind])
or (KIND=kind [, LEN=length])
or * char-length [,]

kind is a scalar INTEGER expression that can be evaluated at compile time.
LF Fortran 95 Language Reference 123



Chapter 2    Alphabetical Reference
length is a scalar INTEGER expression
or *

char-length is a scalar INTEGER literal constant
or (*)

function-name is the name of the function.

result-name is the name of the result variable.

Remarks
Declaring a procedure to be ELEMENTAL also implies that the procedure is PURE.  Ele-
mental procedures are subject to all the restrictions of a “PURE Procedure”.

All dummy arguments and function results must be scalar, and cannot have the POINTER 
attribute, be a dummy procedure, or an alternate return.

Dummy arguments may not appear in a specification statement, except as an argument to one 
of the following functions: BIT_SIZE, KIND, LEN, DIGITS, EPSILON, HUGE, MAXEX-
PONENT, MINEXPONENT, PRECISION, RANGE, RADIX or TINY.

When calling an elemental procedure, all actual arguments must be conformable to each 
other.

Dummy arguments of elemental functions must have the INTENT(IN) attribute.

If any actual argument to an elemental subroutine is an array, all INTENT(OUT) and 
INTENT(IN OUT) arguments must also be an array and all arrays must be conformable.

Result
If all actual arguments to an elemental function are scalar, the result is scalar.

If any actual argument is an array, the result is an array and conformable with the array argu-
ment.  The resulting array contains the value of the scalar operation performed on each 
element of the array.

Example
module mod1 ! gives us an implicit interface

contains

 elemental function elefun1(a,b)

    integer :: elefun1

    integer,intent(in) :: a,b

    elefun1=a-b

  end function elefun1
124 LF Fortran 95 Language Reference



END Statement
  elemental subroutine elesub1(a,b,c)
    integer,intent(out) :: c
    integer,intent(in) :: a,b
    c=a-b
  end subroutine elesub1 
end module

program prog1
  use mod1
  integer :: i=0,j=-1,k,ia(3)=(/1,2,3/),ib(3)=(/4,5,6/),ic(3)
  write(*,*) elefun1(i,j)   ! writes 1.0
  write(*,*) elefun1(i,ia)  ! writes -1.0 -2.0 -3.0
  write(*,*) elefun1(ia,i)  ! writes 1.0 2.0 3.0
  write(*,*) elefun1(ia,ib) ! writes -3.0 -3.0 -3.0
  call elesub1(i,j,k)
  write(*,*) k           ! writes 1
  call elesub1(ia,j,ic)  
  write(*,*) ic          ! writes 2 3 4
  call elesub1(i,ib,ic)  
  write(*,*) ic          ! writes -4 -5 -6
  call elesub1(ia,ib,ic)
  write(*,*) ic          ! writes -3 -3 -3
end program

END Statement
Description
The END statement signals the end of a program unit.

Syntax
END [class [name]]

Where:
class is either PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA.

name is the name of the program unit.

Remarks
Executing an END statement within a function or subroutine is equivalent to executing a 
RETURN statement.

Executing an END statement within a main program unit terminates execution of the 
program.

Each program unit, module subprogram, or internal subprogram must have exactly one END 
statement.
LF Fortran 95 Language Reference 125



Chapter 2    Alphabetical Reference
If the program unit is a module procedure or an internal subprogram, class is required.

name can be used only if a name was given to the program unit in a PROGRAM, FUNC-
TION, SUBROUTINE, MODULE, or BLOCK DATA statement.  

If name is present, it must be identical to the name specified in the PROGRAM, FUNCTION, 
SUBROUTINE, MODULE or BLOCK DATA statement.

The END PROGRAM, END FUNCTION, and END SUBROUTINE statements are execut-
able and can be branch target statements.

The END MODULE, and END BLOCK DATA statements are non-executable.

Example
module mod1
contains
  subroutine modsub()
  end subroutine ! program class is required on module proc
end module       ! "module" is optional
program endtest
  use mod1
  call sub1()
  call modsub()
  call intsub()
  contains
  subroutine intsub()
  end subroutine    ! "subroutine" for internal procedure
end program endtest ! "program" and "endtest" are optional
subroutine sub1()
end

ENDFILE Statement
Description
The ENDFILE statement writes an endfile record to the specified unit as the next record of a 
file.  The file pointer is then positioned after the end of the file.

Syntax
ENDFILE unit-number

or
ENDFILE (position-spec-list)

Where:
unit-number is a scalar INTEGER expression corresponding to the input/output unit number 
connected to an external file.
126 LF Fortran 95 Language Reference



ENTRY Statement
position-spec-list is [[UNIT =] unit-number][, ERR=label][, IOSTAT=stat] where UNIT=, 
ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number must 
be first.

label is a statement label that is branched to if an error condition occurs during execution of 
the statement.

stat is of type INTEGER and returns a status indicator.

Remarks
After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must be 
executed to reposition the file before any further data transfer occurs.

If IOSTAT is present, execution continues after an error or end condition is encountered, and 
stat is set to a non-zero number.  The value of stat is set to zero if the write operation was 
successful.  stat is assigned a positive value if an error condition occurs, and a negative value 
if an end-of-file, or end-of-record condition occurs.

If unit-number is connected to the console, the ENDFILE statement has no effect.

An ENDFILE statement on a file that is connected but does not yet exist causes the file to be 
created before writing the endfile record.

Note that ENDFILE may only be used on sequential access files.

Example
  integer :: ios
  endfile 10 
  endfile(unit=11,iostat=ios)
  endfile(12, err=20)
20 continue

ENTRY Statement
Description
The ENTRY statement permits a program unit to define multiple procedures, each with a dif-
ferent entry point.

Syntax
ENTRY entry-name [( [dummy-arg-list] ) [RESULT (result-name)]] 

Where:
entry-name is the name of the entry.

dummy-arg-list is a comma-separated list of dummy arguments or * alternate return 
indicators.
LF Fortran 95 Language Reference 127



Chapter 2    Alphabetical Reference
result-name is a variable containing a function result.

Remarks
An ENTRY statement can appear only in a subroutine or function.  

If the ENTRY statement is in a function, an additional function is defined by that subprogram 
named entry-name.  If result-name is present, the result variable is named result-name.  If 
result-name is absent, the result variable is named entry-name.  The characteristics of the 
function result are specified by the result variable.  

If the ENTRY statement is contained in a subroutine subprogram, an additional subroutine is 
defined by that subprogram.  The name of the subroutine is entry-name. 

The dummy arguments of an ENTRY subprogram are solely defined by the ENTRY state-
ment’s argument list.

A dummy argument may not appear in an executable statement before it is introduced in an 
ENTRY statement.

Any dummy argument not introduced by an ENTRY statement is considered undefined and 
may not be referenced within the scope of that ENTRY subprogram.

RESULT can be present only if the ENTRY statement is in a function subprogram.

If RESULT is specified, entry-name must not appear in any specification statement in the 
scoping unit of the function program.

If RESULT is specified, result-name cannot be the same as entry-name.

entry-name may not be a dummy argument, or appear in an EXTERNAL or INTRINSIC 
statement.

An ENTRY statement must not appear within an executable construct such as DO, IF CASE, 
etc.

A dummy argument can be an alternate return indicator only if the ENTRY statement is con-
tained in a subroutine subprogram.

If the subprogram unit containing the ENTRY statement is declared as RECURSIVE, PURE 
or ELEMENTAL, the subprogram defined by the ENTRY statement also has those 
attributes.

Example
program main
  call sub1()
  call sub1entry()
end program main
subroutine sub1()
  write(*,*) 'subroutine call executes this part'  
entry sub1entry()
  write(*,*) 'both calls execute this part'  
128 LF Fortran 95 Language Reference



EOSHIFT Function
end subroutine sub1

EOSHIFT Function
Description
The EOSHIFT function performs an end-off shift of all rank one sections in an array.  Ele-
ments are shifted out at one end and copies of a boundary value are shifted in at the other.  
Different sections can be shifted by different amounts and in different directions by using an 
array-valued shift.

Syntax
EOSHIFT (array, shift [, boundary] [, dim])

Required Arguments
array is INTENT(IN) and can be of any type.  It must not be scalar.

shift is an INTENT(IN) scalar or array of type INTEGER.  If array is rank one, shift must be 
scalar; otherwise shift may either be scalar or of rank n-1 and shape 

, where  is the shape of array.

Optional Arguments
boundary is INTENT(IN) and  of same type and kind as array.  It must be scalar if array is 
of rank one.  Otherwise it may be scalar or of rank n-1 and shape 

.  
If array is of type CHARACTER, boundary must have the same length as array.  

dim is an INTENT(IN) scalar INTEGER with a value in the range , where n is 
the rank of array.  If dim is omitted, it is as if it were present with a value of one.

Result
The result is the same type, kind and shape as array.  The boundary value is assigned to any  
element of the array which does not have a source value.

If array is of rank one, the result is the value of array shifted by shift elements

If shift is scalar, and array is of rank two or greater, each element along dimension dim is 
shifted by shift elements.

If shift is an array, each element along dimension dim is shifted by the amount specified in 
the corresponding shift vector.

If boundary is absent, the default pad values are zero for numeric types, blanks for CHAR-
ACTER, and false for LOGICAL.

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( ) d1 d2 … dn, , ,( )

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( )

1 dim n≤ ≤
LF Fortran 95 Language Reference 129



Chapter 2    Alphabetical Reference
Example
integer :: a(3), b(3,3)
a = (/1,2,3/)

b = reshape ((/1,2,3,4,5,6,7,8,9/), (/3,3/))

write(*,10) a                        ! writes 1  2  3

write(*,10) eoshift(a, 1)            ! writes 2  3  0

write(*,10) eoshift(a,1, -1)         ! writes 2  3 -1

write(*,20) b                        ! writes 1  2  3

                                     !        4  5  6

                                     !        7  8  9 

write(*,20) eoshift(b,-1)            ! writes 0  1  2

                                     !        0  4  5

                                     !        0  7  8 

write(*,20) eoshift(b,-1,(/1,-1,0/)) ! writes 1  1  2

                                     !       -1  4  5

                                     !        0  7  8 

write(*,20) eoshift(b,(/1,-1,0/))    ! writes 2  3  0

                                     !        0  4  5

                                     !        7  8  9
write(*,20) eoshift(b,1,dim=2)       ! writes 4  5  6

                                     !        7  8  9

                                     !        0  0  0 

10 format(3i3)

20 format(3(/,3i3))

EPSILON Function
Description
The EPSILON function returns a positive real value that is almost negligible compared to 
unity.  It is the smallest value of x such that 1.+x is not equal to 1.

Syntax
EPSILON (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is a scalar value of the same kind as x.  

Its value is 21-p, where p is the number of bits in the fraction part of the physical representation 
of x.
130 LF Fortran 95 Language Reference



EQUIVALENCE Statement
Example
real(kind(1.d0)) :: d

real(kind(1.e0)) :: r

    ! adding epsilon only changes the rightmost bit

write(*,*) 1.d0+epsilon(d)

    ! writes 1.000000000000000

write(*,'(2z18.16)') 1.d0,1.d0+epsilon(d)

    ! show bits

    ! writes 3FF0000000000000  3FF0000000000001

write(*,*) 1.e0+epsilon(r) 

    ! writes 1.00000012

write(*,'(2z10.8)') 1.e0,1.e0+epsilon(r)  

    ! show bits

    ! writes 3F800000  3F800001

EQUIVALENCE Statement
Description
The EQUIVALENCE statement specifies two or more aliases that share the same storage.

Syntax
EQUIVALENCE equivalence-sets

Where:
equivalence-sets is a comma-separated list of (equivalence-objects)

equivalence-objects is a comma-separated list of variables, array elements, or substrings.

Remarks
An equivalence-object must not be: made available by use association; a dummy argument; 
a pointer; a target; an allocatable array; a subobject of a non-sequence derived type; a subob-
ject of a sequence derived type containing a pointer at any level of component selection; an 
automatic object; a function name; an entry name; a result name; a named constant; a struc-
ture component; or a subobject of any of these objects.

If the equivalenced objects have different types or kinds, the EQUIVALENCE statement 
does not perform any type conversion or imply mathematical equivalence.  

If a scalar and an array are equivalenced, the scalar does not have array properties and the 
array does not have scalar properties.

If an equivalence-object is a derived type that is not a numeric sequence or CHARACTER 
sequence type, all of the objects in the equivalence set must be of that type.
LF Fortran 95 Language Reference 131



Chapter 2    Alphabetical Reference
If an equivalence-object is of an intrinsic type other than default INTEGER, default REAL, 
double precision REAL, default COMPLEX, default LOGICAL, or default CHARACTER, 
all of the objects in equivalence-set must be of the same type with the same kind value.

A data object of type default CHARACTER can be equivalenced only with other objects of 
type default CHARACTER.  The lengths of the equivalenced objects are not required to be 
the same.

An EQUIVALENCE statement can not specify that the same storage unit is to occur more 
than once in a storage sequence.

When one of the equivalence objects is initialized, all associated objects are considered to be 
initialized.  Each equivalence set may have only one initialization value.

If an equivalence-object has the VOLATILE attribute, all equivalence-objects in the equiva-
lence-set are volatile.

Example
real :: a=1.
real(kind(1.d0)) :: d 
integer :: i
logical :: l
equivalence (a,d,i,l) 
write(*,*) a ! writes 1.0000000
write(*,*) d ! writes 5.263544247120890E-315
write(*,*) i ! writes 1065353216
write(*,*) l ! writes T

ERROR Subroutine
Description
The ERROR subroutine prints an error message with traceback to the console and continues 
processing.

Syntax
ERROR (message)

Arguments
message is an INTENT(IN) argument of type CHARACTER.  It contains the message to be 
printed.

Remarks
If the program is compiled with the -ntrace (Windows) or --ntrace (Linux) option, a traceback 
will not be printed.
132 LF Fortran 95 Language Reference



EXIT Statement
Example
character(len=8) :: errmsg=' Error: '
call error(errmsg) ! writes Error:
                   ! followed by a traceback message

EXIT Statement
Description
The EXIT statement causes execution of a specified DO loop to be terminated.  Execution 
continues at the first executable statement after the loop terminus.

Syntax
EXIT [do-construct-name]

Where:
do-construct-name is the name of a DO construct that contains the EXIT statement.  If do-
construct-name is omitted, the EXIT statement applies to the innermost DO construct in 
which the EXIT statement appears.

Example
       integer :: i, j
outer: do i=1, 10
inner:   do j=1, 10
           if (i < j) then
             exit               ! exits inner
           else if (i > j) then
             cycle
           else  
             write(*,*) i,j
             exit outer
           end if  
         end do inner
       end do outer

EXIT Subroutine
Description
The EXIT subroutine causes program execution to terminate with an exit code.

Syntax
EXIT (ilevel)
LF Fortran 95 Language Reference 133



Chapter 2    Alphabetical Reference
Arguments
ilevel must be a scalar of type INTEGER.  It sets the value of the program’s exit code.

Example
call exit(3)  ! exit -- system error level 3

EXP Function
Description
The EXP function returns a REAL or COMPLEX value that is an approximation of the expo-
nential function.

Syntax
EXP (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL or COMPLEX.

Result
The result is of the same type and kind as x.  Its value is a REAL or COMPLEX representa-
tion of ex.

If x is COMPLEX, its imaginary part is treated as a value in radians.

Example
real :: r=1.

complex :: c=(0.,-3.141592654)

write(*,*) exp(r) ! writes an approximation of e

write(*,*) exp(c) ! writes a complex approximation of -1.

EXPONENT Function
Description
The EXPONENT function returns the exponential part of the model representation of a 
number.

Syntax
EXPONENT (x)
134 LF Fortran 95 Language Reference



EXTERNAL Statement
Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is of type default INTEGER.  Its value is the power of two of the exponential part 
of x.

Example
real :: x=4.3
write(*,*) x,exponent(x)
           ! writes 4.300000 3
write(*,*) scale(fraction(x),exponent(x))
           ! writes 4.300000

EXTERNAL Statement
Description
The EXTERNAL statement declares external procedures.  Specifying a procedure name as 
EXTERNAL permits the procedure name to be used as an actual argument.

Syntax
EXTERNAL [::] external-name-list

Where:
external-name-list is a comma-separated list of external procedures, dummy procedures, or 
block data program units.

Remarks
If an intrinsic procedure name appears in an EXTERNAL statement, the intrinsic procedure 
is not available in the scoping unit and the name is that of an external procedure.

A name can appear only once in all of the EXTERNAL statements in a scoping unit.

If the external procedure is a block data subprogram, the inclusion of the block data in the 
program is required.

Example
program main
  external sub1             ! external statement
  integer,external :: fun1 ! external attribute
  call bill(sub1,fun1)
end program
subroutine bill(proc,fun)
  integer :: fun,i
LF Fortran 95 Language Reference 135



Chapter 2    Alphabetical Reference
  i=fun()

  call proc(i)

end subroutine

subroutine sub1(i)

  integer :: i

  write(*,*) i

end subroutine

function fun1()

  integer :: fun1

  fun1=1

end function

FLOOR Function
Description
The FLOOR function returns the greatest INTEGER number less than or equal to a REAL 
argument.

Syntax
FLOOR (a [, kind])

Required Arguments
a is an INTENT(IN) scalar or array of type REAL.

Optional Arguments
kind is INTENT(IN) and determines the kind of the result. It must be a scalar INTEGER 
expression that can be evaluated at compile time.  To maintain portability, this argument 
should be the result of a “KIND Function” or “SELECTED_INT_KIND Function”.

Result
The result is an INTEGER number whose value is the largest integer less than or equal to a.

If kind is present, it specifies the kind of the result.

If kind is absent, the result is type default INTEGER.

Example
real :: r=4.7,x(3)=(/-.5,0.,.5/)

write(*,*) floor(r)                       ! writes 4

write(*,*) floor(-r,selected_int_kind(2)) ! writes -5

write(*,*) floor(x)                       ! writes -1 0 0
136 LF Fortran 95 Language Reference



FLUSH Subroutine
FLUSH Subroutine
Description
The FLUSH subroutine causes data stored in an output buffer to be written to its i/o unit, and 
clears the buffer.

Syntax
FLUSH (iunit)

Arguments
iunit is an INTENT(IN) scalar of type INTEGER.  It is the unit number of the file whose 
buffer is to be written.

Remarks
Execution of the FLUSH subroutine does not flush the file buffer.

Example
call flush(11)  ! empty buffer for unit 11 

FORALL Construct
Description
The FORALL construct controls execution of a block of assignment and pointer assignment 
statements.  Execution in the block is selected by sets of index values and an optional mask 
expression.

Syntax
[construct-name:] FORALL ( forall-triplets [, mask] )

                         [forall-body]

END FORALL [construct-name]

Where:
construct-name is an optional name for the FORALL construct.

forall-triplets is a comma-separated list of index-name=subscript : subscript [: stride]

index-name is a named scalar variable of type INTEGER.  

subscript is a scalar INTEGER variable, which is an array index.  subscript may not refer to 
an index-name in the same forall-triplets list.
LF Fortran 95 Language Reference 137



Chapter 2    Alphabetical Reference
stride is a scalar INTEGER variable, which is the array stride.  stride may not make reference 
to an index-name in the same forall-triplets list.

mask is a scalar expression of type LOGICAL.

forall-body is zero or more assignment or pointer assignment statements, WHERE state-
ments or constructs, or FORALL statements or constructs.

Remarks
Execution of a FORALL construct causes the set of values for index-name to be determined, 
and mask to be evaluated.  Values for index-name are determined by taking the starting sub-
script, and incrementing it by the stride until a value falls outside the range subscript : 
subscript.  mask is evaluated for each combination of index-name values, and assignments in 
the forall-body are made for those combinations of index-names for which mask evaluates to 
true.  

If the FORALL construct has a construct-name, the same construct-name must appear at the 
beginning and end of the construct.

Any procedure referenced in mask or in forall-body must be a “PURE Procedure”.

If mask is not present it is as if it were present with the value true.

The set of values for index-name may be determined in any order.

The value of an index-name cannot be altered within the forall-body.

Example
real :: a(3,3)
integer :: i,j
forall(i=1:3,j=1:3:2)      ! selection by index values
  a(i,j)=real(i+j)
end forall
write(*,'(3(1x,f10.6))') a ! row 2 is all zeros
forall(i=1:3, j=1:3,a(i,j) == 0.) ! selection by index
                                  ! values and scalar mask
  a(i,j)=i*j ! this assignment is only done for
             ! elements of a that equal zero
end forall
write(*,'(3(1x,f10.6))') a

FORALL Statement
Description
The FORALL statement controls execution of an assignment or pointer assignment statement 
with selection by sets of index values and an optional mask expression.
138 LF Fortran 95 Language Reference



FORMAT Statement
Syntax
FORALL ( forall-triplets [, mask] ) forall-assignment-stmt

Where:
forall-triplets is a comma-separated list of index-name=subscript : subscript [: stride].

index-name is a named scalar variable of type INTEGER.

subscript is a scalar INTEGER variable, which is an array index.  subscript may not refer to 
an index-name in the same forall-triplets list.

stride is a scalar INTEGER variable, which is the array stride.  stride may not make reference 
to an index-name in the same forall-triplets list.

mask is a scalar expression of type LOGICAL.

forall-assignment-stmt is an assignment statement or a pointer assignment statement.

Remarks
Execution of a FORALL statement causes the set of values for index-name to be determined, 
and mask to be evaluated.  Values for index-name are determined by taking the starting sub-
script, and incrementing it by the stride until a value falls outside the range subscript : 
subscript.  mask is evaluated for each combination of index-name values, and assignments in 
the forall-assignment-stmt are made for those combinations of index-names for which mask 
evaluates to true.  

Any procedure referenced in mask or in forall-assignment-stmt must be a “PURE 
Procedure”.

If mask is not present it is as if it were present with the value true.

The set of values for index-name may be determined in any order.

The value of an index-name cannot be altered within the forall-assignment-stmt.

Example
integer :: a(3,3)=(/1,2,3,4,5,6,7,8,9/),i,j
forall(i=1:3,j=1:3, j > i) a(i,j)=a(j,i)
! assigns the transpose of the lower triangle of array a

write(*,'(3(1x,f10.6))') a

FORMAT Statement
Description
The FORMAT statement provides explicit information that directs how data and characters 
are read on input and displayed on output.
LF Fortran 95 Language Reference 139



Chapter 2    Alphabetical Reference
Syntax
FORMAT ( [format-items] )

Where:
format-items is a comma-separated list of [r]data-edit-descriptor, control-edit-descriptor, or 
char-string-edit-descriptor, or [r](format-items)

data-edit-descriptor is Iw[.m]
or Bw[.m]
or Ow[.m]
or Zw[.m]
or Fw.d
or Dw.d
or Ew.d[Ee]
or ENw.d[Ee]
or ESw.d[Ee]
or Gw.d[Ee]
or Lw
or A[w]
w, m, d, and e are INTEGER literal constants that represent field width, digits, digits after the 
decimal point, and exponent digits, respectively.

control-edit-descriptor is Tn
or TLn
or TRn
or nX
or S
or SP
or SS
or BN
or BZ
or [r]/
or :
or kP

char-string-edit-descriptor is a CHARACTER literal constant

rep-chars is a string of characters

c is the number of characters in rep-chars

r, k, and n are positive INTEGER literal constants used to specify a number of repetitions of 
the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or (format-
items)
140 LF Fortran 95 Language Reference



FORMAT Statement
Table 9: Format edit descriptors

Edit 
Descriptor Interpretation Intrinsic type

Iw[.m] ordinal number with field width of w, displays 
m digits INTEGER

Bw[.m] binary number with field width of w, displays 
m digits INTEGER

Ow[.m] octal number with field width of w, displays m 
digits INTEGER

Zw[.m] hexadecimal number with field width of w, dis-
plays m digits INTEGER

Fw.d decimal number with field width of w, displays 
d decimal places, no exponent REAL or COMPLEX

Ew.d[Ee]
and

Dw.d[Ee]

decimal number with field width of w, displays 
d decimal places, and an exponent with e digits REAL or COMPLEX

ENw.d[Ee]
decimal number with field width of w, displays 
d decimal places, and an exponent with e digits

(engineering notation) 
REAL or COMPLEX

ESw.d[Ee]
decimal number with field width of w, displays 
d decimal places, and an exponent with e digits 

(scientific notation)
REAL or COMPLEX

Gw.d[Ee] (generalized) field width of w, displays d deci-
mal places, and an exponent with e digits Any intrinsic type

Lw T or F with a field width of w LOGICAL

A[w] alphanumeric with a field width of w CHARACTER

Tn move n spaces from the start of the record None

TLn move n spaces left of current position None

TRn move n spaces right of current position None

nX move n spaces right of current position None

S default generation of plus sign on subsequent 
output Numeric
LF Fortran 95 Language Reference 141



Chapter 2    Alphabetical Reference
Remarks
The FORMAT statement must be labeled.

Edit descriptors may be nested within parentheses and may be preceded by a repeat factor.  
A parenthesized list of edit descriptors may also be preceded by a repeat factor, indicating 
that the entire list is to be repeated.

The comma between edit descriptors may be omitted in the following cases:
•   between the scale factor (P) and the numeric edit descriptors F, E, EN, ES, D, or G
•   before a new record indicated by a slash when there is no repeat factor present
•   after the slash for a new record
•   before or after the colon edit descriptor

Within a CHARACTER literal constant, if a string delimiter character (either an apostrophe 
or quote) is to appear as a part of the string, it must appear as a consecutive pair of the delim-
iter characters without any blanks.  Each such pair represents a single occurrence of the 
delimiter character.

SP force generation of plus sign on subsequent 
output Numeric

SS no generation of plus sign for subsequent
output Numeric

BN ignore non-leading blanks on input 
of subsequent items Numeric

BZ interpret non-leading blanks as zeros on input 
of subsequent items Numeric

[r] / skip to the next record
r is a repeat count None

: terminates format control if there are no more 
items in the i/o list None

kP set a scale factor of k for subsequent items REAL or COMPLEX

Table 9: Format edit descriptors

Edit 
Descriptor Interpretation Intrinsic type
142 LF Fortran 95 Language Reference



FORMAT Statement
Example  1
!  numeric output editing
    integer :: i=-1
    real :: r=1.
    write(*,101) i ! writes        -1
    write(*,102) i ! writes     -0001
    write(*,103) i ! writes 11111111111111111111111111111111
    write(*,104) i ! writes 37777777777
    write(*,105) i ! writes  FFFFFFFF
    write(*,201) r ! writes   1000.00
    write(*,202) r ! writes  0.01D+02
    write(*,203) r ! writes  +0.10E+1
    write(*,204) r ! writes  1.00E+00
    write(*,205) r ! writes  1.00E+00
101 format(I10)    ! Show up to 10 digits, field width 10
102 format(I10.4)  ! Always show 4 digits, field width 10
103 format(B34.32) ! Show 32 binary digits, field width 34
104 format(O13.11) ! Show 11 octal digits, field width 13
105 format(Z10.8)  ! Show 8 hex digits, field width 10
201 format(3PF10.2)! 2 dec places field width 10 scale 3
202 format(-1P,D10.2) ! 2 dec places field width 10 scale -1
203 format(SP,E10.2E1)! 2 dec places, field width 10,
                      ! 1 digit exponent, produce plus sign
204 format(SSEN10.2E2)! 2 decimal places, field width 10,
                      ! 2 digit exponent suppress plus sign
205 format(ES10.2E2)  ! 2 decimal places, field width 10,
                      ! 2 digit exponent

Example  2
!  numeric input editing
    character(len=5) :: in_data1="11000"     ! internal file
    character(len=10) :: in_data2="    1    1"! internal file
    integer :: i
    real :: r 
    complex :: q 
    read(in_data1,101) i 
    write(*,*) i         ! writes 1100000000
    read(in_data1,102) i
    write(*,*) i         ! writes 11000
    read(in_data1,103) i
    write(*,*) i         ! writes 24
    read(in_data1,104) i
    write(*,*) i         ! writes 4806
    read(in_data1,105) i
    write(*,*) i         ! writes 69632
    read(in_data1,201) r
    write(*,*) r         ! writes 110.
    read(in_data1,202) r
LF Fortran 95 Language Reference 143



Chapter 2    Alphabetical Reference
    write(*,*) r         ! writes 11000000.
    read(in_data2,202) r
    write(*,*) r         ! writes 11000.
    read(in_data2,203) r
    write(*,*) r         ! writes 100001.
    read(in_data2,204) q
    write(*,*) q         ! writes (1.,1.) 
    read(in_data2,205) q
    write(*,*) q         ! writes (10.,100.)
101 format(BZI10) ! Interpret non leading blanks as zeros
102 format(BNI10) ! Ignore non leading blanks
103 format(B32)   ! Read up to 32 binary digits
104 format(O11)   ! Read up to 11 octal digits
105 format(Z8)    ! Read up to 8 hexadecimal digits
201 format(F10.2) ! last two digits are right of decimal
202 format(-3PF10.0)  ! Scale factor -3
203 format(BZF10.0)   ! non leading blanks are zeros
204 format(2(F6.0))   ! Ignore blanks
205 format(BZ,2(F6.0))! non leading blanks are zeros

Example  3
!  generalized, logical and character editing
    integer :: i
    real :: r
    real(kind(1.d0)) :: d
    complex :: q
    logical :: l
    character(len=10) :: rdstr(2)
    character(len=10) :: in_data="    1    1"  
    character(len=20) :: in_str=" Howdy There, Folks!" 
    read(in_data,301) i 
    write(*,301) i            ! writes      11
    read(in_data,301) r 
    write(*,301) r            ! writes 0.11
    read(in_data,301) d 
    write(*,301) d            ! writes 0.11
    read(in_data,301) q 
    write(*,301) q            ! writes 0.11    0.0
    read(in_str(8:8),301) l 
    write(*,301) l            ! writes       T
    read(in_str(15:15),301) l 
    write(*,301) l            ! writes       F
    read(in_str,301) rdstr
    write(*,301) rdstr        ! writes Howdy There, Folks!
    read(in_str(8:8),401) l 
    write(*,401) l            ! writes       T
    read(in_str(15:15),401) l 
    write(*,401) l            ! writes       F
144 LF Fortran 95 Language Reference



FORMAT Statement
    read(in_str,501) rdstr
    write(*,501) rdstr        ! writes Howdy There, Folks!

    write(*,501) "howdy"      ! writes   howdy
    write(*,501) '"howdy"'    ! writes "howdy"
    write(*,501) "'howdy'"    ! writes 'howdy'

    write(*,501) """howdy"""  ! writes "howdy"
    write(*,501) '''howdy'''  ! writes 'howdy'

301 format(2G10.2) ! general editing, field width 10
401 format(L10)    ! Logical T or F, field width 10
501 format(2A10)   ! Alphanumeric string, field width 10

Example  4
!  positional editing
    real :: r(3)=(/-1., 0., 1./)
    write(*,201) r ! writes   -1.00   0.00   1.00

    write(*,202) r ! writes    1.00  -1.00   0.00
    write(*,203) r ! writes    1.00   0.00  -1.00

    write(*,204) r ! writes   -1.00   0.00   1.00
    write(*,205) r ! writes          -1.00
                   !                  0.00

                   !                  1.00
201 format(TR10,3F10.2)
202 format(T21,F10.2,T31,F10.2,T11,F10.2) 

203 format(TR30,F10.2,2(TL20,F10.2))
204 format(10X,3(F10.2))

205 format(3(T21,F10.2,/))

Example  5
! formats without statements
integer :: i_a(3,3)=reshape((/1,2,3,4,5,6,7,8,9/), &

                            shape(i_a))
integer :: i_b(2,3)=reshape((/1,2,3,4,5,6/),shape(i_b))

integer :: i_c(3,2)=reshape((/1,2,3,4,5,6/),shape(i_c))
call write_array2d(i_a)
call write_array2d(i_b)

call write_array2d(i_c)
contains
  subroutine write_array2d(i) ! compose a format and

    integer :: i(:,:)         ! write rank two array
    character(40) :: fmt      ! in rows and columns

    write(fmt,*) "(",size(i,1),"(",size(i,2),"I10,/))"
    write(*,*) fmt ! write the format string
    write(*,fmt) i ! write array using the format string

  end subroutine
end program
LF Fortran 95 Language Reference 145



Chapter 2    Alphabetical Reference
FRACTION Function
Description
The Fraction function returns the fractional part of the representation of a REAL number.

Syntax
FRACTION (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is of type REAL and the same kind as x.  Its value is the fraction part of the physical 
representation of x.

Example
real :: x=4.3
write(*,*) x,fraction(x)
           ! writes 4.300000 0.5375000
write(*,*) scale(fraction(x),exponent(x))
           ! writes 4.300000

FUNCTION Statement
Description
The FUNCTION statement begins a function subprogram. It specifies the functions name 
and dummy arguments, and any special characteristics such as PURE, ELEMENTAL, or 
RECURSIVE. It may optionally specify the functions’ return type, and the name of a result 
variable used within the subprogram to assign a value to the function result.

Syntax
[PURE][ELEMENTAL][RECURSIVE] [type-spec] FUNCTION function-name 
([dummy-arg-names]) [RESULT (result-name)]

Where:
type-spec is INTEGER [kind-selector]
or REAL [kind-selector]
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector]
or LOGICAL [kind-selector]
or TYPE (type-name)
146 LF Fortran 95 Language Reference



FUNCTION Statement
kind-selector is ([KIND=] kind)

char-selector is ([LEN=] length [, KIND=kind])
or (KIND=kind [, LEN=length])
or * char-length [,]

kind is a scalar INTEGER expression that can be evaluated at compile time

length is a scalar INTEGER expression
or *

char-length is a scalar INTEGER literal constant
or (*)

function-name is the name of the function

dummy-arg-names is a comma-separated list of dummy argument names

result-name is the name of the result variable

Remarks
A function with the prefix PURE or ELEMENTAL is subject to the additional constraints of 
pure procedures, which ensure that no unseen side effects occur on invocation of the function.  
See “PURE Procedure” on page 225.

An ELEMENTAL function is subject to the constraints of elemental procedures.  See “ELE-
MENTAL Procedure” on page 123.

A function cannot be both ELEMENTAL and RECURSIVE.

The keyword RECURSIVE must be present if any function defined by a FUNCTION or 
ENTRY statement within the subprogram directly or indirectly calls itself.

A RECURSIVE function that calls itself directly must use the RESULT option.

If RESULT is omitted, then function-name is the result variable.

If the function result is an array or a pointer, this must be specified in the declaration of the 
result variable in the function body.

Example  1
!   basic function declaration
function func1(a,b)
  real :: func1 ! result type defined here
  real,intent(in) :: a,b
  func1=a-b ! function is assigned a result
end function  
!   function declaration with result variable
function func2(a,b) result(res)
  real :: res   ! result type defined here
  real,intent(in) :: a, b
LF Fortran 95 Language Reference 147



Chapter 2    Alphabetical Reference
  res=a-b   ! function is assigned a result

end function  

!   function declaration with type

real function func3(a,b) ! result type defined here

  real, intent(in) :: a,b

  func3=a-b          ! function is assigned a result

end function  

!   program invoking functions

  write(*,*) func1(-1.,1.) ! writes -2.

  write(*,*) func2(-1.,1.) ! writes -2.

  write(*,*) func3(-1.,1.) ! writes -2.

end

Example  2
!   recursive function with result variable

recursive function func4(a,b) result(res)

  real :: res     ! result type defined here

  real :: a,b

  if (a >= b) then

      res=a-b   ! function returns

  else if (a < spacing(b)) then

    res=-b        ! function returns

  else if (a < 0.) then

    b=func5(-a,b) ! indirect recursion

  else  

    a=func4(a,-b) ! direct recursion

  end if

end function  

!   recursive function without result variable

recursive function func5(a,b)

  real :: func5      ! result type defined here

  real :: a,b

  if (a < b) then

    func5=func4(b,a) ! result variable not required

  else                 ! if recursive function does

    func5=func4(a,b) ! not invoke itself directly

  end if

end function  

!   program invoking functions

  write(*,*) func4(-1.,1.),func4(1.,-1.) ! writes -1. 2.

  write(*,*) func5(-1.,1.),func5(1.,-1.) ! writes  2. 2.

end
148 LF Fortran 95 Language Reference



GETCL Subroutine
GETCL Subroutine
Description
The GETCL subroutine gets command line arguments.

Syntax
GETCL (cl_args)

Arguments
cl_args is an INTENT(OUT) scalar of type CHARACTER.  It contains any text which is pro-
vided when the program is invoked beginning with the first non-white-space character after 
the program name.

Remarks
If the length of  cl_args is not sufficient to hold the entire command line argument, the  left-
most characters in the argument are retained up to the length of the character variable

If any run-time options are present (-Wl,...), they are returned by GETCL.

If no command line argument is present, cl_args contains blank characters.

Example
character(256) :: cl_arg1

call getcl(cl_arg1)

write(*,*) len_trim(cl_arg1),trim(cl_arg1)

GETENV Subroutine
Description
The GETENV subroutine gets the value of the specified environment variable.

Syntax
GETENV(env_var, env_value)

Arguments
env_var is an INTENT(IN) scalar of type CHARACTER.  It specifies the environment vari-
able whose value is requested.

env_value is an INTENT(OUT) scalar of type CHARACTER.  On return, it contains the 
value of the environment variable env_var.
LF Fortran 95 Language Reference 149



Chapter 2    Alphabetical Reference
Remarks
If the specified environment variable does not exist, on return, env_value contains null char-
acters (CHAR(0)).

If the length of env_value is not sufficient to hold the entire environment value, the leftmost 
characters are retained up to the length of the character variable

Example
character(4096) :: env_value1
call getenv("PATH",env_value1)
write(*,*) len_trim(env_value1),trim(env_value1)

GO TO Statement
Description
The GO TO statement transfers control to a statement identified by a label.

Syntax
GO TO label

Where:
label is the label of a branch target statement.

Remarks
label must be the label of a branch target statement in the same scoping unit as the GOTO 
statement.

Example
      a=b
      go to 10 ! branches to 10
      b=c      ! never executed
10    c=d

HUGE Function
Description
The HUGE function returns the largest representable number of the argument’s data type.

Syntax
HUGE (x)
150 LF Fortran 95 Language Reference



IACHAR Function
Arguments
x is an INTENT(IN) scalar or array of type REAL or INTEGER.

Result
The result is of the same type and kind as x.  Its value is the value of the largest number rep-
resentable by the data type of x.

Example
real(kind(1.e0)) :: r10
real(kind(1.d0)) :: r100
real(kind(1.q0)) :: r1000
integer(selected_int_kind(r=1)) :: i1
integer(selected_int_kind(r=4)) :: i4
integer(selected_int_kind(r=7)) :: i7
integer(selected_int_kind(r=12)) :: i12
write(*,*) huge(r10)   ! writes 3.40282347e+38
write(*,*) huge(r100)  ! writes 1.797693134862316e+308
write(*,*) huge(r1000) ! writes 1.18973....28007e+4932
write(*,*) huge(i1)    ! writes 127
write(*,*) huge(i4)    ! writes 32767
write(*,*) huge(i7)    ! writes 2147483647
write(*,*) huge(i12)   ! writes 9223372036854775807

IACHAR Function
Description
The IACHAR function returns the position of a character in the ASCII collating sequence.  
See “ASCII Character Set” on page 319.

Syntax
IACHAR (c)

Arguments
c is an INTENT(IN) scalar or array of type CHARACTER.  c must have a length of one.

Result
The result is of type default INTEGER.  Its value is the position of c in the ASCII collating 
sequence.  It is in the range .

If c is an array, the result is an array of integer values with the same shape as c.

Example
character(len=1) :: c1='A',c3(3)=(/"a","b","c"/)

0 iachar c( ) 127≤ ≤
LF Fortran 95 Language Reference 151



Chapter 2    Alphabetical Reference
write(*,*) iachar(c1) ! writes   65
write(*,*) iachar(c3) ! writes   97 98 99

IAND Function
Description
The IAND function performs a bit-wise logical AND operation on two integer arguments.

Syntax
IAND (i, j)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

j is an INTENT(IN) INTEGER of the same kind as i.  If i is an array, j must have the same 
shape as i.

Result
The result is of type INTEGER.  Its value is the result of performing a bit-wise logical AND 
operation on i and j.

Example
i=53        ! i=00110101 binary (lowest order byte)
j=45        ! j=00101101 binary (lowest order byte)
k=iand(i,j) ! k=00100101 binary (lowest order byte)
            ! k=37 decimal

IBCLR Function
Description
The IBCLR function sets a single bit in an integer argument to zero.

Syntax
IBCLR (i, pos)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

pos is an INTENT(IN) scalar or array of type INTEGER.  The value of pos must be within 
the range zero to (BIT_SIZE(i)-1).  See “BIT_SIZE Function” on page 81.
152 LF Fortran 95 Language Reference



IBITS Function
If i and pos are both arrays, they must have the same shape.  

Result
The result is of type default INTEGER.  Its value is i with the bit at position pos is set to zero.

If i is an array and pos is scalar, the result is an array with the same shape as i.  Each element 
of the resulting array has the bit at position pos set to zero.

If i is scalar and pos is an array, the result is an array with the same shape as pos.  Each ele-
ment of the resulting array contains the value of i with the bit indicated by the corresponding 
element of pos set to zero.

If i and pos are both arrays, the result is an array with the same shape as i.  Each element of 
the resulting array contains the value from the corresponding element of i with the bit indi-
cated by the corresponding element of pos set to zero.

Example
integer :: i=-1,p=3,ia(2)=(/-1,7/),pa(2)=(/1,2/)
write(*,"(b34)") i             ! writes     0
write(*,"(b34)") ibclr(i,p)    ! writes  1000
write(*,"(2b34)") ibclr(i,pa)  ! writes    10      100
write(*,"(2b34)") ia           ! writes 111...111111
write(*,"(2b34)") ibclr(ia,p)  ! writes 111...110111
write(*,"(2b34)") ibclr(ia,pa) ! writes 111...111101

IBITS Function
Description
The IBITS function extracts a sequence of bits from an integer argument.

Syntax
IBITS (i, pos, len)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

pos is an INTENT(IN) scalar or array of type INTEGER.  It must be non-negative.

len is an INTENT(IN) scalar or array of type INTEGER. It must be non-negative and pos+len 
must be less than or equal to BIT_SIZE(i).  See “BIT_SIZE Function” on page 81.

Result
The result is of type INTEGER and of the same kind as i.  Its value is the value of the 
sequence of len bits beginning with pos, right adjusted with all other bits set to 0.
LF Fortran 95 Language Reference 153



Chapter 2    Alphabetical Reference
If any argument is an array, the result is an array and has the same shape as the argument 
array.  The value of each element is the value of the scalar operation performed on corre-
sponding elements of any array arguments.

Note that the lowest order position starts at zero.

Example
integer :: i; data i/z'0f0f'/
write(*,"(b34)") i            ! writes 111100001111
write(*,"(b34)") ibits(i,0,4) ! writes         1111
write(*,"(b34)") ibits(i,4,5) ! writes        10000

IBSET Function
Description
The IBSET function sets a single bit to one.

Syntax
IBSET (i, pos)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

pos is an INTENT(IN) scalar or array of type INTEGER.  The value of pos must be within 
the range zero to (BIT_SIZE(i)-1).  See “BIT_SIZE Function” on page 81.

If i and pos are both arrays, they must have the same shape.  

Result
The result is of type INTEGER and of the same kind as i.  Its value is i with the bit at position 
pos is set to one.  

If i is an array and pos is scalar, the result is an array with the same shape as i.  Each element 
of the resulting array has the bit at position pos set to one.

If i is scalar and pos is an array, the result is an array with the same shape as pos.  Each ele-
ment of the resulting array contains the value of i with the bit indicated by the corresponding 
element of pos set to one.

If i and pos are both arrays, the result is an array with the same shape as i.  Each element of 
the resulting array contains the value from the corresponding element of i with the bit indi-
cated by the corresponding element of pos set to one.

 Example
integer :: i=0,p=3,ia(2)=(/0,0/),pa(2)=(/1,2/)
154 LF Fortran 95 Language Reference



ICHAR Function
write(*,"(b34)") i             ! writes      0
write(*,"(b34)") ibset(i,p)    ! writes   1000
write(*,"(2b34)") ibset(i,pa)  ! writes     10       100
write(*,"(2b34)") ia           ! writes      0         0
write(*,"(2b34)") ibset(ia,p)  ! writes   1000      1000
write(*,"(2b34)") ibset(ia,pa) ! writes     10       100

ICHAR Function
Description
The ICHAR function returns the position of a character in the collating sequence associated 
with the kind of the character.  The only character set supported is the ASCII character set, 
with a kind number of 1, containing 127 characters.  See “ASCII Character Set” on page 319.

Syntax
ICHAR (c)

Arguments
c is an INTENT(IN) scalar or array of type CHARACTER with a length of one.

Result
The result is of type default INTEGER.  Its value is the position of c in the collating sequence 
associated with the kind of c and is in the range , where n is the number 
of characters in the collating sequence.  

Example
character(len=1) :: c(6)=(/"H","o","w","d","y","!"/)
write(*,*) ichar(c)  ! writes 72 111 119 100 121 33

IEOR Function
Description
The IEOR function performs a bit-wise logical exclusive OR operation on two integer 
arguments.

Syntax
IEOR (i, j)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

0 ichar c( ) n 1–≤ ≤
LF Fortran 95 Language Reference 155



Chapter 2    Alphabetical Reference
j is an INTENT(IN) scalar or array of type INTEGER and is the same kind as i.

Result
The result is of type INTEGER.  Its value is obtained by performing a bit-wise logical exclu-
sive OR operation on i and j.

Example
i=53        ! i=00110101 binary (lowest order byte)
j=45        ! j=00101101 binary (lowest order byte)

k=ieor(i,j) ! k=00011000 binary (lowest order byte)

            ! k=24 decimal

IF Construct
Description
The IF construct controls whether a block of statements or executable constructs will be exe-
cuted based on the value of a logical expression.

The IF-THEN statement signals the beginning of an IF construct.

The ELSE IF statement controls execution of a block of code where all previous IF expres-
sions in the construct were false.

The ELSE statement controls execution of a block of code where all other IF expressions in 
the construct were false.

The END IF statement signals the end of the innermost nested IF construct.

Syntax
[construct-name:] IF (expr) THEN

block
[ELSE IF (expr) THEN [construct-name]

block]
...
[ELSE [construct-name]

block]
END IF [construct-name]

Where:
construct-name is an optional name for the construct.

expr is a scalar LOGICAL expression.

block is a sequence of zero or more statements or executable constructs.
156 LF Fortran 95 Language Reference



IF Statement
Remarks
The exprs are evaluated in the order of their appearance in the construct until a true value is 
found, or an ELSE statement or END IF statement is encountered.  If a true value is found, 
the block immediately following is executed and this completes the execution of the con-
struct.  The exprs in any remaining ELSE IF statements of the IF construct are not evaluated.

If none of the evaluated expressions is true, then the block of code following the ELSE state-
ment is executed.  If there is no ELSE statement, the execution of the construct is completed 
without the execution of any block within the construct.

The ELSE statement and its block of code must be the last block to appear in the IF construct.

If the IF statement specifies a construct name, the corresponding END IF statement must 
specify the same construct name.  If the IF statement does not specify a construct name, the 
corresponding END IF statement must not specify a construct name.

Example  1
integer :: i=0
if (i > 10) then
  write(*,*) "i is greater than ten"
else if (i > 0) then 
  write(*,*) "i is less than ten but greater than zero"
else if (i < 0) then
  write(*,*) "i is less than zero"
else 
  write(*,*) "i equals zero"
end if

Example  2
   logical :: exp1=.true.,exp2=.false.
outer_if: &
   if (exp1) then
inner_if: &
      if(exp2) then
      end if inner_if
   end if outer_if
   if(exp1 .eqv. exp2) then
   end if

IF Statement
Description
The IF statement controls whether or not a statement is executed based on the value of a log-
ical expression.
LF Fortran 95 Language Reference 157



Chapter 2    Alphabetical Reference
Syntax
IF (expr) action-statement

Where:
expr is a scalar LOGICAL expression.

action-statement is an executable statement other than another IF or the END statement of a 
program, function, or subroutine.

Remarks
Execution of an IF statement causes evaluation of the logical expression.

If the expression is true, the action-statement is executed.  

If the value is false, the action-statement is not  executed.

Example
real :: a=-1
if (a < 0) write(*,*) " a must be less than zero,&
           & because this statement was executed"

IMPLICIT Statement
Description
The IMPLICIT statement specifies a type and optionally a kind or a CHARACTER length 
for each variable or function name beginning with the letter(s) specified in the IMPLICIT 
statement.  Alternately, it can specify that no implicit typing is to apply in the scoping unit.

Syntax
IMPLICIT implicit-specs

or
IMPLICIT NONE

Where:
implicit-specs is a comma-separated list of type-spec (letter-specs)

type-spec is INTEGER [kind-selector]
or REAL [kind-selector]
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector]
or LOGICAL [kind-selector]
or TYPE (type-name)

kind-selector is ( [KIND =] kind )
158 LF Fortran 95 Language Reference



IMPLICIT Statement
char-selector is ([LEN=] length [, KIND=kind])
or (KIND=kind [, LEN=length])
or * char-length [,]

type-name is the name of a user-defined type.

kind is a scalar INTEGER expression that can be evaluated at compile time.  To maintain 
portability, this argument should be the result of a “KIND Function”, 
“SELECTED_INT_KIND Function”, or a “SELECTED_REAL_KIND Function”, as 
appropriate.

length is a scalar INTEGER expression
or *

char-length is a scalar INTEGER literal constant
or (*)

letter-specs is a comma-separated list of letter[-letter]

letter is one of the letters A-Z.

Remarks
Any data entity that is not explicitly declared by a type or function declaration statement, is 
not an intrinsic function, and is not made accessible by host or use association, is declared 
implicitly to be of the type (and type parameters, kind and length) mapped from the first letter 
of its name.

Implicit typing for a range of letters can be specified by separating the beginning letter in the 
range and the ending letter in the range by a hyphen character.  This is equivalent to writing 
a list containing all of the letters in alphabetical order in the alphabetic sequence from the 
beginning letter through the ending letter.

The same letter must not appear as a single letter or be included in a range of letters more 
than once in all of the IMPLICIT statements in a scoping unit.

In the absence of an implicit statement, a program unit is treated as if it had a host with the 
declaration

implicit integer (i-n), real (a-h, o-z)

IMPLICIT NONE specifies that no implicit typing will occur, and all data entities that are 
local in scope or appear in a common block within the scoping unit must be declared in a type 
declaration statement.

If IMPLICIT NONE is specified in a scoping unit, it must precede any other specification 
statements that appear, and the scoping unit cannot contain any other IMPLICIT statements.

Example  1
implicit type(vowel) (a,e,i,o,u) ! if a variable name does  
implicit character (c)           ! not appear in a type
LF Fortran 95 Language Reference 159



Chapter 2    Alphabetical Reference
implicit integer (j,k,m,n)       ! declaration statement,

implicit logical (l)             ! the type is determined 

implicit real (b, d, f-h, p-t, v-z) ! by the first letter of

type vowel                       ! the variable name, as

  character :: v                 ! indicated by these 

end type vowel                   ! implicit statements

Example  2
implicit none ! requires explicit type declarations for

              ! each local variable

integer :: ill

il1=0 ! implicit none will allow the compiler to

      ! catch typos. this statement will generate

      ! a compiler error because the number one was

      ! used instead of letter "l"

ill=O ! this typo will also be detected. the letter 

      ! "O" was used instead of the number zero

INCLUDE Line
Description
The INCLUDE line causes text in a separate file to be processed as if the text replaced the 
INCLUDE line.  The INCLUDE line is not a Fortran statement.

Syntax
INCLUDE filespec

Where:
filespec is a CHARACTER literal constant that corresponds to a path and file that contains 
source text to replace the INCLUDE line.

Remarks
The INCLUDE line must be the only non-blank text on this source line other than an optional 
trailing comment.  A statement label or additional statements are not allowed on the line.

The include line is processed by the compiler, not by a preprocessor.

Example
include "types.for"  ! include a file named types.for

                     ! in place of this INCLUDE line
160 LF Fortran 95 Language Reference



INDEX Function
INDEX Function
Description
The INDEX function returns the starting position of a substring within a string.

Syntax
INDEX (string, substring [, back])

Required Arguments
string is an INTENT(IN) scalar or array of type CHARACTER.

substring is an INTENT(IN) scalar or array of type CHARACTER.

Optional Arguments
back is an INTENT(IN) scalar of type LOGICAL.

Result
The result is of type default INTEGER.  

If back is absent or false, the result value is the position in string where the first instance of 
substring begins.

If back is true, the result value is the position number in string where the last instance of sub-
string begins.

If substring is not found, or if string is shorter than substring, the result is zero.

If substring is of zero length, and back is absent or false, the result value is one.  

If substring is of zero length, and back is true, the result value is LEN(string)+1.

Example
character(len=20) :: c1   =  "Howdy There!        ", &

                     c2(3)=(/"To be or not to be  ", &

                             "Believe it or not   ", &

                             "I'll be there       "/)

character(len=2) :: s2(3)=(/"be", "Be", "ow"/)

write(*,*) index(c1,"The")           ! writes  7

write(*,*) index(c1,s2)              ! writes  0  0  2

write(*,*) index(c2,"be")            ! writes  4  0  6

write(*,*) index(c2,s2, back=.true.) ! writes 17  1  0
LF Fortran 95 Language Reference 161



Chapter 2    Alphabetical Reference
INQUIRE Statement
Description
The INQUIRE statement enables a program to make inquiries about a unit or file’s existence, 
connection, access method or other properties.

Syntax
INQUIRE (inquire-specs)

or
INQUIRE (IOLENGTH=iolength) output-items

Where:
inquire-specs is a comma-separated list of 
[UNIT =] external-file-unit
or FILE=file-name-expr
or IOSTAT=iostat
or ERR=label
or EXIST=exist
or OPENED=opened
or NUMBER=number
or NAMED=named
or NAME=name
or ACCESS=access
or SEQUENTIAL=sequential
or DIRECT=direct
or FORM=form
or FORMATTED=formatted
or UNFORMATTED=unformatted
or RECL=recl
or NEXTREC=nextrec
or BLANK=blank
or POSITION=position
or ACTION=action
or READ=read
or WRITE=write
or READWRITE=readwrite
or DELIM=delim
or PAD=pad
or FLEN=flen
or BLOCKSIZE=blocksize
or CONVERT =file-format
or CARRIAGECONTROL=carriagecontrol
162 LF Fortran 95 Language Reference



INQUIRE Statement
external-file-unit is a scalar INTEGER expression that evaluates to the input/output unit 
number of an external file.

file-name-expr is a scalar CHARACTER expression that evaluates to the name of a file.

iostat is a scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero 
otherwise.

label is the statement label of the statement branched to if an error occurs.

exist is a scalar default LOGICAL variable that is assigned the value true if the file specified 
in the FILE= specifier exists or the input/output unit specified in the UNIT= specifier exists, 
and false otherwise.

opened is a scalar default LOGICAL variable that is assigned the value true if the file or 
input/output unit specified is connected, and false otherwise.

number is a scalar default INTEGER variable that is assigned the value of the input/output 
unit of the external file or -1 if the file is not connected or does not exist.

named is a scalar default LOGICAL variable that is assigned the value true if the file has a 
name and false otherwise.

name is a scalar default CHARACTER variable that is assigned the name of the file, if the 
file has a name, otherwise it becomes undefined.

access is a scalar default CHARACTER variable that evaluates to SEQUENTIAL if the file 
is connected for sequential access, DIRECT if the file is connected for direct access, TRANS-
PARENT if the file is connected for transparent access, or UNDEFINED if the file is not 
connected.

sequential is a scalar default CHARACTER variable that is assigned the value YES if 
sequential access is an allowed access method for the file, NO if sequential access is not 
allowed, and UNKNOWN if the file is not connected or does not exist.

direct is a scalar default CHARACTER variable that is assigned the value YES if direct 
access is an allowed access method for the file, NO if direct access is not allowed, and 
UNKNOWN if the file is not connected or does not exist.

form is a scalar default CHARACTER variable that is assigned the value FORMATTED if 
the file is connected for formatted input/output, UNFORMATTED if the file is connected for 
unformatted input/output, and UNDEFINED if there is no connection.

formatted is a scalar default CHARACTER variable that is assigned the value YES if format-
ted is an allowed form for the file, NO if formatted is not allowed, and UNKNOWN if the 
file is not connected or does not exist.

unformatted is a scalar default CHARACTER variable that is assigned the value YES if 
unformatted is an allowed form for the file, NO if unformatted is not allowed, and 
UNKNOWN if the file is not connected or does not exist.
LF Fortran 95 Language Reference 163



Chapter 2    Alphabetical Reference
recl is a scalar default INTEGER variable that evaluates to the record length in bytes for a 
file connected for direct access, or the maximum record length in bytes for a file connected 
for sequential access, or zero if the file is not connected or does not exist.

nextrec is a scalar default INTEGER variable that is assigned the value n+1, where n is the 
number of the last record read or written on the file connected for direct access.  If the file 
has not  been written to or read from since becoming connected, the value 1 is assigned.  If 
the file is not connected for direct access, the value becomes zero.

blank is a scalar default CHARACTER variable that evaluates to NULL if null blank control 
is in effect, ZERO if zero blank control is in effect, and UNDEFINED if the file is not con-
nected for formatted input/output or does not exist.

position is a scalar default CHARACTER variable that evaluates to REWIND if the newly 
opened sequential access file is positioned at its initial point; APPEND if it is positioned 
before the endfile record if one exists and at the file terminal point otherwise; ASIS if the 
position is after the endfile record; and UNDEFINED if the file is not connected or does not 
exist.

action is a scalar default CHARACTER variable that evaluates to READ if the file is con-
nected for input only, WRITE if the file is connected for output only, READWRITE if the 
file is connected for input and output, and UNDEFINED if the file is not connected or does 
not exist.

read is a scalar default CHARACTER variable that is assigned the value YES if READ is an 
allowed action on the file, NO if READ is not an allowed action of the file, and UNKNOWN 
if the file is not connected or does not exist.

write is a scalar default CHARACTER variable that is assigned the value YES if WRITE is 
an allowed action on the file, NO if WRITE is not an allowed action of the file, and 
UNKNOWN if the file is not connected or does not exist.

readwrite is a scalar default CHARACTER variable that is assigned the value YES if READ-
WRITE is an allowed action on the file, NO if READWRITE is not an allowed action of the 
file, and UNKNOWN if the file is not connected or does not exist.

delim is a scalar default CHARACTER variable that evaluates to APOSTROPHE if the apos-
trophe is used to delimit character constants written with list-directed or namelist formatting, 
QUOTE if the quotation mark is used, NONE if neither quotation marks nor apostrophes is 
used, and UNDEFINED if the file is not connected or does not exist.

pad is a scalar default CHARACTER variable that evaluates to YES if the formatted input 
record is padded with blanks or if the file is not connected or does not exist, and NO 
otherwise.

flen is a scalar default INTEGER variable that is assigned the length of the file in bytes.
164 LF Fortran 95 Language Reference



INQUIRE Statement
blocksize is a scalar default INTEGER variable that evaluates to the size, in bytes, of the I/O 
buffer.  This value may be internally adjusted to a record size boundary if the unit has been 
connected for direct access and therefore may no agree with the BLOCKSIZE specifier spec-
ified in an OPEN  Statement.  The value is zero if the file is not connected or does not exist.

file-format is a scalar default CHARACTER variable that evaluates to BIG_ENDIAN if big 
endian conversion is in effect, LITTLE_ENDIAN if little endian conversion is in effect, IBM 
if IBM style conversion is in effect, and NATIVE if no conversion is in effect.

carriagecontrol is a scalar default CHARACTER variable that evaluates to FORTRAN if the 
first character of a formatted sequential record is used for carriage control, and LIST 
otherwise.

iolength is a scalar default INTEGER variable that is assigned a value that would result from 
the use of output-items in an unformatted output statement.  The value is used as a RECL= 
specifier in an OPEN statement that connects a file for unformatted direct access when there 
are input/output statements with the same list of output-items.

output-items is a comma-separated list of items used with iolength as explained immediately 
above.

Remarks
When the INQUIRE statement is executed for a file or unit that is not connected, information 
about that file or unit is limited to the existence of the file, and the connection status of the 
file or unit.

inquire-specs must contain one FILE= specifier or one UNIT= specifier, but not both, and at 
most one of each of the other specifiers.

In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are 
omitted from the unit specifier, the unit specifier must be the first item in inquire-specs.

When a returned value of a specifier other than the NAME= specifier is of type CHARAC-
TER and the processor is capable of representing letters in both upper and lower case, the 
value returned is in upper case.

If an error condition occurs during execution of an INQUIRE statement, all of the inquiry 
specifier variables become undefined, except for the variable in the IOSTAT= specifier (if 
any).

Example
logical :: lopened,lexist
integer :: this_unit=10
inquire (this_unit,opened=lopened)
if(lopened) then
  write(*,*) " Unit ",this_unit," is open!"
else
  write(*,*) " Unit ",this_unit," is not open!"
end if
LF Fortran 95 Language Reference 165



Chapter 2    Alphabetical Reference
inquire (file="inquire.f90",exist=lexist)

if(lexist) then

  write(*,*) " The file 'inquire.f90' exists!"

else

  write(*,*) " The file 'inquire.f90' does not exist!"

end if

INT Function
Description
The INT function converts a numeric argument to the INTEGER type.

Syntax
INT (a [, kind])

Required Arguments
a is an INTENT(IN) scalar or array of type INTEGER, REAL, or COMPLEX.

Optional Arguments
kind is INTENT(IN) and determines the kind of the result. It must be a scalar INTEGER 
expression that can be evaluated at compile time.  To maintain portability, this argument 
should be the result of a “KIND Function” or “SELECTED_INT_KIND Function”.

Result
The result is of type INTEGER.  It is the value of a without its fractional part.

If kind is present, the kind is that specified by kind.

If a is of type COMPLEX, the result is the value of the real part of a without its fractional 
part.

Example
integer :: i2=selected_int_kind(2)

integer(selected_int_kind(4)) :: i4=3

real :: a=2.5

complex :: c=(1.5,2.5)

write(*,*) i4,int(i4,i2) ! converts between integer kinds

write(*,*) a,int(a)      ! converts real to integer

write(*,*) c,int(c)      ! converts complex to integer
166 LF Fortran 95 Language Reference



INTEGER Statement
INTEGER Statement
Description
The INTEGER statement declares entities having the INTEGER data type.

Syntax
INTEGER [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ( [KIND=] scalar-int-initialization-expr )

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or 
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE, 
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of the entity being declared.

function-name is the name of the function being declared.

Remarks
function-name must be the name of an external, intrinsic, or statement function, or a function 
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, a double colon must appear before the list of entities.  Each 
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-expr must not appear if entity-name is a dummy argument, a function  
result, an object in a named common block unless the type declaration is in a block data  pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an 
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must 
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.
LF Fortran 95 Language Reference 167



Chapter 2    Alphabetical Reference
If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC 
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or 
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable 
arrays, functions, or objects in a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be 
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy 
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unless it is a 
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be a dummy argument or a function 
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC, 
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

Example
integer :: a,b(2,4)          ! explicit shape

integer,dimension(2,2) :: c=reshape((/1,2,3,4/),shape(c))

                             ! has save attribute

integer,pointer :: d(:)      ! deferred shape

integer,allocatable :: e(:)

integer,parameter :: f=3     ! must be initialized

INTENT Statement
Description
The INTENT statement specifies the treatment dummy arguments.
168 LF Fortran 95 Language Reference



INTERFACE Block
Syntax
INTENT( intent-spec ) [::] dummy-args

Where:
intent-spec is IN
or OUT
or IN OUT

dummy-args is a comma-separated list of dummy arguments.

Remarks
The INTENT(IN OUT) attribute specifies that the dummy argument is intended for use both 
to receive data from and to return data to the invoking procedure.  This is the default behavior 
if no INTENT attribute is specified.

The INTENT(IN) attribute specifies that the dummy argument is intended to receive data 
from the invoking procedure.  The dummy argument’s value may not be altered during the 
execution of the subprogram.

The INTENT(OUT) attribute specifies that the dummy argument is intended to return data to 
the invoking procedure.  The subprogram must provide a value for all INTENT(OUT) argu-
ments.  An INTENT(OUT) dummy variable cannot be referenced within the subprogram 
until it has been assigned a value.  If a value is not supplied in the subprogram, the value of 
the actual argument will become undefined upon the subprograms return.

The INTENT statement must not contain a dummy argument that is a procedure or a pointer.

Example
subroutine ex (a,b,c,d,e,f)
  real :: a,b,c
  intent(in) :: a      ! a cannot be assigned a value
  intent(out) b        ! b must be given a value
  intent(in out) c     ! default behavior
  real,intent(in) :: d ! intent attributes
  real,intent(out) :: e
  real,intent(in out) :: f
end subroutine ex

INTERFACE Block
Description
An INTERFACE block specifies the forms of reference by which a procedure can be 
invoked.  An interface block specifies a procedure interface, a defined operation, or a defined 
assignment.
LF Fortran 95 Language Reference 169



Chapter 2    Alphabetical Reference
An INTERFACE statement begins an interface block.

An END INTERFACE statement ends an interface block.

Syntax
INTERFACE [generic-spec]

                     interface-spec

END INTERFACE [generic-spec]

Where:
generic-spec is the name of a generic procedure
or OPERATOR ( defined-operator )
or ASSIGNMENT (=)

defined-operator is one of the intrinsic operators or .operator-name.
operator-name is a user-defined name for the operation, consisting of one to 31 letters.

 interface-spec specifies whether the procedure is a subroutine or a function, and any dummy 
arguments that the procedure might have.  If the interface is a generic interface, interface 
operator or interface assignment, interface-spec may also specify that the procedure is a mod-
ule procedure, as long as that procedure appears in a module that is within the scope of the 
procedure declaring the interface, or is available by use association.

Remarks
Explicit interface

An explicit interface for a procedure consists of the characteristics of the procedure, the name 
of the procedure, and the name and characteristics of any dummy arguments.

A dummy argument name appearing in an interface specifies the keyword for that dummy 
argument.

Explicit interfaces cannot be specified for procedures that are contained within a MODULE, 
because the interfaces for module procedures are provided implicitly.

Generic interface

An interface statement with a generic-name specifies a generic interface for each of the pro-
cedures in the interface block.  Each procedure in the interface block may have an explicit 
interface, or may name a module procedure that is contained in the same module.

Each procedure’s argument list within the generic interface must have a calling sequence that 
is  unique, otherwise the interface is ambiguous, and an error will be produced at compile 
time.

The specific procedure is selected at runtime, based on the argument list used when the 
generic procedure is called. 
170 LF Fortran 95 Language Reference



INTERFACE Block
If the interface is a generic, assignment or operator interface,  if a generic-spec is present in 
the END INTERFACE statement, it must be identical to the generic spec in the INTERFACE 
statement.

If the interface is not a generic, assignment or operator interface,  generic-spec cannot be 
present in the END INTERFACE statement.  

Defined operations

If OPERATOR is specified in an INTERFACE statement, all of the procedures specified in 
the interface block must be functions that can be referenced as defined operations.  In the case 
of binary operators, the function requires two arguments.  In the case of unary operators, a 
function with one argument must be used.

OPERATOR must not be specified for functions with no arguments or for functions with 
more than two arguments.  

The dummy arguments must be non-optional data objects and must be specified with 
INTENT((IN).  

The function result must not have assumed CHARACTER length.  

If the operator is an intrinsic-operator, the number of function arguments must be consistent 
with the intrinsic uses of that operator.

A given defined operator may, as with generic names, apply to more than one function, in 
which case it is generic in exact analogy to generic procedure names.  For intrinsic operator 
symbols, the generic properties include the intrinsic operations they represent.  Because both 
forms of each relational operator have the same interpretation, extending one form (such as 
<=) has the effect of defining both forms (<= and .LE.).

Overriding an intrinsic operator for an intrinsic data type is not allowed.  Operators may only 
be defined for data types which do not already have a definition for that particular operator.

Defined assignments

If ASSIGNMENT is specified in an INTERFACE statement, all the procedures in the inter-
face block must be subroutines that can be referenced as defined assignments.

Each subroutine must have exactly two dummy arguments.

Each argument must be non-optional.

The first argument must have the INTENT(OUT) or INTENT(IN OUT) attribute.

The second argument must have the INTENT(IN) attribute.

A defined assignment is treated as a reference to the subroutine, with the first argument as 
the assignment target, and the second argument as the expression to be assigned.  
LF Fortran 95 Language Reference 171



Chapter 2    Alphabetical Reference
The ASSIGNMENT generic specification specifies that the assignment operation is extended 
or redefined if both sides of the equals sign are of the same derived type.

Example  1
! explicit interfaces
interface
  subroutine ex(a,b,c)
    implicit none
    real :: a,b(10,2)
    integer :: c
  end subroutine ex
  function why(t,f)
    implicit none
    logical,intent(in) :: t,f
    logical :: why
  end function why
end interface

Example  2
! generic interfaces
module mod1
  interface swap
    module procedure complex_swap ! interface for a module
    module procedure logical_swap ! procedure is implicit
  end interface
contains
  subroutine complex_swap(cx,cy) ! implicit interface 
    complex :: cx, cy, ct        ! is defined here
    ct=cx
    cx=cy
    cy=ct
  end subroutine
  subroutine logical_swap(lx,ly) ! implicit interface 
    logical :: lx,ly,lt          ! is defined here
    lt=lx
    lx=ly
    ly=lt
  end subroutine
end module    
subroutine real_swap(x,y)
  real :: x,y,t
  t=x
  x=y
  y=t
end subroutine
subroutine int_swap(ix,iy)
  integer :: ix,iy,it
172 LF Fortran 95 Language Reference



INTERFACE Block
  it=ix
  ix=iy
  iy=it
end subroutine
program interface2
  use mod1
  interface swap ! extends the interface defined in mod1
    subroutine real_swap(x,y)  ! explicit interface
      implicit none
      real, intent(in out) :: x,y
    end subroutine real_swap
    subroutine int_swap(ix,iy) ! explicit interface
      implicit none
      integer,intent(in out) :: ix,iy
    end subroutine int_swap
  end interface
  real :: a=1,b=2
  integer :: ia=1,ib=2
  complex :: ca=(1,1),cb=(2,2)
  logical :: la=.true.,lb=.false.
  call swap(a,b)                ! calls real_swap
  write(*,*) a,b
  call swap(ia,ib)              ! calls int_swap
  write(*,*) ia,ib
  call swap(ca,cb)              ! calls complex_swap
  write(*,*) ca,cb
  call swap(la,lb)              ! calls logical_swap 
  write(*,*) la,lb
end program

Example  3
! operator interfaces
module mod1
  interface operator (+)           ! binary operator
    module procedure char_plus_int ! implicit interface
    module procedure int_plus_char ! implicit interface
  end interface operator (+)
  interface operator (.not.)       ! unary operator
    module procedure int_not       ! implicit interface
    function real_not(a)           ! explicit interface
      real :: real_not
      real,intent(in) :: a
    end function  
  end interface operator (.not.)
contains
  function char_plus_int(c,i)
    character :: char_plus_int
    integer,intent(in) :: i
LF Fortran 95 Language Reference 173



Chapter 2    Alphabetical Reference
    character,intent(in) :: c
    char_plus_int=int_plus_char(i,c)
  end function char_plus_int
  function int_plus_char(i,c)
    character :: int_plus_char
    integer,intent(in) :: i
    character,intent(in) :: c
    integer :: it
    it=ichar(c)+i
    if(it < 0) it=0
    if(it > 127) it=0
    int_plus_char=char(it)
  end function int_plus_char
  function int_not(i)
    integer :: int_not
    integer,intent(in) :: i
    int_not=ieor(i,-1)
  end function
end module
function real_not(a)
  real :: real_not
  real,intent(in) :: a
  integer :: it
  it=transfer(a,it)
  it=ieor(it,-1)
  real_not=transfer(it,real_not)
end function  
program interface3                    ! demonstrate usage
  use mod1
  character :: c="5"
  integer :: i=-1
  real :: r
  write(*,*) c+i                      ! calls char_plus_int
  write(*,*) -i+c                     ! calls int_plus_char
  write(*,*) i, (.not. i)             ! calls int_not
  write(*,*) tiny(-r),(.not. huge(r)) ! calls real_not
end program

Example  4
! assignment interface
module mod4
  interface assignment (=)
    module procedure int_equals_char ! implicit interface
  end interface assignment (=)
contains
  subroutine int_equals_char(i,c) ! must have two arguments
    integer,intent(out) :: i  ! must be intent(out) 
                              ! or intent(in out)
174 LF Fortran 95 Language Reference



INTRINSIC Statement
    character,intent(in) :: c ! must be intent(in)
    i=ichar(c)
  end subroutine
end module
program interface4
  use mod4
  integer :: i
  character :: c="a"
  i=c                         ! calls int_equals_char
  write(*,*) i,ichar(c)
end program

INTRINSIC Statement
Description
The INTRINSIC statement permits a reference to a specific intrinsic function as an actual 
argument.

Syntax
INTRINSIC [::] intrinsic-procedure-names

Where:
intrinsic-procedure-names is a comma-separated list of intrinsic procedures.

Remarks
The appearance of a generic intrinsic function name in an INTRINSIC statement does not 
cause that name to lose its generic property.

If the specific name of an intrinsic function is used as an actual argument, the name must 
either appear in an INTRINSIC statement or be given the intrinsic attribute in a type decla-
ration statement in the scoping unit.

Only one appearance of a name in all of the INTRINSIC statements in a scoping unit is 
permitted.

A name must not appear in both an EXTERNAL and an INTRINSIC statement in the same 
scoping unit.

Example
program intrinsic
  real :: a=10.
  real,intrinsic :: log,log10 ! may be actual argument
  write(*,*) zee(a,log),zee(a,log10) ! writes 2.302585 1.0
end program
function zee(a,func)
LF Fortran 95 Language Reference 175



Chapter 2    Alphabetical Reference
  real :: zee,a,func

  zee=func(a)

end function

INVALOP Subroutine (Windows only)
Description
The INVALOP subroutine masks and detects invalid operation exceptions.

Syntax
INVALOP (lflag)

Arguments
lflag is an INTENT(IN OUT) scalar of type LOGICAL. 

It must be set to true on the first invocation of INVALOP.

On subsequent invocations, it indicates whether an invalid operation has occurred.

Remarks
The initial invocation of the INVALOP subroutine masks the invalid operator interrupt on 
the floating-point unit.

Subsequent invocations return an lflag value of true if the exception has occurred or false if 
the exception has not occurred.

Example
logical :: lflag=.true.

call invalop(lflag) ! mask the divide-by-zero interrupt

write(*,*) lflag    ! writes F

write(*,*) 0./0.    ! writes -NaN

call invalop(lflag)

write(*,*) lflag    ! writes T

IOR Function
Description
The IOR function performs a bit-wise logical inclusive OR operation on two INTEGER 
arguments.
176 LF Fortran 95 Language Reference



IOSTAT_MSG Subroutine
Syntax
IOR (i, j)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

j is an INTENT(IN) scalar or array of type INTEGER and is the same kind as i.

Result
The result is of type INTEGER.  Its value is obtained by performing a bit-wise logical inclu-
sive OR operation on i and j.

Example
i=53       ! i=00110101 binary (lowest order byte)
j=45       ! j=00101101 binary (lowest order byte)
k=ior(i,j) ! k=00111101 binary (lowest order byte)
           ! k=61 decimal

IOSTAT_MSG Subroutine
Description
The IOSTAT_MSG subroutine retrieves text associated with a runtime error.

Syntax
IOSTAT_MSG (iostat, message)

Arguments
iostat is an INTENT(IN) scalar of type INTEGER.  It contains the error status code obtained 
by execution of any intrinsic statement which returns a status variable.

message is an INTENT(OUT) scalar be of type CHARACTER.  It is assigned the text of the 
runtime error message corresponding to the error code in iostat.

Remarks
A CHARACTER length of 256 is sufficiently large to contain all runtime error messages at 
this time.

If a status variable from a successful operation is passed to IOSTAT_MSG, a blank string is 
returned.

Example
real,allocatable :: a(:)
integer :: istat
LF Fortran 95 Language Reference 177



Chapter 2    Alphabetical Reference
character(len=256) :: msg

open(10,file="foo.bar",status="OLD",iostat=istat)

call iostat_msg(istat,msg)

write(*,*) trim(msg)

deallocate(a,stat=istat)

call iostat_msg(istat,msg)

write(*,*) trim(msg)

write(*,*) " Bye"

ISHFT Function
Description
The ISHFT function performs an end-off bit shift on an integer argument.

Syntax
ISHFT (i, shift)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

shift is an INTENT(IN) scalar or array of type INTEGER.  Its absolute value must be less 
than or equal to the number of bits in i.

Result
The result is of type INTEGER and of the same kind as i.  

Its value is the value of i shifted by shift positions; if shift is positive, the shift is to the left, 
if shift is negative, the shift is to the right.  

Bits shifted off are lost.

Example
integer :: i=16,ia(2)=(/4,8/)

write(*,*) i, ia       ! writes 16  4  8

write(*,*) ishft(i,-2) ! writes 4

write(*,*) ishft(i,ia) ! writes 256 4096

write(*,*) ishft(ia,2) ! writes 16    32

write(*,*) ishft(ia,i) ! writes 262144  524288
178 LF Fortran 95 Language Reference



ISHFTC Function
ISHFTC Function
Description
The ISHFTC function performs a circular shift of the rightmost bits of an integer argument.

Syntax
ISHFTC (i, shift [, size])

Required Arguments
i is an INTENT(IN) scalar or array of type INTEGER, containing values to be shifted.

shift is an INTENT(IN) scalar or array of type INTEGER.  The absolute value of shift must 
be less than or equal to size.

Optional Arguments
size is an INTENT(IN) scalar or array of type INTEGER.  Only the rightmost size bits will 
be shifted.

The value of size must be positive and must not be greater than BIT_SIZE (i).  

If absent, it is as if size were present with the value BIT_SIZE (i).

Result
The result is of type INTEGER and of the same kind as i.  

Its value is equal to the value of i with its rightmost size bits circularly shifted by shift 
positions.

If shift is positive, bits are shifted to the left.

If shift is negative, bits are shifted to the right.

Example
integer :: i=16,ia(2)=(/4,8/)
write(*,*) i,ia            ! writes 16  4  8
write(*,*) ishftc(i,-2)    ! writes 4
write(*,*) ishftc(i,ia,8)  ! writes 1 16
write(*,*) ishftc(ia,2)    ! writes 16 32
write(*,*) ishftc(ia,i,16) ! writes 4  8

KIND Function
Description
The KIND function returns the kind type parameter for arguments of any intrinsic type.
LF Fortran 95 Language Reference 179



Chapter 2    Alphabetical Reference
Syntax
KIND (x)

Arguments
x is an INTENT(IN) scalar or array of any intrinsic type.  

If x has the POINTER or ALLOCATABLE attribute, it does not have to be allocated, asso-
ciated, or defined.

Result
The result is a scalar INTEGER.  Its value is equal to the compiler dependent kind type 
parameter value of x.

The actual values returned by the KIND function are not necessarily portable to other com-
piling platforms.

Example
! display default kinds
integer :: i
real :: r
double precision :: d
complex :: q
logical :: l
character :: c
write(*,*) "Default integer kind  : ",kind(i) ! 4
write(*,*) "Default real kind     : ",kind(r) ! 4
write(*,*) "Default dp real kind  : ",kind(d) ! 8
write(*,*) "Default complex kind  : ",kind(q) ! 4
write(*,*) "Default logical kind  : ",kind(l) ! 4
write(*,*) "Default character kind: ",kind(c) ! 1

LBOUND Function
Description
The LBOUND function returns the lower bounds of a whole array or a particular dimension 
of an array.

Syntax
LBOUND (array [, dim])

Required Arguments
array is an INTENT(IN) array of any type.  

It must not be a pointer that is disassociated or an allocatable array that is not allocated.
180 LF Fortran 95 Language Reference



LEN Function
Optional Arguments
dim is an INTENT(IN) scalar of type INTEGER, with a value that is less than or equal to the 
rank of array.

Result
The result is of type default INTEGER.  

If dim is present, the result is a scalar with the value of the lower bound of dim.  

If dim is absent, the result is an array of rank one with values corresponding to the lower 
bounds of each dimension of array.  

The lower bound of an array section is always one.  The lower bound of a zero-sized dimen-
sion is also always one.

Example
integer :: j(10),i(0:10,-1:10,-2:10,-3:10)
write(*,*) lbound(j)   ! writes  1
write(*,*) lbound(i)   ! writes  0 -1 -2 -3
write(*,*) lbound(i,2) ! writes -1
write(*,*) lbound(i,4) ! writes -3

LEN Function
Description
The LEN function returns the total length of a CHARACTER data object.

Syntax
LEN (string)

Arguments
string is an INTENT(IN) scalar or array of type CHARACTER.

Result
The result is a scalar default INTEGER.  

Its value is the length of the character object string.

Example
character :: c1         
character(len=4) :: c3="Yow!"
character(len=*), parameter :: c6=" Howdy"
character(len=3),dimension(2) :: ca2=(/" Fo","lks"/)
character :: ca4*4(2)=(/" So ","long"/)
LF Fortran 95 Language Reference 181



Chapter 2    Alphabetical Reference
write(*,*) len(c1),len(c3),len(c6) ! writes 1 4 6 

write(*,*) len(ca2),len(ca4)       ! writes 3 4

LEN_TRIM Function
Description
The LEN_TRIM function returns the length of a CHARACTER string, not counting any 
trailing blanks.

Syntax
LEN_TRIM (string)

Arguments
string is an INTENT(IN) scalar or array of type CHARACTER.

Result
If string is scalar, the result is a scalar default INTEGER.  Its value is the number of charac-
ters in string, not counting any trailing blanks.

If string is an array, the result is a conformable type default INTEGER array.  Each element 
of the result contains the number of characters in each element of string, not counting any 
trailing blanks.

Example
character(len=10) :: c3="Yow!"

character(len=*),parameter :: c6="Howdy    "

character(len=3),dimension(2) :: ca2=(/"Fol","ks "/)

write(*,*) len_trim(c3),len_trim(c6) ! writes 4 5 

write(*,*) len_trim(ca2)             ! writes 3 2

LGE Function
Description
The LGE function tests whether a string is lexically greater than or equal to another string 
based on the ordering of the ASCII collating sequence.  See “ASCII Character Set” on 
page 319.

Syntax
LGE (string_a, string_b)
182 LF Fortran 95 Language Reference



LGT Function
Arguments
string_a is an INTENT(IN) scalar or array of type CHARACTER.

string_b is an INTENT(IN) scalar or array of type CHARACTER.

If string_a and string_b are both arrays, they must have the same shape.

Result
The result is of type default LOGICAL.  Its value is true if string_b precedes string_a in the 
ASCII collating sequence, or if the strings are the same; otherwise the result is false.  

Trailing blanks are ignored.

If both strings are of zero length the result is true.

Example
character(len=3) :: a="abc",b="ABC"
character(len=0) :: a1,b1
character(len=5) :: c1(2)=(/"abc  ","123  "/)
character(len=5) :: c2(2)=(/"CBA  ","  123"/)
write(*,*) lge(a,b)   ! writes  T 
write(*,*) lge(a,c1)  ! writes  T  T
write(*,*) lge(c2,a)  ! writes  F  F
write(*,*) lge(c1,c2) ! writes  T  T

LGT Function
Description
The LGT function tests whether a string is lexically greater than another string based on the 
ordering of the ASCII collating sequence.  See “ASCII Character Set” on page 319.

Syntax
LGT (string_a, string_b)

Arguments
string_a is an INTENT(IN) scalar or array of type CHARACTER.

string_b is an INTENT(IN) scalar or array of type CHARACTER.

If string_a and string_b are both arrays, they must have the same shape.

Result
The result is of type default LOGICAL.  Its value is true if string_b precedes string_a in the 
ASCII collating sequence; otherwise the result is false.  
LF Fortran 95 Language Reference 183



Chapter 2    Alphabetical Reference
Trailing blanks are ignored.

If both strings are of zero length the result is false.

Example
character(len=3) :: a="abc",b="ABC"
character(len=0) :: a1,b1
character(len=5) :: c1(2)=(/"abc  ","123  "/)
character(len=5) :: c2(2)=(/"CBA  ","  123"/)
write(*,*) lgt(a,b)   ! writes  T 
write(*,*) lgt(a,c1)  ! writes  F  T
write(*,*) lgt(c2,a)  ! writes  F  F
write(*,*) lgt(c1,c2) ! writes  T  T

LLE Function
Description
The LLE function tests whether a string is lexically less than or equal to another string based 
on the ordering of the ASCII collating sequence.  See “ASCII Character Set” on page 319.

Syntax
LLE (string_a, string_b)

Arguments
string_a is an INTENT(IN) scalar or array of type CHARACTER.

string_b is an INTENT(IN) scalar or array of type CHARACTER.

If string_a and string_b are both arrays, they must have the same shape.

Result
The result is of type default LOGICAL.  

Its value is true if string_a precedes string_b in the ASCII collating sequence, or if the strings 
are the same; otherwise the result is false.  

Trailing blanks are ignored.

If both strings are of zero length the result is true.

Example
character(len=3) :: a="abc",b="ABC"
character(len=0) :: a1,b1
character(len=5) :: c1(2)=(/"abc  ","123  "/)
character(len=5) :: c2(2)=(/"CBA  ","  123"/)
184 LF Fortran 95 Language Reference



LLT Function
write(*,*) lle(a,b)   ! writes  F 

write(*,*) lle(a,c1)  ! writes  T  F

write(*,*) lle(c2,a)  ! writes  T  T

write(*,*) lle(c1,c2) ! writes  F  F

LLT Function
Description
The LLT function tests whether a string is lexically less than another string based on the 
ordering of the ASCII collating sequence.  See “ASCII Character Set” on page 319.

Syntax
LLT (string_a, string_b)

Arguments
string_a is an INTENT(IN) scalar or array of type CHARACTER.

string_b is an INTENT(IN) scalar or array of type CHARACTER.

If string_a and string_b are both arrays, they must have the same shape.

Result
The result is of type default LOGICAL.  

Its value is true if string_a precedes string_b in the ASCII collating sequence; otherwise the 
result is false.  

Trailing blanks are ignored.

If both strings are of zero length the result is false.

Example
character(len=3) :: a="abc",b="ABC"

character(len=0) :: a1,b1

character(len=5) :: c1(2)=(/"abc  ","123  "/)

character(len=5) :: c2(2)=(/"CBA  ","  123"/)

write(*,*) llt(a,b)   ! writes  F 

write(*,*) llt(a,c1)  ! writes  F  F

write(*,*) llt(c2,a)  ! writes  T  T

write(*,*) llt(c1,c2) ! writes  F  F
LF Fortran 95 Language Reference 185



Chapter 2    Alphabetical Reference
LOG Function
Description
The LOG function returns the natural logarithm of a real or complex argument.

Syntax
LOG (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL or COMPLEX.  

If x is REAL, it must be greater than zero.  

If x is COMPLEX, it must not be equal to zero.

Result
The result is of the same type and kind as x.  

If x is REAL, its value is equal to a REAL representation of logex.

If x is COMPLEX, its value is equal to the principal value with imaginary part  in the range 
 .

If x is REAL and equal to zero, a floating divide exception occurs, and unless trapped, the 
value -Inf (negative infinity) is returned.

If x is REAL and less than zero, an invalid operation exception occurs, and unless trapped, 
the value -NaN (not a number) is returned.

If x is COMPLEX with both the real and imaginary parts equal to zero, a runtime error occurs 
and execution is terminated.

Example 
real :: x=1.,xa(2)=(/.5,1.5/),pi=3.141592654

real :: re,im

complex :: q=(-1.,1.)

write(*,*) log(x)  ! writes 0.0

write(*,*) log(xa) ! writes -.69314718  .40546509

write(*,*) log(q)  ! writes (.34657359, 2.3561945)

re=log((sqrt(real(q)**2+aimag(q)**2))) ! real part of log(q)

im=-atan2(real(q),aimag(q))+pi/2.      ! imag part of log(q)

write(*,*) re,im

write(*,*) log(0.)  ! writes -Inf or error occurs

write(*,*) log(-1.) ! writes -NaN or error occurs

ω
π– ω π≤<
186 LF Fortran 95 Language Reference



LOG10 Function
LOG10 Function
Description
The LOG10 function returns the common logarithm of a real argument.

Syntax
LOG10 (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.  

The value of x must be greater than zero.

Result
The result is of the same type and kind as x.  

Its value is a REAL representation of log10x.

If x is zero, a floating divide exception occurs, and unless trapped, the value -Inf (negative 
infinity) is returned.

If x is less than zero, an invalid operation exception occurs, and unless trapped, the value 
-NaN (not a number) is returned.

Example
real :: x=1.,xa(2)=(/.5,1.5/)
logical :: true=.true., l
write(*,*) log10(x)   ! writes 0.0
write(*,*) log10(xa)  ! writes -.303103001  .17609125
write(*,*) log10(0.)  ! writes -Inf or error occurs
write(*,*) log10(-1.) ! writes -NaN or error occurs

LOGICAL Function
Description
The LOGICAL function converts between different kinds of data type LOGICAL.

Syntax
LOGICAL ( l [, kind])

Required Arguments
l is an INTENT(IN) scalar or array of type LOGICAL.
LF Fortran 95 Language Reference 187



Chapter 2    Alphabetical Reference
Optional Arguments
kind is INTENT(IN) and determines the kind of the result. It must be a scalar INTEGER 
expression that can be evaluated at compile time.

Result
If kind is present, the result is of that kind; otherwise it is of default LOGICAL kind.  

The result value is true if l is true and false if l is false.

Example
logical(kind=1) :: l1 ! not a portable declaration

logical(kind=2) :: l2 ! not a portable declaration

logical :: l4=.false.

write(*,*) logical(l4,kind(l1)) ! writes F

write(*,*) logical(l4,kind(l2)) ! writes F

LOGICAL Statement
Description
The LOGICAL statement declares entities having the LOGICAL data type.

Syntax
LOGICAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ( [KIND=] scalar-int-initialization-expr )

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or 
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE, 
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of an entity being declared.

function-name is the name of a function being declared.
188 LF Fortran 95 Language Reference



LOGICAL Statement
Remarks
function-name must be the name of an external, intrinsic, or statement function, or a function 
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, a double colon must appear before the list of entities.  Each 
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-expr must not appear if entity-name is a dummy argument, a function  
result, an object in a named common block unless the type declaration is in a block data  pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an 
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must 
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC 
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or 
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable 
arrays, functions, or objects in a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be 
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy 
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unless it is a 
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be a dummy argument or a function 
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC, 
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.
LF Fortran 95 Language Reference 189



Chapter 2    Alphabetical Reference
Example
logical,parameter :: t=.true.,f=.false. ! must be initialized
logical :: a, b(2,4)                    ! explicit shape
logical,dimension(2,2) :: c = reshape((/t,t,f,f/),shape(c))
logical,pointer :: d(:)                 ! deferred shape
logical,allocatable :: e(:)

MATMUL Function
Description
The MATMUL function multiplies two matrices.

Syntax
MATMUL (matrix_a, matrix_b)

Arguments
matrix_a is an INTENT(IN) array of type INTEGER, REAL, COMPLEX, or LOGICAL.  It 
may be either rank one or two if matrix_b is of rank two, and must be of rank two if matrix_b 
is rank one.

matrix_b is an INTENT(IN) array of numerical type if matrix_a is of numerical type, and of 
LOGICAL type if matrix_a is of LOGICAL type.  It may be of rank one or two if matrix_a 
is of rank two, and must be of rank two if matrix_a is of rank one.  

The size of the first dimension must be the same as the size of the last dimension of matrix_a.

Result
If the arguments are of the same numeric type and kind, the result is of that type and kind.  If 
their kind is different, the result kind is that with higher precision.

If the arguments are of different numeric types and neither is of type COMPLEX, the result 
is of type REAL.

If one or both of the arguments are of type COMPLEX, then the result is COMPLEX.

If the arguments are of type LOGICAL, the result is of type LOGICAL.  If their kinds are the 
same, the result kind is that of the arguments.  If their kind is different, the result kind is that 
of the argument with the greater kind parameter.  

The value and shape of the result are as follows:

If matrix_a has shape (n, m) and matrix_b has shape (m, k), the result has shape (n, k).  Ele-
ment (i, j) of the result has the value SUM(matrix_a(i, :) * matrix_b(:, j)) if the arguments are 
of numeric type and has the value ANY(matrix_a(i, :) * matrix_b(:, j)) if the arguments are 
of type LOGICAL.
190 LF Fortran 95 Language Reference



MAX Function
If matrix_a has shape (m) and matrix_b has shape (m, k), the result has shape (k).  Element 
(j) of the result has the value SUM(matrix_a(:) * matrix_b(:, j)) if the arguments are of 
numeric type and has the value ANY(matrix_a(:) * matrix_b(:, j)) if the arguments are of type 
LOGICAL.

If matrix_a has shape (n, m) and matrix_b has shape (m), the result has shape (n).  Element 
(i, j) of the result has the value SUM(matrix_a(i, :) * matrix_b(:)) if the arguments are of 
numeric type and has the value ANY(matrix_a(i, :) * matrix_b(:)) if the arguments are of type 
LOGICAL.

Example
integer :: a1(2,3),a5(5,2),b3(3),b2(2)
complex :: c2(2)
a1=reshape((/1,2,3,4,5,6/),shape(a1))  
a5=reshape((/0,1,2,3,4,5,6,7,8,9/),shape(a5))  
b2=(/1,2/)
b3=(/1,2,3/)
write(*,"(2i3)") a1 ! writes  1  2
                    !         3  4
                    !         5  6
write(*,*) matmul(a1,b3) ! writes 22 28
write(*,*) matmul(b2,a1) ! writes 5 11 17
write(*,"(5i3)") a5 ! writes  0  1  2  3  4
                    !         5  6  7  8  9
write(*,"(5i3)") matmul(a5,a1) ! writes 10 13 16 19 22
                                !        20 27 34 41 48
                                !        30 41 52 63 74
c2=(/(-1.,1.),(1.,-1.)/)
write(*,*) matmul(a5,c2) ! writes (5.,-5.) five times

MAX Function
Description
The MAX function returns the maximum value from a list of INTEGER or REAL arguments.

Syntax
MAX (a1, a2, a3, ...)

Arguments
The arguments are INTENT(IN) scalars or arrays of type INTEGER or REAL.  They must 
all be of the same type and kind.

If more than one argument is an array, all arrays must have the same shape.
LF Fortran 95 Language Reference 191



Chapter 2    Alphabetical Reference
Result
The result is of the same type and kind as the arguments.

If all the arguments are scalar, the result is the value of the largest argument.

If any of the arguments are arrays, the result is an array with the same shape.  Each element 
of the result is as if the scalar MAX function was called for each corresponding element of 
the array argument(s).

Example
integer :: i6(6)=(/-14,3,0,-2,19,1/)
write(*,*) max(i6,0)            ! writes 0 3 0 0 19 1
write(*,*) max(-14,3,0,-2,19,1) ! writes 19

MAXEXPONENT Function
Description
The MAXEXPONENT function returns the maximum binary exponent possible for a REAL 
argument.  

Syntax
MAXEXPONENT (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is a scalar default INTEGER.  Its value is the largest permissible binary exponent 
in the data type of x.

Example
write(*,*) maxexponent(1.e0) ! writes 128
write(*,*) maxexponent(1.d0) ! writes 1024
write(*,*) maxexponent(1.q0) ! writes 16384

MAXLOC Function
Description
The MAXLOC function returns the location of the first element in array having the maxi-
mum value of all the elements identified by mask.
192 LF Fortran 95 Language Reference



MAXVAL Function
Syntax
MAXLOC (array [, dim] [, mask] )

Required Arguments
array is an INTENT(IN) array of type INTEGER or REAL.

Optional Arguments
dim is an INTENT(IN) scalar INTEGER in the range , where n is the rank of 
array.  The corresponding actual argument must not be an optional dummy argument.

mask is an INTENT(IN) scalar or array of type LOGICAL and must be conformable with 
array.

Result
The result is of type default INTEGER.

If dim is present, the result is an array of rank n-1 where n is the rank of array.  The result 
values are the locations containing the maximum value along dimension dim.

If dim is absent, the result is an array of rank one whose size is the rank of array.  Each ele-
ment contains the subscript value of the first element in array to have the maximum value of 
all of the elements of array.  

If mask is present, the elements of array for which mask is false are not considered.

Example
integer :: i6(6) = (/-14,3,0,-2,19,1/)
integer :: i23(2,3) = reshape((/-14,3,0,-2,19,1/),shape(i23))

write(*,'(2i4)') i23         ! writes -14   3
                             !          0  -2

                             !         19   1

write(*,*) maxloc(i6)        ! writes 5
write(*,*) maxloc(i23)       ! writes 1  3 

write(*,*) maxloc(i23,dim=1) ! writes 2  1  1

write(*,*) maxloc(i23,dim=2) ! writes 3  1
write(*,*) maxloc(i23,dim=1,mask=(i23 < 10)) 

                             ! writes 2  1  2

MAXVAL Function
Description
The MAXVAL function returns the maximum value of elements of an array, along a given 
dimension, for which a mask is true.

1 dim n≤ ≤
LF Fortran 95 Language Reference 193



Chapter 2    Alphabetical Reference
Syntax
MAXVAL (array [, dim] [, mask] )

Required Arguments
array is an INTENT(IN) array of type INTEGER or REAL.

Optional Arguments
dim is an INTENT(IN) scalar INTEGER in the range , where n is the rank of 
array.  The actual argument to MAXVAL must not be an optional dummy argument.

mask is an INTENT(IN) scalar or array of type LOGICAL, and must be conformable with 
array.

Result
The result is the same type and kind as array.

If dim is present, the result is an array of rank n-1 and of shape 
 where  is the shape of array.  The 

results are the maximum values of all elements of array along dimension dim.

If dim is absent, or array is rank one, the result is a scalar with the value of the largest element 
of array.

If mask is present, the elements of array for which mask is false are not considered.

Example
integer :: i6(6) = (/-14,3,0,-2,19,1/)

integer :: i23(2,3) = reshape((/-14,3,0,-2,19,1/), shape(i23))

write(*,'(2i4)') i23         ! writes -14   3 

                             !          0  -2

                             !         19   1

write(*,*) maxval(i6)        ! writes 19

write(*,*) maxval(i23)       ! writes 19

write(*,*) maxval(i23,dim=1) ! writes 3  0  19

write(*,*) maxval(i23,dim=2) ! writes 19 3

write(*,*) maxval(i23,dim=1,mask=(i23 < 10)) 

                             ! writes 3  0  1

MERGE Function
Description
The MERGE function chooses alternative values based on the value of a mask.

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( ) d1 d2 … dn, , ,( )
194 LF Fortran 95 Language Reference



MIN Function
Syntax
MERGE (tsource, fsource, mask)

Arguments
tsource is an INTENT(IN) scalar or array and can be of any type.

fsource is an INTENT(IN) scalar or array of the same type and type parameters as tsource.

mask is an INTENT(IN) scalar or array of type LOGICAL.

If more than one argument is an array, all arrays must have the same shape.

Result
The result is of the same type and type parameters as tsource.  

If all arguments are scalar, the value is tsource if mask is true, and fsource otherwise.

If any argument is an array, the result is an array with the same shape.  Each element of the 
result is as if the scalar MERGE function was called for each corresponding element of the 
array arguments.

Example
integer :: i=1, j= 2

integer :: m(2,2)=reshape((/1,2,3,4/),shape(m))

integer :: n(2,2)=reshape((/4,3,2,1/),shape(n))

write(*,10) m                ! writes 1  2

                             !        3  4

write(*,10) n                ! writes 4  3

                             !        2  1 

write(*,10) merge(m,n,m < n) ! writes 1  2

                             !        2  1

write(*,'(2l3)') merge(.true.,.false.,m < n) ! writes T  T

                                             !        F  F

10 format(2i3)

MIN Function
Description
The MIN function returns the minimum value from a list of INTEGER or REAL arguments.

Syntax
MIN (a1, a2, a3, ...)
LF Fortran 95 Language Reference 195



Chapter 2    Alphabetical Reference
Arguments
The arguments are INTENT(IN) scalars or arrays of type INTEGER or REAL.  They must 
all be of the same type and kind.

If more than one argument is an array, all arrays must have the same shape.

Result
The result is of the same type and kind as the arguments.

If all the arguments are scalar, the result is the value of the smallest argument.

If any of the arguments are arrays, the result is an array with the same shape.  Each element 
of the result is as if the scalar MIN function was called for each corresponding element of the 
array argument(s).

Example
integer :: i6(6)=(/-14,3,0,-2,19,1/)

write(*,*) min(i6,0)            ! writes -14 0 0 -2 0 0

write(*,*) min(-14,3,0,-2,19,1) ! writes -14

MINEXPONENT Function
Description
The MINEXPONENT function returns the minimum binary exponent possible for a REAL 
argument.  

Syntax
MINEXPONENT (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is a scalar default INTEGER.  Its value is the most negative binary exponent pos-
sible in the data type of x.

Example
write(*,*) minexponent(1.e0) ! writes -125

write(*,*) minexponent(1.d0) ! writes -1021

write(*,*) minexponent(1.q0) ! writes -16381
196 LF Fortran 95 Language Reference



MINLOC Function
MINLOC Function
Description
The MINLOC function returns the location of the first element in array having the minimum 
value of all the elements identified by mask.

Syntax
MINLOC (array, dim, mask)

Required Arguments
array is an INTENT(IN) array of type INTEGER or REAL.

Optional Arguments
dim is an INTENT(IN) scalar INTEGER in the range , where n is the rank of 
array.  The corresponding actual argument must not be an optional dummy argument.

mask is an INTENT(IN) scalar or array of type LOGICAL, and must be conformable with 
array.

Result
The result is of type default INTEGER. 

If dim is present, the result is an array of rank n-1 where n is the rank of array.  The result 
values are the locations having the minimum value along dimension dim.

If dim is absent, the result is an array of rank one whose element values are the values of the 
subscripts of the first element in array to have the minimum value of all of the elements of 
array.  

If mask is present, the elements of array for which mask is false are not considered.

Example
integer :: i6(6)=(/-14,3,0,-2,19,1/)

integer :: i23(2,3)=reshape((/-14,3,0,-2,19,1/),shape(i23))

write(*,'(2i4)') i23                ! writes -14  3

                                    !          0 -2

                                    !         19  1

write(*,*) minloc(i6)               ! writes 1

write(*,*) minloc(i23)              ! writes 1  1 

write(*,*) minloc(i23,1)            ! writes 1  2  2

write(*,*) minloc(i23,2)            ! writes 1  2

write(*,*) minloc(i23,1,(i23 < 10)) ! writes 1  2  2

1 dim n≤ ≤
LF Fortran 95 Language Reference 197



Chapter 2    Alphabetical Reference
MINVAL Function
Description
The MAXVAL function returns the minimum value of elements of an array, along a given 
dimension, for which a mask is true.

Syntax
MINVAL (array [, dim] [, mask] )

Required Arguments
array is an INTENT(IN) array of type INTEGER or REAL.

Optional Arguments
dim is an INTENT(IN) scalar INTEGER in the range , where n is the rank of 
array.  The actual argument to MINVAL must not be an optional dummy argument.

mask is an INTENT(IN) scalar or array of type LOGICAL, and must be conformable with 
array.

Result
The result is the same type and kind as array.

If dim is present, the result is an array of rank n-1 and of shape 
 where  is the shape of array.  The 

results are the minimum values of all elements of array along dimension dim.

If dim is absent, or array is rank one, the result is a scalar with the value of the smallest ele-
ment of array.

If mask is present, the elements of array for which mask is false are not considered.

Example
integer :: i6(6)=(/-14,3,0,-2,19,1/)

integer :: i23(2,3)=reshape((/-14,3,0,-2,19,1/),shape(i23))

write(*,'(2i4)') i23                ! writes -14  3

                                    !          0 -2

                                    !         19  1

write(*,*) minloc(i6)               ! writes   1

write(*,*) minloc(i23)              ! writes   1  1

write(*,*) minloc(i23,1)            ! writes   1  2  2

write(*,*) minloc(i23,2)            ! writes   1  2

write(*,*) minloc(i23,1,(i23 < 10)) ! writes   1  2  2

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( ) d1 d2 … dn, , ,( )
198 LF Fortran 95 Language Reference



ML_EXTERNAL Statement
ML_EXTERNAL Statement
Description
The ML_EXTERNAL statement makes a procedure externally available to a statically linked 
mixed-language calling routine.

Syntax
ML_EXTERNAL [::] ml-external-names

Where:
 ml-external-names is a list of procedures defined in the current scoping unit.

Remarks
The procedures in ml-external-names must not be module procedures.

The procedures names listed in an ML_EXTERNAL statement are "decorated" to match one 
of several calling conventions by using the "-ml xxxx" switch at compile time.

Example
function half(x)
  integer :: half,x
  ml_external half             ! ml_external statement
  half=x/2
end function half
function twice(x)
  integer,ml_external :: twice ! ml_external attribute
  integer :: x
  twice=x*2
end function twice

MOD Function
Description
The MOD function returns the remainder from the division of the first argument by the sec-
ond argument. 

Syntax
MOD (a, p)

Arguments
a is an INTENT(IN) scalar or array of type INTEGER or REAL.

p is INTENT(IN) and of the same type and kind as a.  Its value must not be zero.
LF Fortran 95 Language Reference 199



Chapter 2    Alphabetical Reference
Result
The result is the same type and kind as a.  Its value is a - INT(a / p) * p.

Example
write(*,*) mod(23.4,4.0) ! writes  3.4
write(*,*) mod(-23,4)    ! writes  -3
write(*,*) mod(23,-4)    ! writes  3
write(*,*) mod(-23,-4)   ! writes  -3

MODULE Statement
Description
The MODULE statement begins a module program unit.  The module encapsulates data and 
procedures, provides a global data facility, which can be considered a replacement for COM-
MON, and establishes implicit interfaces for procedures contained in the module.

Syntax
MODULE module-name

Where:
module-name is the name of the module.

Remarks
The module name must not be the same as the name of another program unit, an external pro-
cedure, or a common block within the executable program, nor be the same as any local name 
in the module.

In LF95, a module program unit must be compiled before it is used.

Example
module m
  type mytype         ! mytype available anywhere m is used
    real :: a,b(2,4)
    integer :: n,o,p
  end type mytype
  real :: r1=1      ! r1 available anywhere m is used
contains
  subroutine sub1(i)  ! implicit interface for sub1
    integer :: i
    i=1
  end subroutine
  function fun1()     ! implicit interface for fun1
    integer :: fun1
    fun1=1
200 LF Fortran 95 Language Reference



MODULE PROCEDURE Statement
  end function
end module m
program zee
  use m               ! makes module available to program zee
  type (mytype) bee,dee
  integer :: i
  i=fun1()
  call sub1(i)
end program zee

MODULE PROCEDURE Statement
Description
The MODULE PROCEDURE statement specifies that the names in the module-procedure-
list are part of a generic interface.

Syntax
MODULE PROCEDURE module-procedure-list

Where:
module-procedure-list is a list of module procedures accessible by host or use association.

Remarks
A MODULE PROCEDURE statement can only appear in a generic interface block within a 
module or within a program unit that accesses a module by use association.

Example
module mod1
  interface swap
    module procedure complex_swap ! interface for a module
    module procedure logical_swap ! procedure is implicit
  end interface
contains
  subroutine complex_swap(cx,cy) ! interface is defined here
    complex :: cx,cy,ct
    ct=cx
    cx=cy
    cy=ct
  end subroutine
  subroutine logical_swap(lx,ly) ! interface is defined here
    logical :: lx,ly,lt
    lt=lx
    lx=ly
    ly=lt
LF Fortran 95 Language Reference 201



Chapter 2    Alphabetical Reference
  end subroutine
end module

MODULO Function
Description
The MODULO function returns the modulo of two numbers.

Syntax
MODULO (a, p)

Arguments
a is an INTENT(IN) scalar or array of type INTEGER or REAL.

p is INTENT(IN) and must be of the same type and kind as a.  Its value must not be zero.

Result
The result is the same type and kind as a.  

If a is a REAL, the result value is a - FLOOR(a / p) * p.  

If a is an INTEGER, MODULO(a, p) has the value r such that a=q * p + r, where q is an 
INTEGER chosen so that r is nearer to zero than p.

Example
r=modulo(23.4,4.0) ! r is assigned the value 3.4
i=modulo(-23,4)    ! i is assigned the value 1
j=modulo(23,-4)    ! j is assigned the value -1
k-modulo(-23,-4)   ! k is assigned the value -3

MVBITS Subroutine
Description
The MVBITS subroutine copies a sequence of bits from one INTEGER data object to 
another.

Syntax
MVBITS (from, frompos, len, to, topos)

Arguments
from is an INTENT(IN) scalar or array of type INTEGER.
202 LF Fortran 95 Language Reference



NAMELIST Statement
frompos is an INTENT(IN) scalar or array of type INTEGER.  It must be non-negative.  
frompos + len must be less than or equal to BIT_SIZE(from).  

len is an INTENT(IN) scalar or array of type INTEGER.  It must be non-negative.

to is an INTENT(IN OUT) scalar or array of type INTEGER with the same kind as from.  It 
can be the same variable as from. 

topos is an INTENT(IN) scalar or array of type INTEGER and must be non-negative.  topos 
+ len must be less than or equal to BIT_SIZE(to).

Remarks
to is set by copying len bits, starting at position frompos, from from, to to, starting at position 
topos.

If any of from, frompos, len or topos are arrays, to must be an array with the same shape.

If to is an array, its value is as if the scalar MVBITS operation were performed on each cor-
responding element of any array arguments.

Example
integer :: i; data i/z'0f0f'/

integer :: ia(2)=(/2,4/),ja(2)

write(*,"(b32)") i      ! writes 111100001111

call mvbits(i,0,4,i,4) 

write(*,"(b32)") i      ! writes 111111111111 

call mvbits(i,ia,4,ja,ia) 

write(*,"(b32)") ja     ! writes       111100 

                        ! writes     11110000

NAMELIST Statement
Description
The NAMELIST statement specifies a list of variables that can be referred to by one name 
for the purpose of performing input/output.

Syntax
NAMELIST /name/ group [[,] /name/ group] ...

Where:
name is the name of a namelist group.

group is a list of variable names.
LF Fortran 95 Language Reference 203



Chapter 2    Alphabetical Reference
Remarks
A name in a group must not be the name of an array dummy argument with a non-constant 
bound, a variable with a non-constant character length, an automatic object, a pointer, a vari-
able of a type that has an ultimate component that is a pointer, or an allocatable array.

If a name has the public attribute, no item in group can have the PRIVATE attribute.

The order in which the variables appear in a NAMELIST statement determines the order in 
which the variables’ values will appear on output.

Example
real :: a,b
integer :: i,j
namelist /input/ a,b,i,j
open(10,file='data.dat')
read(10,nml=input)
write(*,nml=input) 
close(10)
end

! namelist data file
&input
b=12.3
i=4
a=13.2
j=12
/

NDPERR Function (Windows Only)
Description
The NDPERR function detects exceptions raised by the numeric data processor.

Syntax
NDPERR (lvar)

Arguments
lvar is an INTENT(IN) scalar of type LOGICAL.  

If lvar is true, NDPERR clears floating-point exception bits.  

If lvar is false, NDPERR does not clear floating-point exception bits.

Result
204 LF Fortran 95 Language Reference



NDPEXC Subroutine (Windows Only)
The result is of type default INTEGER.  Its value is the INTEGER value of the combination 
of the following bits, where a bit set to one indicates an exception has occurred:

Example
write(*,*) 0./0.              ! writes -NaN

write(*,*) ndperr(.true.)     ! writes 1

write(*,*) tiny(1.e0)/100000. ! writes 1.1770907e-43

write(*,*) ndperr(.true.)     ! writes 2

NDPEXC Subroutine (Windows Only)
Description
The NDPEXC subroutine masks exceptions raised by the numeric data processor.

Arguments
The NDPEXC subroutine has no arguments.

Remarks
To mask specific exceptions use the subroutines INVALOP (invalid operator), OVEFL 
(overflow), UNDFL (underflow), and DVCHK (divide by zero).

The precision exception is always masked.

Example
call ndpexc ()  ! mask floating-point exceptions

Table 10: NDPERR bits

Bit Exception

0 Invalid Operation

1 Denormalized Number

2 Divide by Zero

3 Overflow

4 Underflow
LF Fortran 95 Language Reference 205



Chapter 2    Alphabetical Reference
NEAREST Function
Description
The NEAREST function returns the nearest number of a given data type in a given direction.

Syntax
NEAREST (x, s)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

s is an INTENT(IN) scalar or array of type REAL.  It must be non-zero.

Result
The result is REAL and of the same kind as x.  

If both x and s are scalar, the result value is the distinct number nearest to x, in the direction 
indicated by the sign of s.

Example
real(kind(1.e0)) :: r1=1.e0
real(kind(1.d0)) :: r2=1.d0
write(*,*) r1              ! writes 1.00000000
write(*,*) nearest(r1,1.)  ! writes 1.00000012
write(*,*) nearest(r1,-1.) ! writes 0.99999994
write(*,"(3z10.8)") r1              ! writes 3f800000
write(*,"(3z10.8)") nearest(r1,1.)  ! writes 3f800001
write(*,"(3z10.8)") nearest(r1,-1.) ! writes 3f7fffff 
write(*,*) r2              ! writes 1.00000000000000000
write(*,*) nearest(r2,1.)  ! writes 1.00000000000000000 
write(*,*) nearest(r2,-1.) ! writes 0.99999999999999999
write(*,"(z18.16)") r2             ! writes 3ff0000000000000
write(*,"(z18.16)") nearest(r2,1.) ! writes 3ff0000000000001
write(*,"(z18.16)") nearest(r2,-1.)! writes 3f7fffffffffffff

NINT Function
Description
The NINT function returns the nearest INTEGER to a REAL argument.

Syntax
NINT (a [, kind])
206 LF Fortran 95 Language Reference



NOT Function
Required Arguments
a is an INTENT(IN) scalar or array of type REAL.

Optional Arguments
kind is INTENT(IN) and determines the kind of the result. It must be a scalar INTEGER 
expression that can be evaluated at compile time.  To maintain portability, this argument 
should be the result of a “KIND Function” or “SELECTED_INT_KIND Function”.

Result
The result is of type INTEGER.  If kind is present the result is that kind; otherwise it is a 
default INTEGER.

If a > 0, the result has the value INT(a + 0.5);

If , the result has the value INT(a - 0.5).  

Example
real :: a=1.5,aa(3)=(/-.5,0.,.5/)

write(*,*) nint(a)   ! writes 2

write(*,*) nint(-a)  ! writes -2

write(*,*) nint(aa)  ! writes -1 0 1

write(*,*) nint(-aa) ! writes 1 0 -1

NOT Function
Description
The NOT function returns the bit-wise logical complement of an INTEGER argument.

Syntax
NOT (i)

Arguments
i is an INTENT(IN) scalar or array of type INTEGER.

Result
The result is an INTEGER of the same kind as i.  Its value is the value of i with each of its 
bits complemented (zeros changed to ones and ones changed to zeros).

a 0≤
LF Fortran 95 Language Reference 207



Chapter 2    Alphabetical Reference
Example
integer :: ia(3)=(/-1,0,1/)

write(*,*) not(-1) ! writes 0

write(*,*) not(0)  ! writes -1

write(*,*) not(ia) ! writes 0 -1 -2

NULL Function
Description
The NULL function returns a disassociated pointer.

Syntax
NULL ( [mold] )

Optional Argument
mold must be a pointer and may be of any type.  

mold must be present when a reference to NULL() appears as an actual argument in a refer-
ence to a generic procedure if the type, type parameters, or rank is required to resolve the 
generic reference.

Result
A disassociated pointer of the same type, type parameters, and rank as the pointer that 
becomes associated with the result.

Example
real,pointer,dimension(:) :: a => null() ! a is disassociated

NULLIFY Statement
Description
The NULLIFY statement disassociates a pointer.

Syntax
NULLIFY (pointers)

Where:
pointers is a comma-separated list of variables or structure components having the POINTER 
attribute.
208 LF Fortran 95 Language Reference



OPEN Statement
Example
real,pointer :: a,b,c
real,target :: t,u,v

a=>t; b=>u; c=>v ! a, b, and c are associated
nullify (a,b,c)  ! a, b, and c are disassociated

OPEN Statement
Description
The OPEN statement connects or reconnects an external file to an input/output unit.

Syntax
OPEN (connect-specs)

Where:
connect-specs is a comma-separated list of 
[UNIT =] external-file-unit
or IOSTAT=iostat
or ERR=label
or FILE=file-name-expr
or STATUS=status
or ACCESS=access
or FORM=form
or RECL=recl
or BLANK=blank
or POSITION=position
or ACTION=action
or DELIM=delim
or PAD=pad
or BLOCKSIZE=blocksize
or CONVERT =file-format
or CARRIAGECONTROL=carriagecontrol

external-file-unit is a scalar INTEGER expression that evaluates to the input/output unit 
number of an external file.

file-name-expr is a scalar CHARACTER expression that evaluates to the name of a file.

iostat is a scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero 
otherwise.

label is the statement label of the statement that is branched to if an error occurs.
LF Fortran 95 Language Reference 209



Chapter 2    Alphabetical Reference
status is a scalar default CHARACTER expression.  It must evaluate to NEW if the file does 
not exist and is to be created; REPLACE if the file is to overwrite an existing file of the same 
name or create a new one if the file does not exist; SCRATCH if the file is to be deleted at 
the end of the program or the execution of a CLOSE statement; OLD, if the file is to be 
opened but not replaced; and UNKNOWN otherwise.  The default is UNKNOWN.

access is a scalar default CHARACTER expression.  It must evaluate to SEQUENTIAL if 
the file is to be connected for sequential access, DIRECT if the file is to be connected for 
direct access, or TRANSPARENT if the file is to be connected for binary (transparent) 
access.  The default value is SEQUENTIAL

form is a scalar default CHARACTER expression.  It must evaluate to FORMATTED if the 
file is to be connected for formatted input/output, UNFORMATTED if the file is to be con-
nected for unformatted input/output, or BINARY if the file is to be connected for binary 
(transparent) access.  The default value is UNFORMATTED, for a file connected for direct 
access, and FORMATTED, for a file connected for sequential access.

recl is a scalar default INTEGER expression.  It must evaluate to the record length in bytes 
for a file connected for direct access, or the maximum record length in bytes for a file con-
nected for sequential access.

blank is a scalar default CHARACTER expression.  It must evaluate to NULL if null blank 
control is used and ZERO if zero blank control is used.  The default value is NULL.  This 
specifier is only permitted for a file being connected for formatted input/output.

position is a scalar default CHARACTER expression.  It must evaluate to REWIND if the 
newly opened sequential access file is to be positioned at its initial point; APPEND if it is to 
be positioned before the endfile record if one exists and at the file terminal point otherwise; 
and ASIS if the position is to be left unchanged.  The default is ASIS.  Note that the 
POSITION keyword may only be used for sequential access files.

action is a scalar default CHARACTER expression.  It must evaluate to READ if the file is 
to be connected for input only, WRITE if the file is to be connected for output only, and 
READWRITE if the file is to be connected for input and output.  The default value is 
READWRITE.  

delim is a  scalar default CHARACTER expression.  It must evaluate to APOSTROPHE if 
the apostrophe is used to delimit character constants written with list-directed or namelist for-
matting, QUOTE if the quotation mark is used, and NONE if neither quotation marks nor 
apostrophes is used.  The default value is NONE.  This specifier is permitted only for format-
ted files and is ignored on input.

pad is a scalar default CHARACTER expression.  It must evaluate to YES if the formatted 
input record is to be padded with blanks and NO otherwise.  The default value is YES.

blocksize is a scalar default INTEGER expression.  It must evaluate to the size, in bytes, of 
the input/output buffer.
210 LF Fortran 95 Language Reference



OPEN Statement
file-format is a scalar default CHARACTER variable that evaluates to BIG_ENDIAN if big 
endian conversion is to occur, LITTLE_ENDIAN if little endian conversion is to occur, IBM 
if IBM style conversion is to occur, and NATIVE if no conversion is to occur.

carriagecontrol is a scalar default CHARACTER expression.  It must evaluate to FORTRAN 
if the first character of a formatted sequential record used for carriage control, and LIST oth-
erwise.  Non-storage devices default to FORTRAN; disk files to LIST

Remarks
The OPEN statement connects an existing file to an input/output unit, creates a file that is 
preconnected, creates a file and connects it to an input/output unit, or changes certain char-
acteristics of a connection between a file and an input/output unit.

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must 
be the first item in the connect-spec-list.

If the file to be connected to the input/output unit is the same as the file to which the unit is 
already connected, only the BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers 
can have values different from those currently in effect.  

If a file is connected to an input/output unit, it may not be opened with a different unit 
number.

FILE= is optional if it is the second argument and the first argument is a unit number with no 
UNIT=.

A unit opened for BINARY or TRANSPARENT access is open for direct access with a 
record length of one, so REC= may appear, and END= may not appear in any i/o statement 
for the unit.

Example
integer :: ierr

open(8,"inf.dat",status="new") ! creates a new file

                               ! error if file exists

open(9,file="open.f90",status="old") ! file must exist

open(10,status="scratch")      ! file deleted on close

open(11,"inf.dat",iostat=ierr) ! ierr returns status

                               ! same file cannot be 

                               ! open on two units

open(file="foo",      & ! if unit is not first, must

     unit=12,         & ! have "unit=" keyword

     access="direct", & ! direct access requires recl

     recl=10)
LF Fortran 95 Language Reference 211



Chapter 2    Alphabetical Reference
OPTIONAL Statement
Description
The OPTIONAL statement declares that any dummy arguments specified need not be asso-
ciated with an actual argument when the procedure is invoked.

Syntax
OPTIONAL [::] dummy-arg-names

Where:
dummy-arg-names is a comma-separated list of dummy argument names.

Remarks
A OPTIONAL dummy argument is tested for presence by using the “PRESENT Function”.

An optional dummy argument must not be referenced unless it has been tested and found to 
be present.

An interface is required before any procedure that has optional arguments can be called.

An optional argument may not be an actual argument if the corresponding dummy argument 
is not optional.

Example
module mod1             ! provides implicit interface

contains

  function fun1(a,b)

    real :: fun1,a

    real,optional :: b  ! optional attribute

    if(present(b)) then ! don’t reference b unless

      fun1=a+b          ! it is present

    else

      fun1=a

    end if

  end function

end module

program present

  use mod1

  write(*,*) fun1(2.)    ! no optional argument

  write(*,*) fun1(2.,2.) ! optional argument

end program
212 LF Fortran 95 Language Reference



OVEFL Subroutine (Windows Only)
OVEFL Subroutine (Windows Only)
Description
The OVEFL subroutine masks and detects floating-point overflow exceptions.  

Syntax
OVEFL (lflag)

Arguments
lflag must be of type LOGICAL.  It is assigned the value true if an overflow exception has 
occurred, and false otherwise.

Remarks
lflag must be set to true on the first invocation.  

The initial invocation of the OVEFL subroutine masks the overflow interrupt on the floating-
point unit.   

 Subsequent invocation returns an lflag value of true if the exception has occurred or false if 
the exception has not occurred.

Example
real(kind(1.d0)) :: a=huge(a)

logical :: lflag = .true.

call ovefl(lflag)  ! mask the overflow interrupt

write(*,*) lflag   ! writes F

do

  a=a*2.d0

  call ovefl(lflag)! test for overflow 

  if(lflag) exit

end do  

write(*,*) lflag   ! writes T

PACK Function
Description
The PACK function packs an array into a vector under the control of a mask.

Syntax
PACK (array, mask [, vector] )
LF Fortran 95 Language Reference 213



Chapter 2    Alphabetical Reference
Required Arguments
array is an INTENT(IN) array can be of any type.

mask is INTENT(IN) and must be of type LOGICAL.   mask must be conformable with 
array.

Optional Arguments
vector is an INTENT(IN) array of rank one, and must be the same type and kind as array.  It 
must have at least as many elements as there are true elements in array.  If mask is scalar with 
value true, vector must have at least as many elements as array.

Result
The result is an array of rank one with the same type and kind as array.  

If vector is present, the result size is the size of vector.  

If vector is absent, the result size is the number of true elements in mask unless mask is scalar 
with the value true, in which case the size is the size of array.  

The value of element i of the result is the ith true element of mask, in array-element order.  If 
vector is present and is larger than the number of true elements in mask, the elements of the 
result beyond the number of true elements in mask are filled with values from the correspond-
ing elements of vector.

Example
integer :: c(3,3)=reshape((/0,3,2,4,3,2,5,1,2/),shape(c))
integer :: cc(9)=-1

write(*,'(3i3)') c        ! writes 0 3 2
                          !        4 3 2

                          !        5 1 2

write(*,*) pack(c,mask=(c > 2)) 
                          ! writes 3 4 3 5 

write(*,*) pack(c,mask=(c > 2),vector=cc)
                          ! writes 3 4 3 5 -1 -1 -1 -1 -1

write(*,*) pack(c,.true.) ! writes 0 3 2 4 3 2 5 1 2

PARAMETER Statement
Description
The PARAMETER statement specifies and initializes named constants.

Syntax
PARAMETER (named-constant-defs)
214 LF Fortran 95 Language Reference



PAUSE Statement (obsolescent)
Where:
named-constant-defs is a comma separated list of constant-name=init-expr

constant-name is the name of a constant being specified.

init-expr is an expression that can be evaluated at compile time.

Remarks
Each named constant becomes defined with the value of init-expr.

Any data objects defined in a PARAMETER statement cannot be subsequently redefined.

Example
real, parameter :: pi=3.141592654 ! parameter attribute
integer :: i0
parameter (i0=0)                  ! parameter statement

PAUSE Statement (obsolescent)
Description
The PAUSE statement temporarily suspends execution of the program.

Syntax
PAUSE

Remarks
When a PAUSE statement is reached, the string "Press any key to continue" is dis-
played.  The program resumes execution when a key representing any printable character is 
pressed.

The PAUSE statement was considered obsolescent in Fortran 90, and has been deleted from 
the Fortran 95 language specification.  Regardless of this, the PAUSE statement  will con-
tinue to be supported by LF95.

Example
pause     !"Press any key to continue . . ." is displayed

Pointer Assignment Statement
Description
The pointer assignment statement associates a pointer with a target.
LF Fortran 95 Language Reference 215



Chapter 2    Alphabetical Reference
Syntax
pointer => target

Where:
pointer is a variable having the POINTER attribute.

target is a variable or expression having the TARGET or POINTER attribute, or is a subob-
ject of a variable having the TARGET attribute.

Remarks
If target is not a pointer, pointer becomes associated with target.  

If target is an associated pointer, pointer becomes associated with the same object as target.  

If target is disassociated, pointer becomes disassociated.  

If target’s association status is undefined,  pointer’s also becomes undefined.

Pointer assignment of a pointer component of a structure can also take place by derived type 
intrinsic assignment or by a defined assignment.

When a pointer assignment statement is executed, any previous association of pointer is 
broken.

target must be of the same type, kind, and rank as pointer.

target must not be an array section with a vector subscript.

If target is an expression, it must deliver a pointer result.

Example
real,pointer :: a => null(),b => null()

real,target :: c=5.0

a => c  ! a is an alias for b

b => a  ! b is an alias for a (and c)

write(*,*) a,b,c

POINTER Function
Description
The POINTER function gets the memory address of a variable, substring, array reference, or 
external subprogram.

Syntax
POINTER (item)
216 LF Fortran 95 Language Reference



POINTER Statement
Arguments
item can be of any type.  It is the name for which to return an address.  item must have the 
EXTERNAL attribute.

Result
The result is of type INTEGER.  It is the address of item.

Example
real :: a,b(10)
write(*,*) pointer(a)    ! writes the memory 
write(*,*) pointer(b)    ! address of each of
write(*,*) pointer(b(2)) ! these variables
end

POINTER Statement
Description
The POINTER statement specifies a list of variables that have the POINTER attribute.

Syntax
POINTER [::] variable-name [(deferred-shape)] [, variable-name [(deferred-
shape)]] ...

or (Cray pointer)

POINTER ( int-var, target-var )  [, ( int-var, target-var ) ...]

Where:
variable-name is the name of a variable.

deferred-shape is : [, :] ...  where the number of colons is equal to the rank of variable-name.

int-var is assumed to be an INTEGER variable, and cannot appear in a type declaration 
statement.

target-var is the target variable that int-var will be an alias for.

Remarks
A pointer must not be referenced or defined unless it is first associated with a target through 
a pointer assignment or an ALLOCATE statement.

The INTENT attribute must not be specified for a variable having the POINTER attribute.

If the DIMENSION attribute is specified elsewhere in the scoping unit, the array must have 
a deferred shape.
LF Fortran 95 Language Reference 217



Chapter 2    Alphabetical Reference
int-var cannot also appear as a target-var.

int-var and target-var cannot also have the ALLOCATABLE, INTRINSIC, EXTERNAL, 
PARAMETER, POINTER or TARGET attributes.

Cray pointers are provided for compatibility purposes, and should not be used when writing 
new code.

Example
integer,pointer :: index(:)   ! pointer attribute
real :: next,previous,r1(20)
pointer :: next(:,:),previous ! pointer statement
pointer (i,j),(k,r1)          ! Cray pointers

PRECFILL Subroutine
Description
Set fill character for numeric fields that are wider than supplied numeric precision.  The 
default is ’0’.

Syntax
PRECFILL (filchar)

Arguments
filchar is INTENT(IN) and of type CHARACTER.  The first character becomes the new pre-
cision fill character.

Example
call precfill(’*’)  ! ’*’ is the new precision fill character 

PRECISION Function
Description
The PRECISION function returns the decimal precision of a REAL or COMPLEX data type.

Syntax
PRECISION (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL or COMPLEX.
218 LF Fortran 95 Language Reference



PRESENT Function
Result
The result is of type default INTEGER.  

Its value is equal to the number of decimal digits of precision in the data type of x.

Example
real(kind(1.e0)) :: r10

real(kind(1.d0)) :: r100

real(kind(1.q0)) :: r1000

write(*,*) precision(r10)   ! writes 6

write(*,*) precision(r100)  ! writes 15

write(*,*) precision(r1000) ! writes 33

PRESENT Function
Description
The PRESENT function determines whether or not an optional argument is present.

Syntax
PRESENT (a)

Arguments
a is INTENT(IN) and must be an optional dummy argument of the procedure in which the 
PRESENT function appears.

Result
The result is a scalar default LOGICAL.  

Its value is true if the actual argument corresponding to a was provided in the invocation of 
the procedure in which the PRESENT function appears; otherwise, it is false.

Example
function fun1(a,b)

  real :: fun1,a

  real,optional :: b

  if(present(b)) then ! don’t reference b unless

    fun1=a+b          ! it is present

  else

    fun1=a

  end if

end function
LF Fortran 95 Language Reference 219



Chapter 2    Alphabetical Reference
PRINT Statement
Description
The PRINT statement writes values from an output list to the console.

Syntax
PRINT format [, outputs]

Where:
format is format-expr
or label
or *
or assigned-label

format-expr is a default CHARACTER expression that evaluates to ([format-items])

label is a statement label of a FORMAT statement.

assigned-label is a scalar default INTEGER variable that was assigned the label of a FOR-
MAT statement in the same scoping unit.

outputs is a comma-separated list of expr
or io-implied-do

expr is an expression.

io-implied-do is (outputs, implied-do-control)

implied-do-control is do-variable=start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variable is a scalar variable of type INTEGER, REAL or double-precision REAL.

format-items is a comma-separated list of [r]data-edit-descriptor, control-edit-descriptor, or 
char-string-edit-descriptor, or [r](format-items)

data-edit-descriptor is any valid format descriptor.  See “FORMAT Statement” on page 139.
char-string-edit-descriptor is a CHARACTER literal constant or cHrep-chars

rep-chars is a string of characters

c is the number of characters in rep-chars

r, k, and n are positive INTEGER literal constants that are used to specify a number of repe-
titions of the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or 
(format-items)
220 LF Fortran 95 Language Reference



PRIVATE Statement
Remarks
The do-variable of an implied-do-control that is contained within another io-implied-do must 
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it is treated as if the elements are specified in array-
element order.

If a derived type object appears as an output item, it is treated as if all of the components are 
specified in the same order as in the definition of the derived type.

The comma used to separate items in format-items can be omitted between a P edit descriptor 
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit 
descriptor when the optional repeat specification is not present; after a slash edit descriptor; 
and before or after a colon edit descriptor.

Within a CHARACTER literal constant, if an apostrophe or quotation mark appears, it must 
be as a consecutive pair without any blanks.  Each such pair represents a single occurrence 
of the delimiter character.

Example
    integer :: i=1,j=2,k=3
    print *," i =",i," j =",j," k =",k
    print "(3i8)",i,j,k
    print 100,i,j,k
100 format(3i8)

PRIVATE Statement
Description
The PRIVATE statement specifies that the names of entities are accessible only within the 
current module.

Syntax
PRIVATE [[::] access-ids]

Where:
access-ids is a comma-separated list of 
use-name
or generic-spec

use-name is a name previously declared in the module.

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)
LF Fortran 95 Language Reference 221



Chapter 2    Alphabetical Reference
generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
The PRIVATE statement is permitted only in a module.

If the PRIVATE statement appears without a list of objects, it sets the default accessibility of 
named items in the module to private; otherwise, it makes the accessibility of the listed 
objects private.

If the PRIVATE statement appears in a derived type definition, the entities within the derived 
type definition are accessible only in the current module.  Within a derived type definition, 
the PRIVATE statement cannot have an object list.

Example
module ex

  implicit none

  ! default accessibility is public

  real :: a,b

  private a         ! a is not accessible outside module

                    ! b is accessible outside module

  real,private :: c ! private attribute

  type zee

    private

    integer :: l,m  ! zee, l and m are private

  end type zee

end module ex

PRODUCT Function
Description
The PRODUCT function returns the product of elements of an array expression, along a 
given dimension, or under the control of a logical mask.

Syntax
PRODUCT (array [, dim] [, mask])

Required Arguments
array is an INTENT(IN) array of type INTEGER, REAL or COMPLEX.
222 LF Fortran 95 Language Reference



PROGRAM Statement
Optional Arguments
dim is an INTENT(IN) scalar INTEGER in the range , where n is the rank of 
array.  The corresponding actual argument must not be an optional dummy argument.

mask is INTENT(IN), must be of type LOGICAL, and must be conformable with array.

Result
The result is of the same type and kind as array.  

It is scalar if dim is absent or if array has rank one; otherwise the result is an array of rank n-
1 and of shape  where  is the shape of 
array.  

If dim is absent, the result is the product of all the elements of array.  

If dim is present, the result is the product of all elements of array along dimension dim.  

If mask is present, the result is the product of all elements of array for which mask evaluates 
to true.

Example
integer,dimension(2,2) :: m=reshape((/1,2,3,4/),shape(m))

write(*,’2i3)’) m                    ! writes 1  2

                                     !        3  4

write(*,*) product(m)                ! writes 24

write(*,*) product(m,dim=1)          ! writes 2 12

write(*,*) product(m,dim=2)          ! writes 3 8

write(*,*) product(m,mask=m>2)       ! writes 12

write(*,*) product(m,dim=1,mask=m>2) ! writes 1 12

write(*,*) product(m,dim=2,mask=m>2) ! writes 3 4

PROGRAM Statement
Description
The PROGRAM statement signals the beginning of a main program unit.

Syntax
PROGRAM program-name

Where:
program-name is the name given to the main program.

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( ) d1 d2 … dn, , ,( )
LF Fortran 95 Language Reference 223



Chapter 2    Alphabetical Reference
Remarks
program-name is global to the entire executable program.  It must not be the same as the 
name of another program unit, external procedure, or common block in the executable pro-
gram.  It may not be the same as any local name in the main program.

Example
program zyx
  ! code goes here
end program zyx

PUBLIC Statement
Description
The PUBLIC statement specifies that entities are accessible by use association anywhere the 
module that contains the PUBLIC statement is used.

Syntax
PUBLIC [[::] access-ids]

Where:
access-ids is a comma-separated list of use-name
or generic-spec

use-name is any name within the scope of the module in which the PUBLIC statement 
appears.

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
The PUBLIC statement is permitted only within a module.

The default accessibility of names in a module is public.  If the PUBLIC statement appears 
without a list of objects, it confirms the default accessibility. 

If a list of objects is present, the PUBLIC statement makes the objects specified accessible 
both within the module, and to any procedure that uses that module.  
224 LF Fortran 95 Language Reference



PURE Procedure
Example
module zee

  implicit none

  private          ! default accessibility is now private

  real :: a,b

  public a         ! a is now accessible outside module

  real,public :: c ! public attribute

end module zee

PURE Procedure
Description

A PURE procedure declaration ensures that no unseen side effects will occur upon invocation 
of the procedure.

Syntax
PURE SUBROUTINE sub-name ( arg-list )

or

PURE FUNCTION fun_name ( arg-list ) [result(result-var)]

Where:
sub-name is the subroutine name

fun-name is the function name.

arg-list is a list of dummy arguments.

result-var defines the type and kind of the result, and is assigned the result value.

Remarks
If the PURE procedure is a subroutine, then each argument in arg-list must declare the 
INTENT attribute, unless that argument corresponds to a procedure, is an alternate return, or 
has the POINTER attribute.

If the PURE procedure is a function, then each argument in arg-list must be declared as 
INTENT(IN) unless that argument corresponds to a procedure or has the POINTER attribute.

Local variables within the scope of a PURE procedure cannot have the SAVE attribute, 
which implies that they cannot be initialized when declared, or by a DATA statement.

Any procedures (including dummy procedures) that are invoked from a PURE procedure 
must be PURE.
LF Fortran 95 Language Reference 225



Chapter 2    Alphabetical Reference
Local variables of pure subroutines must not have the SAVE attribute, either by explicit dec-
laration or by initialization in a type declaration or DATA statement.

Any subprogram contained within a PURE procedure is also PURE.

A PURE procedure may not cause the value of a variable which is in COMMON, or is avail-
able by use or host association to be altered.

No external I/O operations may occur within a PURE procedure.

A PURE procedure may not contain a STOP statement.

Example
pure subroutine sub1(a)
  real,intent(in out) :: a ! intent must be declared
  interface 
    pure function fun1(a) ! any invoked procedure must be pure
      real,intent(in) :: a
    end function fun1
  end interface 
  a=fun1(a/10.)
end subroutine  
pure function fun1(a)
  real :: fun1
  real,intent(in) :: a ! all arguments must be intent(in)
  fun1=a
end function fun1

RADIX Function
Description
The RADIX function returns the number base of the physical representation of a number.

Syntax
RADIX (x)

Arguments
x must be of type INTEGER or REAL.

Result
The result is a default INTEGER scalar whose value is the number base of the physical rep-
resentation of x.  This value is two for all kinds of INTEGERs and REALs.

Example
write(*,*) radix(2.3) ! writes 2
226 LF Fortran 95 Language Reference



RANDOM_NUMBER Subroutine
RANDOM_NUMBER Subroutine
Description
The RANDOM_NUMBER subroutine returns a uniformly distributed pseudorandom num-
ber or numbers in the range .  

Syntax
RANDOM_NUMBER (harvest)

Arguments
harvest is an INTENT(OUT) scalar or array of type REAL.  On return, its value is a set of 
pseudorandom numbers uniformly distributed in the range .

Remarks
The random number generator uses a multiplicative congruential algorithm with a period of 
approximately 

Example
real,dimension(8) :: x

call random_number(x) ! each element of x is assigned

                      ! a pseudorandom number

RANDOM_SEED Subroutine
Description
The RANDOM_SEED subroutine initializes or queries the pseudorandom number generator 
used by RANDOM_NUMBER.

Syntax
RANDOM_SEED ([size=size] [put=put] [get=get] )

Optional Arguments
size is an INTENT(OUT) scalar of type default INTEGER.  It is set to the number of default 
INTEGERs the processor uses to hold the seed.  For LF95 this value is one.

put is an INTENT(IN) default INTEGER array of rank one and size greater than or equal to 
size.  It is used by the processor to set the seed value.

get is an INTENT(OUT) default INTEGER array of rank one and size greater than or equal 
to size.  It is set to the current value of the seed.

0 x 1<≤

0 x 1<≤

238
LF Fortran 95 Language Reference 227



Chapter 2    Alphabetical Reference
Remarks
The RANDOM_SEED subroutine can only be called with one or zero arguments.

If no argument is present, the system generates a seed value and initializes the random num-
ber generator.

Example
integer :: seed_size
integer,allocatable :: seed(:)
call random_seed() ! initialize with system generated seed
call random_seed(size=seed_size) ! find out size of seed
allocate(seed(seed_size))
call random_seed(get=seed) ! get system generated seed
write(*,*) seed            ! writes system generated seed
seed=314159265
call random_seed(put=seed) ! set current seed
call random_seed(get=seed) ! get current seed
write(*,*) seed            ! writes 314159265
deallocate(seed)           ! safe

RANGE Function
Description
The RANGE function returns the decimal range of any numeric data type.

Syntax
RANGE (x)

Arguments
x is an INTENT(IN) scalar or array of any numeric type.

Result
The result is a scalar default INTEGER.

If x is of type INTEGER, the result value is INT (LOG10 (HUGE(x))).  

If x is of type REAL or COMPLEX, the result value is INT (MIN (LOG10 (HUGE(x)), - 
LOG10 (TINY(x)))).

Example
real(kind(1.e0)) :: r10
real(kind(1.d0)) :: r100
real(kind(1.q0)) :: r1000
integer(selected_int_kind(r=1)) :: i1
228 LF Fortran 95 Language Reference



READ Statement
integer(selected_int_kind(r=4)) :: i4

integer(selected_int_kind(r=7)) :: i7

integer(selected_int_kind(r=12)) :: i12

write(*,*) range(r10)   ! writes 37

write(*,*) range(r100)  ! writes 307

write(*,*) range(r1000) ! writes 4931

write(*,*) range(i1)    ! writes 2

write(*,*) range(i4)    ! writes 4

write(*,*) range(i7)    ! writes 9

write(*,*) range(i12)   ! writes 18

READ Statement

Description
The READ statement transfers values from an input/output unit to the data objects specified 
in an input list or a namelist group.

Syntax
READ (io-control-specs) [inputs]

or

READ format [, inputs]

Where:

inputs is a comma-separated list of variable

or io-implied-do

variable is a variable.

io-implied-do is (inputs, implied-do-control)

implied-do-control is do-variable=start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variable is a scalar variable of type INTEGER, REAL or double-precision REAL.
LF Fortran 95 Language Reference 229



Chapter 2    Alphabetical Reference
io-control-specs is a comma-separated list of 
[UNIT =] io-unit
or [FMT =] format
or [NML =] namelist-group-name
or REC=record
or IOSTAT=stat
or ERR=errlabel
or END=endlabel
or EOR=eorlabel
or ADVANCE=advance
or SIZE=size

io-unit is an external file unit or *
format is a format specification (see “Input/Output Editing” beginning on page 25).

namelist-group-name is the name of a namelist group.

record is the number of the direct access record that is to be read.

stat is a scalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero 
otherwise.  

errlabel is a label that is branched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.

endlabel is a label that is branched to if an end-of-file condition occurs and no error condition 
occurs during execution of the statement.

eorlabel is a label that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advance is a scalar default CHARACTER expression that evaluates to NO if non-advancing 
input/output is to occur, and YES if advancing input/output is to occur.  The default value is 
YES.

size is a scalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing input/output 
statement.  

Remarks
io-control-specs must contain only one io-unit, and cannot contain both a format and a 
namelist-group-name.

A namelist-group-name must not appear if inputs is present.
230 LF Fortran 95 Language Reference



REAL Function
If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in 
io-control-specs.  If the optional characters FMT= are omitted before format, format must be 
the second item in io-control-specs.  If the optional characters NML= are omitted before 
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

If io-unit is an internal file, io-control-specs must not contain a REC= specifier or a namelist-
group-name.

If the file is open for DIRECT, BINARY or TRANSPARENT access, an END= specifier 
must not appear, a namelist-group-name must not appear, and format must not be an asterisk 
indicating list-directed I/O.

An ADVANCE= specifier can appear only in formatted sequential I/O with an explicit for-
mat specification (format-expr) whose control list does not contain an internal file specifier.  
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with 
the value NO.

The do-variable of an implied-do-control that is contained within another io-implied-do must 
not appear as the do-variable of the containing io-implied-do.

Example
   character(len=30) :: intfile

   integer :: ios

   read *,a,b,c            ! read values from stdin 

                           ! using list directed i/o

   read (3,"(3i10)") i,j,k ! read from unit 3 using format

   read 10,i,j,k  ! read stdin using format at label 10

10 format (3i10)

   read (11) a,b,c ! read unformatted data from unit 11

   intfile="         1         2         3"

   read(intfile,10) i,j,k       ! read from internal file 

   read(12,rec=2) a,b,c         ! read direct access file

   read(13,10,err=20) i,j       ! read with error branch

20 read(13,10,iostat=ios) a     ! read with status return

   read(13,10,advance='no') i,j ! next read from same line

REAL Function
Description
The REAL function converts a number to a REAL data type.

Syntax
REAL (a [, kind] )
LF Fortran 95 Language Reference 231



Chapter 2    Alphabetical Reference
Required Arguments
a is an INTENT(IN) scalar or array of any numeric type.

Optional Arguments
kind is INTENT(IN) and determines the kind of the result. It must be a scalar INTEGER 
expression that can be evaluated at compile time.  To maintain portability, this argument 
should be the result of a “KIND Function” or “SELECTED_REAL_KIND Function”.

Result
The result is of type REAL.  Its value is a REAL representation of a 

If kind is present, it determines the kind of the result.

If a is of type COMPLEX, the result’s value is the real part of a.

Example
integer :: i=10.
real :: a=2.5
complex :: c=(1.5,2.5)
write(*,*) i,real(i)            ! convert integer to real
write(*,*) a,real(a,kind(1.d0)) ! convert between real kinds
write(*,*) c,real(c)            ! return real part

REAL Statement
Description
The REAL statement declares entities having the REAL data type.

Syntax
REAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ( [KIND=] scalar-int-initialization-expr )

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or 
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE, 
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]
232 LF Fortran 95 Language Reference



REAL Statement
array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of an entity being declared.

function-name is the name of a function being declared.

Remarks
function-name must be the name of an external, intrinsic, or statement function, or a function 
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, a double colon must appear before the list of entities.  Each 
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-expr must not appear if entity-name is a dummy argument, a function  
result, an object in a named common block unless the type declaration is in a block data  pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an 
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must 
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC 
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or 
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable 
arrays, functions, or objects in a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be 
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy 
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unless it is a 
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.
LF Fortran 95 Language Reference 233



Chapter 2    Alphabetical Reference
An entity having the ALLOCATABLE attribute cannot be a dummy argument or a function 
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC, 
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

Example
real :: a,b(2,4)               ! explicit shape
real,dimension(2) :: c=/1.,2./ ! has save attribute
real,pointer :: d(:)           ! deferred shapes
real,allocatable :: e(:)
real,parameter :: f=3          ! must be initialized

REPEAT Function
Description
The REPEAT function concatenates copies of a string.

Syntax
REPEAT (string, ncopies)

Arguments
string is an INTENT(IN) scalar of type CHARACTER

ncopies is an INTENT(IN) scalar non-negative INTEGER.

Result
The result is a scalar of type CHARACTER with length equal to ncopies times the length of 
string.  Its value is equal to the concatenation of ncopies copies of string.

Example
write(*,*) repeat('ho',3) ! writes hohoho

RESHAPE Function
Description
The RESHAPE function constructs an array of a specified shape from a template array.
234 LF Fortran 95 Language Reference



RETURN Statement
Syntax
RESHAPE (source, shape [, pad] [, order] )

Required Arguments
source is an INTENT(IN) array of any type.  If pad is absent or of size zero, the size of source 
must be greater than or equal to the product of the values of the elements of shape.  

shape is an INTENT(IN) INTEGER array of rank one.  Its size must be positive and less than 
or equal to seven.  It cannot have any negative elements.

Optional Arguments
pad is an INTENT(IN) array of the same type and kind as source.  

order is an INTENT(IN) array of type INTEGER with the same shape as shape.  Its value 
must be a permutation of (1, 2, ..., n), where n is the size of order.  If order is absent, it is as 
if it were present with the value (1, 2, ..., n).

Result
The result is an array of the same type and kind as source, with a shape identical to shape.  

The elements of the result, taken in permuted subscript order, order(1), ..., order(n), are those 
of source in array element order followed if necessary by elements of one or more copies of 
pad in array element order.

Example
real :: x1(4)
real :: x2(2,2)=reshape((/1.,2.,3.,4./),shape(x2))
real :: x3(3,2)
x1=reshape(x2,shape(x1))
write(*,*) x1 ! writes 1. 2. 3. 4.
write(*,*) reshape(x1,shape(x2),order=(/2,1/))
              ! writes 1. 3. 2. 4.
write(*,*) reshape(x1,shape(x3),pad=(/0./))
              ! writes 1. 2. 3. 4. 0. 0. 

RETURN Statement
Description
The RETURN statement causes a transfer of control from a subprogram back to the calling 
procedure.  Execution continues at the statement following the procedure invocation.

Syntax
RETURN [alt-return]
LF Fortran 95 Language Reference 235



Chapter 2    Alphabetical Reference
Where:
alt-return-label is a scalar INTEGER expression.

Remarks
If alt-return is present and has a value n between 1 and the number of asterisks in the subpro-
gram's dummy argument list, the CALL statement that invoked the subroutine transfers 
control to the statement identified by the nth alternate return specifier in the actual argument 
list.

Example
subroutine zee()
    return         ! transfer of control back to caller
end subroutine zee

REWIND Statement
Description
The REWIND statement repositions a file to its initial point.

Syntax
REWIND (position-spec-list)

Where:
position-spec-list is [[UNIT =] unit-number][, ERR=label][, IOSTAT=stat] where UNIT=, 
ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number must 
be first.

unit-number is a scalar INTEGER expression corresponding to the input/output unit number 
of an external file.

label is a statement label that is branched to if an error condition occurs during execution of 
the statement.

stat is a variable of type INTEGER that is assigned a positive value if an error condition 
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero 
otherwise.  

Remarks
Rewinding a file that is connected but has zero size has no effect.

Note that REWIND may only be used on sequential access files.

Example
integer :: ios
236 LF Fortran 95 Language Reference



RRSPACING Function
rewind 10              ! file on unit 10 rewound
rewind (10,iostat=ios) ! rewind with status

RRSPACING Function
Description
The RRSPACING function returns the reciprocal of relative spacing near a given number.

Syntax
RRSPACING (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is of the same type and kind as x.  Its value is the reciprocal of the spacing; x 
divided by SPACING(x)

Example
real(kind(1.e0)) :: r10=1.e0
real(kind(1.d0)) :: r100=1.d0
real(kind(1.q0)) :: r1000=1.q0
write(*,*) r10/spacing(r10) ! writes 8388608.00
write(*,*) rrspacing(r10)   ! writes 8388608.00
write(*,*) rrspacing(r100)  ! writes 4503599627370496.
write(*,*) rrspacing(r1000) 
         ! writes 5192296858534827628530496329220096.0

SAVE Statement
Description
The SAVE statement specifies that all data objects listed retain any previous association, 
allocation, definition, or value upon reentry of a subprogram.

Syntax
SAVE [[::] saved-entities]

Where:
saved-entities is a comma-separated list of object-name
or / common-block-name /
LF Fortran 95 Language Reference 237



Chapter 2    Alphabetical Reference
object-name is the name of a data object.

common-block-name is the name of a common block.

Remarks
Objects declared with the SAVE attribute in a subprogram are shared by all instances of the 
subprogram.

The SAVE attribute must not be specified for an object that is in a common block, a dummy 
argument, a procedure, a function result, or an automatic data object.

A SAVE statement without a saved-entities list specifies that all allowable objects in the 
scoping unit have the SAVE attribute.

If a common block name appears in a SAVE statement other than in the main program, it 
must be have the SAVE attribute in every scoping unit in which the name appears.

A SAVE statement in a main program has no effect.

Example
subroutine sub1()
  logical,save :: first_time=.true. ! save attribute
  integer :: saveval
  save :: saveval                      ! save statement
  if(first_time) then                  ! do initializations
    first_time=.false.
    saveval=1
  end if
  saveval=saveval+1                ! value is preserved
end subroutine

SCALE Function
Description
The SCALE function multiplies a REAL number by a power of two.

Syntax
SCALE (x, i)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

i is an INTENT(IN) scalar or array of type INTEGER.

If both x and i are arrays, they must have the same shape.
238 LF Fortran 95 Language Reference



SCAN Function
Result
The result is the same type and kind as x.  Its value is .

If either or both arguments are arrays, the result is an array of the same shape.  Its values are 
as though the scalar SCALE operation were performed on each respective array element.

Example
real :: x=1.5,xa(2)=(/2.5,3.5/)
integer :: i=3, ia(2)=(/2,4/)
write(*,*) scale(x,i)   ! writes 12.0
write(*,*) scale(xa,i)  ! writes 20.0 28.0
write(*,*) scale(x,ia)  ! writes 6.0 24.0
write(*,*) scale(xa,ia) ! writes 10.0 56.0

SCAN Function
Description
The SCAN function scans a string for any one of a set of characters.

Syntax
SCAN (string, set [, back] )

Required Arguments
string is an INTENT(IN) scalar or array of type CHARACTER.

set is an INTENT(IN) scalar or array of type CHARACTER.

Optional Arguments
back is an INTENT(IN) scalar or array of type LOGICAL.

If more than one argument is an array, they must all have the same shape.

Result
The result is of type default INTEGER.

If back is absent, or if it is present with the value false, the value of the result is the position 
number of the leftmost character in string that is in set.  

If back is present with the value true, the value of the result is the position number of the 
rightmost character in string that is in set.

If one or more arguments are arrays, the result is an array of the same shape.  The value of 
each element of the resulting array is as if the scalar SCAN operation were performed on each 
respective element of the input arrays.

x 2i×
LF Fortran 95 Language Reference 239



Chapter 2    Alphabetical Reference
Example
character(len=12) :: c1="Howdy there!"

character(len=6) :: c2(2)=(/"Howdy ","there!"/)

character(len=3) :: c3(2)=(/"def","ghi"/)

write(*,*) scan(c1,'def')                 ! writes 4

write(*,*) scan(c2,c3)                    ! writes 4 2

write(*,*) scan(c1,'def',back=.true.)     ! writes 11

write(*,*) scan(c2,c3,(/.true.,.false./)) ! writes 4 2

SELECTED_INT_KIND Function

Description
The SELECTED_INT_KIND function returns the kind type parameter of an INTEGER data 
type.

Syntax
SELECTED_INT_KIND (r)

Arguments
r is an INTENT(IN) scalar INTEGER.

Result
The result is a scalar default INTEGER.  Its value is equal to the processor dependent kind 
type parameter of the data type that accommodates all values n with .  

If more than one kind is available, the return value is the kind type parameter with the smaller 
decimal exponent range.

If no such kind is available in the specified range, the result is -1.

Example
write(*,*) selected_int_kind(2)  ! writes 1

write(*,*) selected_int_kind(4)  ! writes 2

write(*,*) selected_int_kind(7)  ! writes 4

write(*,*) selected_int_kind(12) ! writes 8

write(*,*) selected_int_kind(20) ! writes -1

10– r n 10r< <
240 LF Fortran 95 Language Reference



SELECTED_REAL_KIND Function
SELECTED_REAL_KIND Function
Description
The SELECTED_REAL_KIND function returns the kind type parameter of a REAL data 
type with decimal precision of at least p digits and a decimal exponent range of at least r.

Syntax
SELECTED_REAL_KIND ([p] [, r])

Optional Arguments
p is an INTENT(IN) scalar INTEGER, representing the requested precision.  

r is an INTENT(IN) scalar INTEGER representing the requested exponent range.

At least one argument must be present.

Result
The result is a scalar default INTEGER.  Its value is equal to the processor dependent kind 
type parameter of the REAL data type with decimal precision of at least p digits and a decimal 
exponent range of at least r.

If more than one kind is available, the return value is the value of the kind type parameter of 
the kind with the smallest decimal precision.

The result is -1 if the precision is not available, -2 if the range is not available, and -3 if neither 
is available.

Example
! request a precision

write(*,*) selected_real_kind(p=6)  ! writes 4

write(*,*) selected_real_kind(p=12) ! writes 8

write(*,*) selected_real_kind(p=24) ! writes 16

write(*,*) selected_real_kind(p=48) ! writes -1

! request a range

write(*,*) selected_real_kind(r=10)    ! writes 4

write(*,*) selected_real_kind(r=100)   ! writes 8

write(*,*) selected_real_kind(r=1000)  ! writes 16

write(*,*) selected_real_kind(r=10000) ! writes -2

write(*,*) selected_real_kind(r=10000,p=48) ! writes -3
LF Fortran 95 Language Reference 241



Chapter 2    Alphabetical Reference
SEQUENCE Statement
Description
The SEQUENCE statement specifies a storage sequence for objects of a derived type.  It can 
only appear within a derived type definition.

Syntax
SEQUENCE

Remarks
If a derived type definition contains a SEQUENCE statement, the derived type is a sequence 
type.

If SEQUENCE is present in a derived type definition, all derived types specified in compo-
nent definitions must be sequence types.

Example
type zee

  sequence      ! zee is a sequence type

  real :: a,b,c ! a,b,c is the storage sequence

end type zee

SET_EXPONENT Function
Description
The SET_EXPONENT function returns the model representation of a number with the expo-
nent part set to a power of two.

Syntax
SET_EXPONENT (x, i)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

i is an INTENT(IN) scalar or array of type INTEGER.

If both arguments are arrays, they must have the same shape.

Result
The result is of the same type and kind as x.  Its value is FRACTION(x)*2i.
242 LF Fortran 95 Language Reference



SHAPE Function
If either or both arguments are arrays, the result is an array with the same shape.  The value 
of each result element is as though the scalar SET_EXPONENT operation were performed 
for each respective element of the input arrays.

Example
real :: x=4.3,xa(2)=(/1.5,2.5/)

integer :: i=2,ia(2)=(/4,5/)

write(*,*) fraction(x)*2**i    ! writes 2.15

write(*,*) set_exponent(x,i)   ! writes 2.15

write(*,*) set_exponent(xa,i)  ! writes 3.0 2.5

write(*,*) set_exponent(x,ia)  ! writes 8.6 17.2

write(*,*) set_exponent(xa,ia) ! writes 12.0 20.0

SHAPE Function
Description
The SHAPE function returns the shape of an array argument.

Syntax
SHAPE (source)

Arguments
source is an INTENT(IN) scalar or array of any type.  

source must not be an assumed-size array, a pointer that is disassociated or an allocatable 
array that is not allocated.

Result
The result is a default INTEGER array of rank one whose size is the rank of source and whose 
value is the shape of source.

If source is scalar, the result is an array of rank one and zero size.

Example
integer :: i,ia(-2:2),ib(3,5,7),ic(9,2,4,6,5,3,3)

write(*,*) shape(i)  ! zero sized array

write(*,*) shape(ia) ! writes 5

write(*,*) shape(ib) ! writes 3 5 7

write(*,*) shape(ic) ! writes 9 2 4 6 5 3 3
LF Fortran 95 Language Reference 243



Chapter 2    Alphabetical Reference
SIGN Function
Description
The SIGN function transfers the sign of a REAL or INTEGER argument.

Syntax
SIGN (a, b)

Arguments
a is an INTENT(IN) scalar or array of type INTEGER or REAL.

b is an INTENT(IN) scalar or array of type INTEGER or REAL.

If both a and b are arrays, they must have the same shape.

Result
The result is of the same type and kind as a.

Its value is |a|, if b is greater than or equal to zero; and -|a| if b is less than zero.  The compiler 
does not distinguish between positive and negative zero.

If either or both arguments are arrays, the result is an array with the same shape.  Each ele-
ment of the result is as though the scalar SIGN operation were performed on each respective 
element of the argument arrays.

Example
real :: r=1.
integer :: ia(2)=(/2,-3/)
write(*,*) sign(r,-1)  ! writes -1.
write(*,*) sign(r,ia)  ! writes 1., -1.
write(*,*) sign(ia,-1) ! writes -2 -3

SIN Function
Description
The SIN function returns the trigonometric sine of a REAL or COMPLEX argument.

Syntax
SIN (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL or COMPLEX and must be expressed in 
radians.
244 LF Fortran 95 Language Reference



SINH Function
Result
The result is of the same type and kind as x.  Its value is a REAL or COMPLEX representa-
tion of the sine of x.

Example
real :: x=.5,y(2)=(/1.,1./)

complex :: z=(1.,1.)

write(*,*) sin(x) ! writes .4794255 

write(*,*) sin(y) ! writes .8414709 .8414709

write(*,*) sin(z) ! writes (1.298457 .6349639)

SINH Function
Description
The SINH function returns the hyperbolic sine of a REAL argument.

Syntax
SINH (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is of the same type and kind as x.  Its value is a REAL representation of the hyper-
bolic sine of x.

Example
real :: x=.5,y(2)=(/1.,1./)

write(*,*) sinh(x) ! writes .5210953

write(*,*) sinh(y) ! writes 1.175201 1.175201

SIZE Function
Description
The SIZE function returns the size of an array or a dimension of an array.

Syntax
SIZE (array [, dim] )
LF Fortran 95 Language Reference 245



Chapter 2    Alphabetical Reference
Required Arguments
array is an INTENT(IN) array of any type.  It must not be a pointer that is disassociated or 
an allocatable array that is not allocated.

Optional Arguments
dim is an INTENT(IN) scalar of type INTEGER and must be a dimension of array.  If array 
is assumed-size, dim must be present and less than the rank of array

Result
The result is a scalar default INTEGER.

If dim is present, the result is the extent of dimension dim of array.  

If dim is absent, the result is the total number of elements in array.  

Example
integer,dimension(3,-4:0) :: i
integer :: k,j
write(*,*) size (i)   ! writes 15
write(*,*) size (i,2) ! writes 5

SPACING Function
Description
The SPACING function returns the absolute spacing near a given number; the smallest num-
ber that can be added to the argument to produce a number that is different than the argument.

Syntax
SPACING (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is of the same type and kind as x.  Its value is the spacing of REAL values near x.

Example
real :: a=1.,b=1.e10
real(kind(1.d0)) :: c=1.d0,d=1.d10
write(*,*) nearest(a,1.)-a ! writes 1.1920929
write(*,*) epsilon(a)      ! writes 1.1920929
write(*,*) spacing(a)      ! writes 1.1920929
write(*,*) spacing(b)      ! writes 1024.0000
246 LF Fortran 95 Language Reference



SPREAD Function
write(*,*) spacing(c)      ! writes 2.22044604925031e-16

write(*,*) spacing(d)      ! writes 1.90734863281250e-06

SPREAD Function
Description
The SPREAD function adds a dimension to an array by adding copies of a data object along 
a given dimension.

Syntax
SPREAD (source, dim, ncopies)

Arguments
source is an INTENT(IN) scalar or array of any type.  Its rank must be less than seven.

dim is an INTENT(IN) scalar of type INTEGER with a value in the range , 
where n is the rank of source.

ncopies is an INTENT(IN) scalar of type INTEGER.

Result
The result is an array of the same type and kind as source and of rank n + 1, where n is the 
rank of source.  

If source is scalar, the shape of the result is MAX(ncopies, 0) and each element of the result 
has a value equal to source.  

If source is an array with shape (d1, d2, ..., dn), the shape of the result is (d1, d2, ..., ddim-1, 
MAX(ncopies, 0), ddim-1, ..., dn) and the element of the result with subscripts (r1, r2, ..., rn+1) 
has the value source(r1, r2, ..., rdim-1, rdim+1, ..., rn+1).

Example
integer :: b(2,2)=reshape((/1,2,3,4/),shape(b))

! show how shape of array changes after spreading

write(*,*) shape(b)             ! writes 2 2

write(*,*) shape(spread(b,1,3)) ! writes 3 2 2

write(*,*) shape(spread(b,2,3)) ! writes 2 3 2

write(*,*) shape(spread(b,3,3)) ! writes 2 2 3

! show element values after spreading

write(*,*) b             ! writes 1 2 3 4 

write(*,*) spread(b,1,3) ! writes 1 1 1 2 2 2 3 3 3 4 4 4

write(*,*) spread(b,2,3) ! writes 1 2 1 2 1 2 3 4 3 4 3 4

write(*,*) spread(b,3,3) ! writes 1 2 3 4 1 2 3 4 1 2 3 4

1 dim n 1+≤ ≤
LF Fortran 95 Language Reference 247



Chapter 2    Alphabetical Reference
SQRT Function
Description
The SQRT function returns the square root of a REAL or COMPLEX argument.

Syntax
SQRT (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL or COMPLEX.

If x is REAL, its value must be greater than or equal to zero.

Result
The result is the same kind and type as x.  

If x is REAL, the result value is a REAL representation of the square root of x.

If x is COMPLEX, the result value is the principal value with the real part greater than or 
equal to zero.  When the real part of the result is zero, the imaginary part is greater than or 
equal to zero.

Example
real :: x1=4.,x2(2)=(/2.,6./)
complex :: q=(-1.,0.)
write(*,*) sqrt(x1) ! writes 2.0
write(*,*) sqrt(x2) ! writes 1.4142135 2.4494898
write(*,*) sqrt(q)  ! writes (0., 1.)

Statement Function
Description
A statement function is a function defined by a single statement.  

Syntax
function-name ([dummy-args])=scalar-expr

Where:
function-name is the name of the function being defined.

dummy-args is a comma-separated list of dummy argument names.

scalar-expr is a scalar expression.
248 LF Fortran 95 Language Reference



STOP Statement
Remarks
scalar-expr can be composed only of literal or named constants, scalar variables, array ele-
ments, references to functions and function dummy procedures, and intrinsic operators.

If a reference to a statement function appears in scalar-expr, its definition must have been 
provided earlier in the scoping unit and must not be the name of the statement function being 
defined.

Each scalar variable reference in scalar-expr must be either a reference to a dummy argument 
of the statement function or a reference to a variable local to the same scoping unit as the 
statement function statement.

The dummy arguments have a scope of the statement function statement.

A statement function must not be supplied as a procedure argument.

Example
mean(a,b)=(a+b)/2

c=mean(2.0,3.0) ! c is assigned the value 2.5

STOP Statement

Description
The STOP statement causes execution of a program to terminate.

Syntax
STOP [stop-code]

Where:

stop-code is a scalar CHARACTER constant or a series of 1 to 5 digits.

Remarks
When a STOP statement is reached, the optional stop-code is displayed, if present.  

Example
program foo

  stop      ! program execution terminated

end program foo
LF Fortran 95 Language Reference 249



Chapter 2    Alphabetical Reference
SUBROUTINE Statement
Description
The SUBROUTINE statement begins a subroutine subprogram. It specifies the subroutines 
name and dummy arguments, and any special characteristics such as PURE, ELEMENTAL, 
or RECURSIVE.

Syntax
[PURE] [ELEMENTAL] [RECURSIVE] SUBROUTINE subroutine-name 
([dummy-arg-names]) 

Where:
subroutine-name is the name of the subroutine.

dummy-arg-names is a comma-separated list of dummy argument names.

Remarks
The prefixes PURE, ELEMENTAL, and RECURSIVE may appear in any order.

A subroutine with the prefix PURE or ELEMENTAL is subject to the additional constraints 
of pure procedures, which ensure that no unseen side effects occur on invocation of the sub-
routine.  See “PURE Procedure” on page 225.

An ELEMENTAL subroutine is subject to the constraints of elemental procedures.  See 
“ELEMENTAL Procedure” on page 123.

The keyword RECURSIVE must be present if the subroutine directly or indirectly calls itself 
or a subroutine defined by an ENTRY statement in the same subprogram.  RECURSIVE 
must also be present if a subroutine defined by an ENTRY statement directly or indirectly 
calls itself, another subroutine defined by an ENTRY statement, or the subroutine defined by 
the SUBROUTINE statement.

Example
subroutine sub1() ! subroutine statement with no arguments

      common /c1/ a

      a=1.

end subroutine

subroutine sub2(a,b,c) ! subroutine statement with arguments

      real :: a,b,c

      a=b+c

end subroutine

recursive subroutine sub3(i) ! recursive required if the

    i=i-1                    ! subroutine calls itself

    if(i > 0) call sub3(i)   ! directly or indirectly

end subroutine
250 LF Fortran 95 Language Reference



SUM Function
SUM Function
Description
The SUM function returns the sum of elements of an array, along a given dimension, for 
which a mask is true.

Syntax
SUM (array [, dim] [, mask] )

Required Arguments
array is an INTENT(IN) array of type INTEGER, REAL, or COMPLEX.

Optional Arguments
dim is an INTENT(IN) scalar INTEGER in the range , where n is the rank of 
array.  The corresponding dummy argument must not be an optional dummy argument.

mask is an INTENT(IN) scalar or array of type LOGICAL.  It must be conformable with 
array.

Result
The result is of the same type and kind as array. 

The result is scalar if dim is absent or if array has rank one; otherwise it is an array of rank 
n-1 and of shape  where  is the shape 
of array.  

If dim is absent, the result is the sum of the values of all the elements of array. 

If dim is present, the result is the sum of the values of all elements of array along dimension 
dim.  

If mask is present, only the elements of array for which mask is true are considered.

Example
integer :: m(2,2)=reshape((/1,2,3,4/),shape(m))

write(*,’(2i3)’) m         ! writes 1  2

                           !        3  4

write(*,*) sum(m)          ! writes 10

write(*,*) sum(m,dim=1)    ! writes 3 7

write(*,*) sum(m,dim=2)    ! writes 4 6

write(*,*) sum(m,mask=m>2) ! writes 7

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,( ) d1 d2 … dn, , ,( )
LF Fortran 95 Language Reference 251



Chapter 2    Alphabetical Reference
SYSTEM Function (Linux only)
Description
The SYSTEM function executes a system command as if from the command line.

Syntax
SYSTEM (cmd)

Arguments
cmd is an INTENT(IN) scalar of type CHARACTER.  It contains the system command to be 
executed as if it were typed on the command line.  

Result
The result is of type INTEGER.  It is the exit status of the system command.

 Example
if (system("ls > current.dir") /= 0) write(*,*) "Error"

! puts a listing of the current directory into

! the file ’current.dir’

SYSTEM Subroutine
Description
The SYSTEM subroutine executes a system command as if from the command line.

Syntax (Windows)
SYSTEM (cmd [, dosbox] [, spawn] )

Syntax (Linux)
SYSTEM (cmd)

Required Arguments
cmd is an INTENT(IN) scalar of type CHARACTER.  It is the system command to be exe-
cuted as if it were typed on the command line.

Optional Arguments
dosbox is an INTENT(IN) scalar of type LOGICAL.  It has the value true if a new DOS box 
is to be opened (required for internal commands like DIR) and false otherwise.  By default, 
dosbox has the value true.
252 LF Fortran 95 Language Reference



SYSTEM_CLOCK Subroutine
spawn is an INTENT(IN) scalar of type LOGICAL.  It has the value true if the command or 
program to be executed is to be spawned as a separate process and false otherwise.  By 
default, spawn has the value true.

Example
call system("dir > current.dir")
! puts a listing of the current directory into
! the file ’current.dir’

SYSTEM_CLOCK Subroutine
Description
The SYSTEM_CLOCK subroutine returns INTEGER data from the real-time clock.

Syntax
SYSTEM_CLOCK ( [count] [, count_rate] [, count_max] )

Optional Arguments
count is an INTENT(OUT) scalar of type default INTEGER.  Its value is set to the current 
value of the processor clock or to -HUGE(0) if no clock is available.

count_rate is an INTENT(OUT) scalar of type default INTEGER.  It is set to the number of 
processor clock counts per second, or to zero if there is no clock.

count_max is an INTENT(OUT) scalar of type default INTEGER.  It is set to the maximum 
value that count can have, or zero if there is no clock.

At least one argument must be present.

Example
integer :: c,cr,cm
call system_clock(c,cr,cm) 
write(*,*) c                ! writes current count
write(*,*) cr               ! writes count rate
write(*,*) cm               ! writes maximum count possible
write(*,*) real(c)/real(cr) ! current count in seconds

TAN Function
Description
The TAN function returns the trigonometric tangent of a REAL argument.
LF Fortran 95 Language Reference 253



Chapter 2    Alphabetical Reference
Syntax
TAN (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL, and must be expressed in radians.

Result
The result is of the same type and kind as x.  Its value is a REAL representation of the tangent 
of x.

Example
real :: x=.5,y(2)=(/1.,1./)

write(*,*) tan(x) ! writes .54630249

write(*,*) tan(y) ! writes 1.5574077 1.5574077

TANH Function

Description
The TANH function returns the hyperbolic tangent of a REAL argument.

Syntax
TANH (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.

Result
The result is of the same type and kind as x.  Its value is a REAL representation of the hyper-
bolic tangent of x.

Example
real :: x=.5,y(2)=(/1.,1./)

write(*,*) tanh(x) ! writes .4621171

write(*,*) tanh(y) ! writes .7615941 .7615941
254 LF Fortran 95 Language Reference



TARGET Statement
TARGET Statement
Description
The TARGET statement specifies that data objects have the target attribute and thus can be 
associated with a pointer.

Syntax
TARGET [::] object-name [(array-spec)] [, object-name [(array-spec)]] ...

Where:
object-name is the name of a data object.

array-spec is an array specification.

Example
integer,pointer :: z

integer :: a=1

target :: a                    ! target statement

integer,target :: b=2,c=3 ! target attribute

z => a

write(*,*) z

z => b

write(*,*) z

z => c

write(*,*) z

TINY Function
Description
The TINY function returns the smallest positive number of a numeric data type that can be 
represented without loss of precision.

Syntax
TINY (x)

Arguments
x is an INTENT(IN) scalar or array of type REAL.  

Result
The result is a scalar of the same type and kind as x.  Its value is the smallest positive number 
in the data type of x.
LF Fortran 95 Language Reference 255



Chapter 2    Alphabetical Reference
Example
real(kind(1.e0)) :: r10
real(kind(1.d0)) :: r100
real(kind(1.q0)) :: r1000
write(*,*) tiny(r10)   ! writes 1.1754943E-38
write(*,*) tiny(r100)  ! writes 2.2250738585072E-308
write(*,*) tiny(r1000) 
      ! writes 3.362103143112093506262677817321752E-4932

TRANSFER Function
Description
The TRANSFER function interprets the physical representation of a number with the type 
and type parameters of a given number.

Syntax
TRANSFER (source, mold [, size] )

Required Arguments
source is an INTENT(IN) scalar or array of any type.

mold is an INTENT(IN) scalar or array of any type.

Optional Arguments
size is an INTENT(IN) scalar of type INTEGER.  The corresponding actual argument must 
not be a optional dummy argument.

Result
The result is of the same type and type parameters as mold.  

If mold is scalar and size is absent the result is a scalar.  

If mold is an array and size is absent, the result is an array of rank one.  Its size is as small as 
possible such that it is not shorter than source.  

If size is present, the result is an array of rank one and of size size.

If the physical representation of the result is the same length as the physical representation of 
source, the physical representation of the result is that of source.  

If the physical representation of the result is longer than that of source, the physical represen-
tation of the leading part of the result is that of source and the trailing part is undefined.  

If the physical representation of the result is shorter than that of source, the physical repre-
sentation of the result is the leading part of source.
256 LF Fortran 95 Language Reference



TRANSPOSE Function
Example
character(len=4) :: c="LOVE"

integer :: i,j(2,2)

real :: r

logical :: l

write(*,*) transfer(c,i) ! writes 1163284300

write(*,*) transfer(c,r) ! writes 3428.95605

write(*,*) transfer(c,l) ! writes T

TRANSPOSE Function
Description
The TRANSPOSE function transposes an array of rank two.

Syntax
TRANSPOSE (matrix)

Arguments
matrix is an INTENT(IN) rank two array of any type.

Result
The result is of rank two and the same type and kind as matrix.  Its shape is (n, m), where (m, 
n) is the shape of matrix.  Element (i, j) of the result has the value matrix(j, i).

Example
integer:: a(2,3)=reshape((/1,2,3,4,5,6/),shape(a))

write(*,'(2i3)') a             ! writes 1 2 

                               !        3 4 

                               !        5 6

write(*,*) shape(a)            ! writes 2 3

write(*,'(3i3)') transpose(a)  ! writes 1 3 5

                               !        2 4 6

write(*,*) shape(transpose(a)) ! writes 3 2

TRIM Function
Description
The TRIM function omits trailing blanks from a character argument.
LF Fortran 95 Language Reference 257



Chapter 2    Alphabetical Reference
Syntax
TRIM (string)

Arguments
string is an INTENT(IN) scalar of type CHARACTER.

Result
The result is of the same type and kind as string.  Its value and length are those of string with 
trailing blanks removed.

Example
character(len=10) :: c="Howdy!    "
write(*,*) len(c)        ! writes 10
write(*,*) c,'end'       ! writes Howdy!    end
write(*,*) len(trim(c))  ! writes 6
write(*,*) trim(c),'end' ! writes Howdy!end

Type Declaration Statement
See INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER, or 
TYPE statement.

TYPE Statement
Description
The TYPE statement defines a derived type, and declares entities having a derived type.

Syntax
(Definition)

TYPE [[, access-spec] ::] type-name

or

(Declaration)

TYPE (type-name) [, attribute-list ::] entity [, entity] ...

Where:
access-spec is PUBLIC
or PRIVATE

type-name is the name of the derived type being defined.
258 LF Fortran 95 Language Reference



TYPE Statement
attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or 
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE, 
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of an entity being declared.

function-name is the name of a function being declared.

Remarks
access-spec is permitted only if the derived type definition is within the specification part of 
a module.

If a component of a derived type is of a type declared to be private, either the definition must 
contain the PRIVATE statement or the derived type must be private.

type-name must not be the name of an intrinsic type nor of another accessible derived type 
name.

function-name must be the name of an external, intrinsic, or statement function, or a function 
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, a double colon must appear before the list of entities.  Each 
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-expr must not appear if entity-name is a dummy argument, a function  
result, an object in a named common block unless the type declaration is in a block data  pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an 
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must 
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC 
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or 
PARAMETER attributes must not be specified.
LF Fortran 95 Language Reference 259



Chapter 2    Alphabetical Reference
The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable 
arrays, functions, or objects in a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be 
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy 
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unless it is a 
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be a dummy argument or a function 
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC, 
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

Example
type zee   ! type definition
  sequence 
  real :: a,b
  integer :: i
end type zee
type (zee) :: a,b,c(2,2)       ! type declaration
type (zee) :: e=zee(2.,3.5,-1) ! with initialization

UBOUND Function
Description
The UBOUND function retrieves the upper bounds of an array or a dimension of an array.

Syntax
UBOUND (array [, dim] )

Required Arguments
array is an INTENT(IN) array of any type.  It must not be a pointer that is disassociated or 
an allocatable array that is not allocated.
260 LF Fortran 95 Language Reference



UNDFL Subroutine (Windows Only)
Optional Arguments
dim is an INTENT(IN) scalar of type INTEGER and must be a dimension of array.

Result
The result is of type default INTEGER.  

If dim is present, the result is a scalar with the value of the upper bound of array.  

If dim is absent, the result is an array of rank one with values corresponding to the upper 
bounds of each dimension of array.  

The result is zero for zero-sized dimensions.

Example
integer,dimension (3,-4:0) :: i
integer :: k,j(2)
write(*,*) ubound(j)   ! writes 2
write(*,*) ubound(i)   ! writes 3 0
write(*,*) ubound(i,2) ! writes 0
write(*,*) ubound(i,1) ! writes 3

UNDFL Subroutine (Windows Only)
Description
The UNDFL subroutine masks and detects floating-point underflow exceptions.  

Syntax
UNDFL (lflag)

Arguments
lflag is an INTENT(IN) scalar of type LOGICAL.  It is assigned the value true if an under-
flow exception has occurred, and false otherwise.

Remarks
lflag must be set to true on the first invocation.  

The initial invocation of the UNDFL subroutine masks the underflow interrupt on the float-
ing-point unit.   

 Subsequent invocation returns an lflag value of true if the exception has occurred or false if 
the exception has not occurred.

Example
real(kind(1.d0)) :: a=tiny(a)
LF Fortran 95 Language Reference 261



Chapter 2    Alphabetical Reference
logical :: lflag = .true.

call undfl(lflag)  ! mask the underflow interrupt

write(*,*) lflag   ! writes F

do

  a=a/2.d0

  call undfl(lflag)! test for underflow 

  if(lflag) exit

end do  

write(*,*) lflag   ! writes T

UNPACK Function
Description
The UNPACK function unpacks an array of rank one into an array under control of a mask.

Syntax
UNPACK (vector, mask, field)

Arguments
vector is an INTENT(IN) rank one array of any type.  Its size must be at least as large as the 
number of true elements in mask.

mask is an INTENT(IN) array of type LOGICAL.

field must be of the same type and type parameters as vector.  It must be conformable with 
mask.

Result
The result is an array of the same type and type parameters as vector and the same shape as 
mask.  The element of the result that corresponds to the ith element of mask, in array-element 
order, has the value vector(i) for i=1, 2, ..., t, where t is the number of true values in mask.  
Each other element has the value field if field is scalar or the corresponding element in field, 
if field is an array.

Example
integer, dimension(9) :: c=(/0,3,2,4,3,2,5,1,2/)

logical,dimension(2,2) :: d 

integer,dimension(2,2) :: e

d=reshape((/.false.,.true.,.true.,.false./),shape(d))

e=unpack(c,mask=d,field=-1) 

write(*,'(2i3)') e ! writes -1  0

                   !         3 -1
262 LF Fortran 95 Language Reference



USE Statement
USE Statement
Description
The USE statement specifies that a module is accessible from the current scoping unit.  It also 
provides a means of renaming or limiting the accessibility of entities in the module.

Syntax
USE module [, rename-list]

or
USE module, ONLY: [only-list]

Where:
module is the name of a module.

rename-list is a comma-separated list of local-name => use-name

only-list is a comma-separated list of access-id
or [local-name => use-name]

local-name is the local name for the entity specified by use-name

use-name is the name of a public entity in the specified module

access-id is use-name
or generic-spec

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
A USE statement without ONLY provides access to all PUBLIC entities in the specified 
module.

A USE statement with ONLY provides access only to those entities that appear in the only-
list.

If more than one USE statement appears in a scoping unit, the rename-lists and only-lists are 
treated as one concatenated rename-list.

If two or more generic interfaces that are accessible in the same scoping unit have the same 
name, same operator, or are assignments, they are interpreted as a single generic interface.
LF Fortran 95 Language Reference 263



Chapter 2    Alphabetical Reference
Two or more accessible entities, other than generic interfaces, can have the same name only 
if no entity is referenced by this name in the scoping unit.

If local-name is absent, the use-name is available by use association.

An entity can be accessed by more than one local-name.

A local-name must not be declared with different attributes in the scoping unit that contains 
the USE statement, except that it can appear in a PUBLIC or PRIVATE statement in the 
scoping unit of a module.

Forward references to modules are not allowed in LF95.  That is, if a module is used in the 
same source file in which it resides, the module program unit must appear before its use.

Example
module mod1
      integer :: i,j,k
      real :: a,b,c
end module mod1      
subroutine sub1()
  use mod1 ! a,b,c,i,j,k all available by use association
end subroutine sub1
subroutine sub2()
  use mod1, only: a,b ! a,b are available, c,i,j,k not available
end subroutine sub2
subroutine sub3()
  use mod1, aa=>a ! a is known as aa within the scope of sub3
end subroutine sub3

VAL Function
Description
The VAL function passes an item to a procedure by value.  VAL is only used as an actual 
argument.  The VAL function has largely been superceded by the CARG function.

Syntax
VAL (item)

Arguments
item is an INTENT(IN) data object of type INTEGER, REAL, or LOGICAL.  It is the data 
object for which to return a value.

Result
The result is the value of item.  Its C data type is as follows:
264 LF Fortran 95 Language Reference



VALUE Statement
Example
i=my_c_function(val(a)) ! a is passed by value

VALUE Statement
Description
The VALUE statement specifies that the dummy argument is passed by value, rather than by 
reference.

Syntax
[type-decl,] VALUE [::] var

WHERE:
type-decl is an intrinsic or derived type data declaration

var is a variable name

Table 11: VAL result types

Fortran Type Fortran Kind C type

INTEGER 1 long int

INTEGER 2 long int

INTEGER 4 long int

REAL 4 float

COMPLEX 4

must not be passed by value; if 
passed by reference (without 

CARG) it is a pointer to a structure 
of the form:

struct complex {
float real_part;

float imaginary_part;};

LOGICAL 1 unsigned long

LOGICAL 4 unsigned long

CHARACTER 1 must not be passed by value with 
VAL
LF Fortran 95 Language Reference 265



Chapter 2    Alphabetical Reference
Remarks
The VALUE statement may only be specified for a dummy argument.

If the VALUE statement is specified, the PARAMETER, EXTERNAL, POINTER, ALLO-
CATABLE, DIMENSION, INTENT(INOUT), or INTENT(OUT) attributes cannot be 
specified for that variable.

If the VALUE statement is specified for a dummy argument of type CHARACTER, the 
length parameter shall be omitted, or be specified by an initialization expression having a 
value of one.

If a dummy argument has the VALUE attribute, a temporary copy of the actual argument is 
made, and the copy is associated with the dummy argument. Subsequent changes to the 
dummy argument do not affect the value or status of the actual argument.

If the dummy argument has both the VALUE and TARGET attributes, any pointers associ-
ated with the dummy argument become undefined when execution of the procedure is 
complete.

By default, Fortran passes arguments by reference.

Example
subroutine method1(valuearg1,valuearg2)
   real, value :: valuearg1 ! value attribute
   integer :: valuearg2
   value   :: valuearg2      ! value statement
   ! do something
end subroutine

VERIFY Function
Description
The VERIFY function verifies that a set of characters contain all the characters in a string.

Syntax
VERIFY (string, set [, back] )

Required Arguments
string is an INTENT(IN) scalar or array of type CHARACTER.

set is an INTENT(IN) scalar or array of type CHARACTER

Optional Arguments
back is an INTENT(IN) scalar or array of type LOGICAL.
266 LF Fortran 95 Language Reference



VOLATILE Statement
If any or all the arguments are arrays, they must all have the same shape.

Result
The result is of type default INTEGER.

If back is absent, or if it is present with the value false, the value of the result is the position 
number of the leftmost character in string that is not in set.

If back is present with the value true, the value of the result is the position number of the 
rightmost character in string that is not in set.

The value of the result is zero if each character in string is in set, or if string has length zero.

If one or more arguments are arrays, the result is an array of the same shape.  The value of 
each element of the resulting array is as if the scalar SCAN operation were performed on each 
respective element of the input arrays.

Example
character(len=12) :: c1="Howdy there!"
character(len=6) :: c2(2)=(/"Howdy ","there!"/)
character(len=2) :: c3(2)=(/"de","gh"/)
write(*,*) verify(c1,'de')                  ! writes 1
write(*,*) verify(c2,c3)                    ! writes 1 1
write(*,*) verify(c1,'de',back=.true.)      ! writes 12
write(*,*) verify(c2,c3,(/.true.,.false./)) ! writes 6 1

VOLATILE Statement
Description
The VOLATILE statement indicates that a data object may be referenced, become redefined 
or undefined by means not specified in the Fortran standard.

Syntax
VOLATILE [::] object-name-list

Where:
object-name-list is a list of data objects.

Remarks
If an object has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC, 
EXTERNAL, or INTENT(IN) attributes.

If an object has the VOLATILE attribute, then all of its subobjects are VOLATILE.

An object may have the VOLATILE attribute in one scoping unit without necessarily having 
it in another scoping unit.
LF Fortran 95 Language Reference 267



Chapter 2    Alphabetical Reference
If both POINTER and VOLATILE are specified, the volatility applies to the target of the 
POINTER and to the pointer association status.

If both ALLOCATABLE and VOLATILE are specified, the volatility applies to the alloca-
tion status, bounds and definition status.

Example
real :: r1
volatile :: r1      ! volatile statement
real,volatile :: r2 ! volatile attribute

WHERE Construct
Description
The WHERE construct controls which elements of an array will be affected by a block of 
assignment statements.  This is also known as masked array assignment.

The WHERE statement signals the beginning of a WHERE construct.

The ELSE WHERE statement controls assignment of each element of a WHERE statement’s 
logical mask that evaluates to false, and each element of the ELSE  WHERE’s logical mask 
that evaluates to true.  It executes a block of assignment statements for each of the corre-
sponding elements in an assignment expression.

The END WHERE statement signals the end of the innermost nested WHERE construct.

Syntax
WHERE (mask-expr) 

[assignment-stmt]
[assignment-stmt]
...

[ELSEWHERE (mask-expr)]
[assignment-stmt]
[assignment-stmt]
...

[ELSE WHERE]
[assignment-stmt]
[assignment-stmt]
...

END WHERE

Where:
mask-expr is a LOGICAL expression.

assignment-stmt is an assignment statement.
268 LF Fortran 95 Language Reference



WHERE Construct
Remarks
mask-expr is evaluated at the beginning of the masked array assignment and the result value 
governs the masking of assignments in the WHERE statement or construct.  Subsequent 
changes to entities in mask-expr have no effect on the masking.

The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stmt is executed, the right-hand side of the assignment is evaluated for all 
elements where mask-expr is true and the result assigned to the corresponding elements of 
the left-hand side.

If a non-elemental function reference occurs in the right-hand side of assignment-stmt, the 
function is evaluated without any masked control by the mask-expr.

assignment-stmt must not be a defined assignment statement.

Each statement in a WHERE construct is executed in sequence.

If the ELSE WHERE statement does not have a mask expression, it must be the last block of 
assignment code to appear in the construct.

There can be multiple ELSEWHERE statements with mask-exprs.

Example  1
integer :: a(3)=(/1,2,3/)

where (a == 2)

  a=-1

end where

Example  2
integer :: a(3)=(/1,2,3/),b(3)=(/3,2,1/)

where (b > a)       

  a=b              ! a is assigned (/3,2,3/)

else where(b == a) ! (.NOT. b>a) .AND. b==a  

  b=0              ! b is assigned (/3,0,1/)

elsewhere(a == 2)  ! (.NOT.b>a).AND.(.NOT.b==a).AND.a==2

  a=a+1            ! b==a got to these elements first

elsewhere   ! (.NOT. b>a) .AND.(.NOT.b==a).AND. (.NOT.a==2)

  b=-1      ! b is assigned (/3,0,-1/)

end where

write(*,*) a,b
LF Fortran 95 Language Reference 269



Chapter 2    Alphabetical Reference
WHERE Statement
Description
The WHERE statement masks the assignment of values in array assignment statements.  The 
WHERE statement can begin a WHERE construct that contains zero or more assignment 
statements, or can itself contain an assignment statement.

Syntax
WHERE (mask-expr) [assignment-stmt]

Where:
mask-expr is a LOGICAL expression.

assignment-stmt is an assignment statement.

Remarks
If the WHERE statement contains no assignment-stmt, it specifies the beginning of a 
WHERE construct.

The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stmt is executed, the right-hand side of the assignment is evaluated for all 
elements where mask-expr is true and the result assigned to the corresponding elements of 
the left-hand side.

If a non-elemental function reference occurs in the right-hand side of assignment-stmt, the 
function is evaluated without any masked control by the mask-expr.

mask-expr is evaluated at the beginning of the masked array assignment and the result value 
governs the masking of assignments in the WHERE statement or construct.  Subsequent 
changes to entities in mask-expr have no effect on the masking.

assignment-stmt must not be a defined assignment.

Example
! a, b, and c are arrays

where (a>b) a=-1 ! where statement

where (b>c)      ! begin where construct

  b=-1

elsewhere

  b=1

end where
270 LF Fortran 95 Language Reference



WRITE Statement
WRITE Statement
Description
The WRITE statement transfers values to an input/output unit from entities specified in an 
output list or a namelist group.

Syntax
WRITE (io-control-specs) [outputs]

Where:
outputs is a comma-separated list of expr
or io-implied-do

expr is a variable.

io-implied-do is (outputs, implied-do-control)

implied-do-control is do-variable=start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variable is a scalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specs is a comma-separated list of 
[UNIT =] io-unit
or [FMT =] format
or [NML =] namelist-group-name
or REC=record
or IOSTAT=stat
or ERR=errlabel
or END=endlabel
or EOR=eorlabel
or ADVANCE=advance
or SIZE=size

io-unit is an external file unit, or *

format is a format specification (see “Input/Output Editing” beginning on page 25).

namelist-group-name is the name of a namelist group.

record is the number of the direct-access record that is to be written.

stat is a scalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs and zero otherwise.  

errlabel is a label that is branched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.
LF Fortran 95 Language Reference 271



Chapter 2    Alphabetical Reference
endlabel is a label that is branched to if an end-of-file condition occurs and no error condition 
occurs during execution of the statement.

eorlabel is a label that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advance is a scalar default CHARACTER expression that evaluates to NO if non-advancing 
input/output is to occur, and YES if advancing input/output is to occur.  The default value is 
YES.

size is a scalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing input/output 
statement.  

Remarks
If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in 
io-control-specs.  If the optional characters FMT= are omitted before format, format must be 
the second item in io-control-specs.  If the optional characters NML= are omitted before 
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

io-control-specs must contain exactly one io-unit, and must not contain both a format and a 
namelist-group-name.

A namelist-group-name must not appear if outputs is present.

If io-unit is an internal file, io-control-specs must not contain a REC= specifier or a namelist-
group-name.

If the file is open for DIRECT, BINARY or TRANSPARENT access, an END= specifier 
must not appear, a namelist-group-name must not appear, and format must not be an asterisk 
indicating list-directed I/O.

An ADVANCE= specifier can appear only in formatted sequential I/O with an explicit for-
mat specification (format-expr) whose control list does not contain an internal file specifier.  
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with 
the value NO.

The do-variable of an implied-do-control that is contained within another io-implied-do must 
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it is treated as if the elements were specified in array-
element order.

If a derived type object appears as an output item, it is treated as if all of the components were 
specified in the same order as in the definition of the derived type.
272 LF Fortran 95 Language Reference



WRITE Statement
Example
   character(len=30) :: intfile
   integer :: ios,i=1,j=1,k=1
   real :: a=1.,b=1.,c=1.
   write (*,*) a,b,c       ! write values to stdout
                           ! using list directed i/o
   write(3,"(3i10)") i,j,k ! write to unit 3 using format
   write(10,*) i,j,k       ! write stdout using format
10 format(3i10)
   write(11) a,b,c ! write unformatted data to unit 11
   write(intfile,10) i,j,k       ! write internal file 
   write(12, rec=2) a,b,c        ! write direct access file
   write(13,10,err=20) i,j       ! write with error branch
20 write(13,10,iostat=ios) a     ! write with status return
   write(13,10,advance='no') i,j ! next write on same line
LF Fortran 95 Language Reference 273



Chapter 2    Alphabetical Reference
274 LF Fortran 95 Language Reference



A Fortran 77 
Compatibility
This chapter discusses issues that affect the behavior of Fortran 77 and Fortran 90 code when 
processed by LF95.

Different Interpretation Under Fortran 95
Standard Fortran 95 is a superset of standard Fortran 90 and a standard-conforming Fortran 
90 program will compile properly under Fortran 95.  There are, however, two situations in 
which the program’s interpretation may differ.  

• The behavior of the SIGN intrinsic function is different if the second argument is 
negative real zero.

• Fortran 90 has more intrinsic procedures than Fortran 77.  Therefore, a standard-con-
forming Fortran 77 program may have a different interpretation under Fortran 90 if 
it invokes a procedure having the same name as one of the new standard intrinsic pro-
cedures, unless that procedure is specified in an EXTERNAL statement as 
recommended for non-intrinsic functions in the appendix to the Fortran 77 standard.

Different Interpretation Under Fortran 90
Standard Fortran 90 is a superset of standard Fortran 77 and a standard-conforming Fortran 
77 program will compile properly under Fortran 90.  There are, however, some situations in 
which the program’s interpretation may differ.  

• Fortran 77 permitted a processor to supply more precision derived from a REAL con-
stant than can be contained in a REAL datum when the constant is used to initialize 
a DOUBLE PRECISION data object in a DATA statement.  Fortran 90 does not per-
mit this option.
LF Fortran 95 Language Reference 275



Appendix A    Fortran 77 Compatibility
• If a named variable that is not in a common block is initialized in a DATA statement 
and does not have the SAVE attribute specified, Fortran 77 left its SAVE attribute 
processor-dependent.  Fortran 90 specifies that this named variable has the SAVE 
attribute.

• Fortran 77 required that the number of characters required by the input list must be 
less than or equal to the number of characters in the record during formatted input.  
Fortran 90 specifies that the input record is logically padded with blanks if there are 
not enough characters in the record, unless the PAD=”NO” option is specified in an 
appropriate OPEN statement.

• Fortran 90 has more intrinsic procedures than Fortran 77.  Therefore, a standard-con-
forming Fortran 77 program may have a different interpretation under Fortran 90 if 
it invokes a procedure having the same name as one of the new standard intrinsic pro-
cedures, unless that procedure is specified in an EXTERNAL statement as 
recommended for non-intrinsic functions in the appendix to the Fortran 77 standard.

Obsolescent Features
The following features are obsolescent or deleted from the Fortran 95 standard.  While these 
features are still supported in LF95, their use in new code is not recommended:

• Arithmetic IF
• REAL and double-precision DO control variables and DO loop control expressions
• shared DO termination and termination on a statement other than END DO or 

CONTINUE
• Branching to an END IF statement from outside its IF block
• Alternate return
• PAUSE statement
• ASSIGN statement and assigned GOTO statement
• Assigned format specifier
• nH (Hollerith) edit descriptor
• Computed GOTO statement
• Statement functions
• DATA statements amongst executable statements
• Assumed-length CHARACTER functions
• Fixed-source form
• CHARACTER* form of CHARACTER declaration
276 LF Fortran 95 Language Reference



B New in Fortran 95
The following Fortran 95 features were not present in Fortran 77.  Fortran 95 features that 
were not present in Fortran 90 are marked with an asterisk.

Miscellaneous
free source form
enhancements to fixed source form:

“;” statement separator
“!” trailing comment

names may be up to 31 characters in length
both upper and lower case characters are accepted
INCLUDE line
relational operators in mathematical notation
enhanced END statement
IMPLICIT NONE
binary, octal, and hexadecimal constants
quotation marks around CHARACTER constants

Data
enhanced type declaration statements
new attributes:

extended DIMENSION attribute
ALLOCATABLE
POINTER
TARGET
INTENT
PUBLIC
PRIVATE

kind and length type parameters
derived types
pointers
LF Fortran 95 Language Reference 277



Appendix B    New in Fortran 95
Operations
extended intrinsic operators
extended assignment
user-defined operators

Arrays
automatic arrays
allocatable arrays
assumed-shape arrays
array sections
array expressions
masked array assignment (WHERE statement and construct)
FORALL statement*

Execution Control
CASE construct
enhance DO construct
CYCLE statement
EXIT statement

Input/Output
binary, octal, and hexadecimal edit descriptors
engineering and scientific edit descriptors
namelist formatting
partial record capabilities (non-advancing I/O)
extra OPEN and INQUIRE specifiers

Procedures
keyword arguments
optional arguments
INTENT attribute
derived type actual arguments and functions
array-valued functions
recursive procedures
user-defined generic procedures
user-defined elemental procedures*
pure procedures*
specification of procedure interfaces
internal procedures
278 LF Fortran 95 Language Reference



Modules

New Intrinsic Procedures
NULL*
PRESENT
numeric functions

CEILING
FLOOR
MODULO

character functions
ACHAR
ADJUSTL
ADJUSTR
IACHAR
LEN_TRIM
REPEAT
SCAN
TRIM
VERIFY

kind Functions
KIND
SELECTED_INT_KIND
SELECTED_REAL_KIND

LOGICAL
numeric inquiry functions

DIGITS
EPSILON
HUGE
MAXEXPONENT
MINEXPONENT
PRECISION
RADIX
RANGE
TINY

BIT_SIZE
bit manipulation functions

BTEST
IAND
IBCLR
IBITS
IBSET
IEOR
IOR
ISHFT
LF Fortran 95 Language Reference 279



Appendix B    New in Fortran 95
ISHFTC
NOT

TRANSFER
floating-point manipulation functions

EXPONENT
FRACTION
NEAREST
RRSPACING
SCALE
SET_EXPONENT
SPACING

vector and matrix multiply functions
DOT_PRODUCT
MATMUL

array reduction functions
ALL
ANY
COUNT
MAXVAL
MINVAL
PRODUCT
SUM

array inquiry functions
ALLOCATED
LBOUND
SHAPE
SIZE
UBOUND

array construction functions
MERGE
FSOURCE
PACK
SPREAD
UNPACK

RESHAPE
array manipulation functions

CSHFT
EOSHIFT
TRANSPOSE

array location functions
MAXLOC
MINLOC

ASSOCIATED
280 LF Fortran 95 Language Reference



intrinsic subroutines
CPU_TIME*
DATE_AND_TIME
MVBITS
RANDOM_NUMBER
RANDOM_SEED
SYSTEM_CLOCK
LF Fortran 95 Language Reference 281



Appendix B    New in Fortran 95
282 LF Fortran 95 Language Reference



C Intrinsic Procedures 
The tables in this chapter offer a synopsis of procedures included with Lahey Fortran.  For 
detailed information on individual procedures, see the chapter “Alphabetical Reference” on 
page 61.

All procedures in these tables are intrinsic.  Specific function names may be passed as actual 
arguments except for where indicated by an asterisk in the tables.  Note that for almost all 
programming situations it is best to use the generic procedure name.
LF Fortran 95 Language Reference 283



Appendix C    Intrinsic Procedures
Table 12: Numeric Functions

Name
Specific 
Names

Function Type Argument Type Description Class

ABS
CABS
CDABS
CQABS
DABS
QABS
IABS
I2ABS
IIABS
JIABS

Numeric
REAL_4
REAL_8
REAL_16
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

Numeric
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

Absolute Value. Elemental

AIMAG
DIMAG
QIMAG

REAL
REAL_8
REAL_16

COMPLEX
COMPLEX_8
COMPLEX_16

Imaginary part of 
a complex num-
ber.

Elemental

AINT
DINT
QINT

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Truncation to a 
whole number. Elemental

ANINT
DNINT
QNINT

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

REAL representa-
tion of the nearest 
whole number.

Elemental

CEILING INTEGER_4 REAL

Smallest INTE-
GER greater than 
or equal to a num-
ber.

Elemental

CMPLX
DCMPLX
QCMPLX

COMPLEX
COMPLEX_8
COMPLEX_16

Numeric
Numeric
Numeric

Convert to type 
COMPLEX. Elemental

CONJG
DCONJG
QCONJG

COMPLEX
COMPLEX_8
COMPLEX_16

COMPLEX
COMPLEX_8
COMPLEX_16

Conjugate of a 
complex number. Elemental

DBLE
DREAL*
DFLOAT*
DBLEQ

REAL_8
REAL_8
REAL_8
REAL_8

Numeric
COMPLEX_8
INTEGER_4
REAL_16

Convert to dou-
ble-precision 
REAL type.

Elemental
284 LF Fortran 95 Language Reference



DIM

DDIM
QDIM
IDIM
I2DIM
IIDIM
JIDIM

INTEGER or 
REAL
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

INTEGER or 
REAL
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

The difference 
between two num-
bers if the differ-
ence is positive; 
zero otherwise.

Elemental

DPROD REAL_8 REAL_4 Double-precision 
REAL product. Elemental

EXPO-
NENT REAL REAL

Exponent part of 
the model repre-
sentation of a 
number.

Elemental

FLOOR INTEGER_4 REAL
Greatest INTE-
GER less than or 
equal to a number.

Elemental

FRAC-
TION REAL REAL

Fraction part of 
the physical repre-
sentation of a 
number.

Elemental

INT
IDINT*
IQINT*
IFIX*
INT2*
INT4*
HFIX*
IINT*
JINT*
IIDINT*
JIDINT*
IIFIX*
JIFIX*

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4

Numeric
REAL_8
REAL_16
REAL_4
Numeric
Numeric
REAL_4
REAL_4
REAL_4
REAL_8
REAL_8
REAL_4
REAL_4

Convert to INTE-
GER type. Elemental

Table 12: Numeric Functions

Name
Specific 
Names

Function Type Argument Type Description Class
LF Fortran 95 Language Reference 285



Appendix C    Intrinsic Procedures
MAX

AMAX0*
AMAX1*
DMAX1*
QMAX1*
MAX0*
MAX1*
I2MAX0*
IMAX0*
JMAX0*
IMAX1*
JMAX1*
AIMAX0*
AJMAX0*

INTEGER or 
REAL
REAL_4
REAL_4
REAL_8
REAL_16
INTEGER_4
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4
REAL_4
REAL_4

INTEGER or 
REAL
INTEGER_4
REAL_4
REAL_8
REAL_16
INTEGER_4
REAL_4
INTEGER_2
INTEGER_2
INTEGER_4
REAL_4
REAL_4
INTEGER_2
INTEGER_4

Maximum value. Elemental

MIN

AMIN0*
AMIN1*
DMIN1*
QMIN1*
MIN0*
MIN1*
I2MIN0*
IMIN0*
JMIN0*
IMIN1*
JMIN1*
AIMIN0*
AJMIN0*

INTEGER or 
REAL
REAL_4
REAL_4
REAL_8
REAL_16
INTEGER_4
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4
REAL_4
REAL_4

INTEGER or 
REAL
INTEGER_4
REAL_4
REAL_8
REAL_16
INTEGER_4
REAL_4
INTEGER_2
INTEGER_2
INTEGER_4
REAL_4
REAL_4
INTEGER_2
INTEGER_4

Minimum value. Elemental

Table 12: Numeric Functions

Name
Specific 
Names

Function Type Argument Type Description Class
286 LF Fortran 95 Language Reference



MOD

AMOD
DMOD
QMOD
I2MOD
IMOD
JMOD

INTEGER or 
REAL
REAL_4
REAL_8
REAL_16
INTEGER_2
INTEGER_2
INTEGER_4

INTEGER or 
REAL
REAL_4
REAL_8
REAL_16
INTEGER_2
INTEGER_2
INTEGER_4

Remainder. Elemental

MODULO INTEGER or 
REAL

INTEGER or 
REAL Modulo. Elemental

NEAREST REAL REAL

Nearest number of 
a given data type 
in a given direc-
tion.

Elemental

NINT
IDNINT
IQNINT
I2NINT
ININT
JNINT
IIDNNT
JIDNNT

INTEGER
INTEGER_4
INTEGER_4
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

REAL
REAL_8
REAL_16
REAL
REAL_4
REAL_4
REAL_8
REAL_8

Nearest INTE-
GER. Elemental

REAL
FLOAT*
SNGL*
SNGLQ*
FLOATI*
FLOATJ*
DFLOTI*
DFLOTJ*

REAL
REAL_4
REAL_4
REAL_4
REAL_4
REAL_4
REAL_8
REAL_8

Numeric
INTEGER
REAL_8
REAL_16
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4

Convert to REAL 
type. Elemental

RRSPAC-
ING REAL REAL

Reciprocal of rel-
ative spacing near 
a given number.

Elemental

Table 12: Numeric Functions

Name
Specific 
Names

Function Type Argument Type Description Class
LF Fortran 95 Language Reference 287



Appendix C    Intrinsic Procedures
SCALE REAL REAL and 
INTEGER

Multiply a num-
ber by a power of 
two.

Elemental

SET_
EXPO-
NENT

REAL REAL and 
INTEGER

Model representa-
tion of a number 
with exponent 
part set to a power 
of two.

Elemental

SIGN

DSIGN
QSIGN
ISIGN
I2SIGN
IISIGN
JISIGN

INTEGER or 
REAL
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

INTEGER or 
REAL
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

Transfer of sign. Elemental

SPACING REAL REAL
Absolute spacing 
near a given num-
ber.

Elemental

Table 12: Numeric Functions

Name
Specific 
Names

Function Type Argument Type Description Class
288 LF Fortran 95 Language Reference



Table 13: Mathematical Functions

Name
Specific 
Names

Function Type Argument Type Description Class

ACOS
DACOS

REAL
REAL_8

REAL
REAL_8 Arccosine. Elemental

ASIN
DASIN

REAL
REAL_8

REAL
REAL_8 Arcsine. Elemental

ATAN
DATAN

REAL
REAL_8

REAL
REAL_8 Arctangent. Elemental

ATAN2
DATAN2

REAL
REAL_8

REAL
REAL_8

Arctangent of y/x 
(principal value of 
the argument of 
the complex num-
ber (x,y)).

Elemental

COS

CCOS
CDCOS
CQCOS
DCOS
QCOS

REAL or 
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or 
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Cosine. Elemental

COSH
DCOSH
QCOSH

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Hyperbolic 
cosine. Elemental

EXP

CEXP
CDEXP
CQEXP
DEXP
QEXP

REAL or 
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or 
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Exponential. Elemental
LF Fortran 95 Language Reference 289



Appendix C    Intrinsic Procedures
LOG

ALOG
CLOG
CDLOG
CQLOG
DLOG
QLOG

REAL or 
COMPLEX
REAL_4
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or 
COMPLEX
REAL_4
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Natural logarithm. Elemental

LOG10
ALOG10
DLOG10
QLOG10

REAL
REAL_4
REAL_8
REAL_16

REAL
REAL_4
REAL_8
REAL_16

Common loga-
rithm. Elemental

SIN

CSIN
CDSIN
CQSIN
DSIN
QSIN

REAL or 
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or 
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Sine. Elemental

SINH
DSINH
QSINH

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Hyperbolic sine. Elemental

SQRT

CSQRT
CDSQRT
CQSQRT
DSQRT
QSQRT

REAL or 
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or 
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Square root. Elemental

TAN
DTAN
QTAN

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Tangent. Elemental

Table 13: Mathematical Functions

Name
Specific 
Names

Function Type Argument Type Description Class
290 LF Fortran 95 Language Reference



TANH
DTANH
QTANH

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Hyperbolic tan-
gent. Elemental

Table 13: Mathematical Functions

Name
Specific 
Names

Function Type Argument Type Description Class
LF Fortran 95 Language Reference 291



Appendix C    Intrinsic Procedures
Table 14: Character Functions

Name Description Class

ACHAR Character in a specified position of the ASCII col-
lating sequence. Elemental

ADJUSTL Adjust to the left, removing leading blanks and 
inserting trailing blanks. Elemental

ADJUSTR Adjust to the right, removing trailing blanks and 
inserting leading blanks. Elemental

CHAR Given character in the collating sequence of the a 
given character set. Elemental

IACHAR Position of a character in the ASCII collating 
sequence. Elemental

ICHAR Position of a character in the processor collating 
sequence associated with the kind of the character. Elemental

INDEX Starting position of a substring within a string. Elemental

LEN Length of a CHARACTER data object. Inquiry

LEN_TRIM Length of a CHARACTER entity without trailing 
blanks. Elemental

LGE
Test whether a string is lexically greater than or 
equal to another string based on the ASCII collat-
ing sequence.

Elemental

LGT
Test whether a string is lexically greater than 
another string based on the ASCII collating 
sequence.

Elemental

LLE
Test whether a string is lexically less than or equal 
to another string based on the ASCII collating 
sequence.

Elemental

LLT Test whether a string is lexically less than another 
string based on the ASCII collating sequence. Elemental

REPEAT Concatenate copies of a string. Transforma-
tional

SCAN Scan a string for any one of a set of characters. Elemental
292 LF Fortran 95 Language Reference



TRIM Omit trailing blanks. Transforma-
tional

VERIFY Verify that a set of characters contains all the char-
acters in a string. Elemental

Table 14: Character Functions

Name Description Class
LF Fortran 95 Language Reference 293



Appendix C    Intrinsic Procedures
Table 15: Array Functions

Name Description Class

ALL Determine whether all values in a mask are true 
along a given dimension.

Transforma-
tional

ALLOCATED Indicate whether an allocatable array has been allo-
cated. Inquiry

ANY Determine whether any values are true in a mask 
along a given dimension.

Transforma-
tional

COUNT Count the number of true elements in a mask along 
a given dimension.

Transforma-
tional

CSHIFT

Circular shift of all rank one sections in an array.  
Elements shifted out at one end are shifted in at the 
other.  Different sections can be shifted by differ-
ent amounts and in different directions by using an 
array-valued shift.

Transforma-
tional

DOT_
PRODUCT Dot-product multiplication of vectors. Transforma-

tional

EOSHIFT

End-off shift of all rank one sections in an array.  
Elements are shifted out at one end and copies of 
boundary values are shifted in at the other.  Differ-
ent sections can be shifted by different amounts 
and in different directions by using an array-valued 
shift.

Transforma-
tional

LBOUND Lower bounds of an array or a dimension of an 
array. Inquiry

MATMUL Matrix multiplication. Transforma-
tional

MAXLOC
Location of the first element in array having the 
maximum value of the elements identified by 
mask.

Transforma-
tional

MAXVAL Maximum value of elements of an array, along a 
given dimension, for which a mask is true.

Transforma-
tional

MERGE Choose alternative values based on the value of a 
mask. Elemental
294 LF Fortran 95 Language Reference



MINLOC Location of the first element in array having the 
minimum value of the elements identified by mask.

Transforma-
tional

MINVAL Minimum value of elements of an array, along a 
given dimension, for which a mask is true.

Transforma-
tional

PACK Pack an array into a vector under control of a 
mask.

Transforma-
tional

PRODUCT Product of elements of an array, along a given 
dimension, for which a mask is true.

Transforma-
tional

RESHAPE Construct an array of a specified shape from a 
given array.

Transforma-
tional

SHAPE Shape of an array. Inquiry

SIZE Size of an array or a dimension of an array. Inquiry

SPREAD Adds a dimension to an array by adding copies of a 
data object along a given dimension.

Transforma-
tional

SUM Sum of elements of an array, along a given dimen-
sion, for which a mask is true.

Transforma-
tional

TRANSPOSE Transpose an array of rank two. Transforma-
tional

UBOUND Upper bounds of an array or a dimension of an 
array. Inquiry

UNPACK Unpack an array of rank one into an array under 
control of a mask.

Transforma-
tional

Table 15: Array Functions

Name Description Class
LF Fortran 95 Language Reference 295



Appendix C    Intrinsic Procedures
Table 16: Inquiry and Kind Functions

Name Description Class

ALLOCATED Indicate whether an allocatable array has been allo-
cated. Inquiry

ASSOCIATED Indicate whether a pointer is associated with a tar-
get. Inquiry

BIT_SIZE Size, in bits, of a data object of type INTEGER. Inquiry

DIGITS Number of significant binary digits. Inquiry

EPSILON Positive value that is almost negligible compared 
to unity. Inquiry

HUGE Largest representable number of data type. Inquiry

KIND Kind type parameter. Inquiry

LBOUND Lower bounds of an array or a dimension of an 
array. Inquiry

LEN Length of a CHARACTER data object. Inquiry

MAXEXPO-
NENT Maximum binary exponent of data type. Inquiry

MINEXPO-
NENT Minimum binary exponent of data type. Inquiry

PRECISION Decimal precision of data type. Inquiry

PRESENT Determine whether an optional argument is 
present. Inquiry

RADIX Number base of the physical representation of a 
number. Inquiry

RANGE Decimal range of the data type of a number. Inquiry

SELECTED_
INT_KIND

Kind type parameter of an INTEGER data type 
that represents all integer values n with 

.

Transforma-
tional

SELECTED_
REAL_KIND

Kind type parameter of a REAL data type with 
decimal precision of at least p digits and a decimal 
exponent range of at least r.

Transforma-
tional

10– r n 10r< <
296 LF Fortran 95 Language Reference



SHAPE Shape of an array. Inquiry

SIZE Size of an array or a dimension of an array. Inquiry

TINY Smallest representable positive number of data 
type. Inquiry

UBOUND Upper bounds of an array or a dimension of an 
array. Inquiry

Table 16: Inquiry and Kind Functions

Name Description Class
LF Fortran 95 Language Reference 297



Appendix C    Intrinsic Procedures
Table 17: Bit Manipulation Procedures

Name
Specific 
Names

Function Type Argument Type Description Class

BTEST
BITEST
BJTEST

LOGICAL_4
LOGICAL_4
LOGICAL_4

INTEGER
INTEGER_2
INTEGER_4

Bit testing. Elemental

IAND
IIAND
JIAND

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical 
AND. Elemental

IBCLR
IIBCLR
JIBCLR

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Clear one bit to 
zero. Elemental

IBITS
IIBITS
JIBITS

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Extract a 
sequence of bits. Elemental

IBSET
IIBSET
JIBSET

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Set a bit to one. Elemental

IEOR
IIEOR
JIEOR

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical 
exclusive OR. Elemental

IOR
IIOR
JIOR

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical 
inclusive OR. Elemental

ISHFT
IISHFT
JISHFT

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise shift. Elemental

ISHFTC
IISHFTC
JISHFTC

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise circular 
shift of rightmost 
bits.

Elemental

MVBITS INTEGER

Copy a sequence 
of bits from one 
INTEGER data 
object to another.

Subroutine
298 LF Fortran 95 Language Reference



NOT
INOT
JNOT

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical 
complement. Elemental

Table 18: Other Intrinsic Functions

Name Description Class

LOGICAL Convert between kinds of LOGICAL. Elemental

NULL Disassociated pointer. Elemental

TRANSFER
Interpret the physical representation of a number 
with the type and type parameters of a given num-
ber.

Transforma-
tional

Table 19: Standard Intrinsic Subroutines

Name Description Class

CPU_TIME CPU time. Subroutine

DATE_AND_
TIME Date and real-time clock data. Subroutine

MVBITS Copy a sequence of bits from one INTEGER data 
object to another. Subroutine

RANDOM_
NUMBER

Uniformly distributed pseudorandom number or 
numbers in the range . Subroutine

RANDOM_
SEED

Set or query the pseudorandom number generator 
used by RANDOM_NUMBER.  If no argument is 
present, the processor sets the seed to a predeter-
mined value.

Subroutine

SYSTEM_
CLOCK INTEGER data from the real-time clock. Subroutine

Table 17: Bit Manipulation Procedures

Name
Specific 
Names

Function Type Argument Type Description Class

0 x 1<≤
LF Fortran 95 Language Reference 299



Appendix C    Intrinsic Procedures
Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name
Specific 
Names

Function Type Argument Type Description Class

ACOSD
DACOSD
QACOSD

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Arccosine in 
degrees. Elemental

ALGAMA
DLGAMA
QLGAMA

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Log gamma func-
tion. Elemental

ASIND
DASIND
QASIND

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Arcsine in 
degrees. Elemental

ATAND
DATAND
QATAND

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Arctangent in 
degrees. Elemental

ATAN2D
DATAN2D
QATAN2D

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Arctangent of y/x 
(principal value of 
the argument of 
the complex num-
ber (x,y)) in 
degrees.

Elemental

COSD
DCOSD
QCOSD

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Cosine in degrees. Elemental

COTAN
DCOTAN
QCOTAN

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Cotangent. Elemental

ERF
DERF
QERF

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Error function. Elemental

ERFC
DERFC
QERFC

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Error function 
complement. Elemental
300 LF Fortran 95 Language Reference



GAMMA
DGAMMA
QGAMMA

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Gamma function. Elemental

SIND
DSIND
QSIND

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Sine in degrees. Elemental

TAND
DTAND
QTAND

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Tangent in 
degrees. Elemental

IZEXT
IZEXT2
JZEXT
JZEXT2
JZEXT4

INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_4
INTEGER_4

LOGICAL_1
INTEGER_2
LOGICAL_4
INTEGER_2
INTEGER_4

Zero extend. Elemental

Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name
Specific 
Names

Function Type Argument Type Description Class
LF Fortran 95 Language Reference 301



Appendix C    Intrinsic Procedures
Table 21: Utility Procedures

Name Description Class

CARG Pass item to a procedure as a C data type by value.  
CARG can only be used as an actual argument.

Utility 
Function

DLL_EXPORT Specify which procedures should be available in a 
dynamic-link library.

Utility
Subroutine

DLL_IMPORT Specify which procedures are to be imported from 
a dynamic-link library.

Utility
Subroutine

DVCHK

The initial invocation of the DVCHK subroutine 
masks the divide-by-zero interrupt on the floating-
point unit.  Subsequent invocations return true or 
false in the lflag variable if the exception has 
occurred or not occurred, respectively.  DVCHK 
will not check or mask zero divided by zero.  Use 
INVALOP to check for a zero divided by zero.

Utility
Subroutine

ERROR Print a message to the console with a subprogram 
traceback, then continue processing.

Utility
Subroutine

EXIT Terminate the program and set the DOS error 
level.

Utility
Subroutine

FLUSH
Empty the buffer for an input/output unit by writ-
ing to its corresponding file.  Note that this does 
not flush the DOS file buffer.

Utility
Subroutine

GETCL Get command line. Utility
Subroutine

GETENV Get the specified environment variable. Utility
Function

INVALOP

The initial invocation of the INVALOP subroutine 
masks the invalid operator interrupt on the float-
ing-point unit.  Subsequent invocations return true 
or false in the lflag variable if the exception has 
occurred or not occurred, respectively.

Utility
Subroutine

IOSTAT_MSG Get a runtime I/O error message then continue pro-
cessing.

Utility
Subroutine

NDPERR Report floating point exceptions. Utility 
Function
302 LF Fortran 95 Language Reference



NDPEXC Mask all floating point exceptions. Utility
Subroutine

OFFSET
Get the DOS offset portion of the memory address 
of a variable, substring, array reference, or external 
subprogram.

Utility
Function

OVEFL

The initial invocation of the OVEFL subroutine 
masks the overflow interrupt on the floating-point 
unit.  Subsequent invocations return true or false in 
the lflag variable if the exception has occurred or 
not occurred, respectively.

Utility
Subroutine

POINTER Get the memory address of a variable, substring, 
array reference, or external subprogram.

Utility
Function

PRECFILL
Set fill character for numeric fields that are wider 
than supplied numeric precision.  The default is 
’0’.

Utility
Subroutine

PROMPT Set prompt for subsequent READ statements.  For-
tran default is no prompt.

Utility
Subroutine

SEGMENT
Get the DOS segment portion of the memory 
address of a variable, substring, array reference, or 
external subprogram.

Utility
Function

SYSTEM Execute a DOS command as if from the DOS com-
mand line.

Utility
Subroutine

UNDFL

The initial invocation of the UNDFL subroutine 
masks the underflow interrupt on the floating-point 
unit.  Subsequent invocations return true or false in 
the lflag variable if the exception has occurred or 
not occurred, respectively.

Utility
Subroutine

VAL Pass an item to a procedure by value.  VAL can 
only be used as an actual argument.

Utility
Function

YIELD

Causes a Windows 3.1 program to yield control to 
Windows so that computation-intensive operations 
do not monopolize the processor.  YIELD has no 
effect under other supported operating systems.

Utility
Function

Table 21: Utility Procedures

Name Description Class
LF Fortran 95 Language Reference 303



Appendix C    Intrinsic Procedures
304 LF Fortran 95 Language Reference



D Porting Extensions 
The following non-standard features are supported by LF95.  Note that for service proce-
dures, a module SERVICE_ROUTINES is provided.  Use SERVICE_ROUTINES to have 
the compiler check interfaces for the various service procedures.  See the USE statement for 
details on how to use a module.

• Dollar sign as a letter 

• Backslash as a special character

• Unlimited number of continuation lines in free or fixed source form

• Omission of required significant blanks in free source form

• DO UNTIL statement

• FIND statement

• STRUCTURE statement

• END STRUCTURE statement

• UNION statement

• END UNION statement

• MAP statement

• END MAP statement

• RECORD statement

• Non-standard POINTER statement 

• AUTOMATIC statement and attribute

• STATIC statement and attribute

• VALUE statement and attribute

• VOLATILE statement and attribute
LF Fortran 95 Language Reference 305



Appendix D    Porting Extensions
• DLL_IMPORT statement

• DLL_EXPORT statement

• BYTE statement

• Double-precision COMPLEX constants

• Hollerith constants

• Bdigits form of binary constant

• digitsO form of octal constant

• X’digits’ form of hexadecimal constant

• ‘digits’X form of hexadecimal constant

• Zdigits form of hexadecimal constant

• Binary, Octal, or Hexadecimal constant in a DATA, PARAMETER, or type decla-
ration statement

• ‘.’ period structure component separator

• type*n form in type declaration, FUNCTION or IMPLICIT statement (e.g. 
INTEGER*4)

• /literal-constant/ form of initialization in type declaration statement

• IMPLICIT UNDEFINED statement

• Namelist input/output on internal file

• Variable format expressions

• NUM specifier

• ACTION = ‘BOTH’

• FORM = ‘TRANSPARENT’ (use FORM=BINARY instead)

• TOTALREC specifier

• STATUS = ‘SHR’

• Gw edit descriptor

• $ edit descriptor

• \ edit descriptor

• R edit descriptor

• D, E, F, G, I, L, B, O or Z descriptor without w, d or e indicators

• &name...&end namelist record
306 LF Fortran 95 Language Reference



• TIMER intrinsic subroutine

• SEGMENT and OFFSET intrinsic functions

• VAL and LOC intrinsic functions

• The following service subroutines: ABORT, BEEP, BIC, BIS, CLOCK, CLOCKM, 
DATE, ERRSAV, ERRSTR, ERRSET, ERRTRA, FDATE, FLUSH, FREE, 
GETARG, GETDAT, GETLOG, GETPARM, GETTIM, GMTIME, IBTOD, 
IDATE, IETOM, ITIME, IVALUE, LTIME, MTOIE, PERROR, PRECFILL, 
PRNSET, QSORT, SETRCD, SETBIT, SLEEP, TIME

• The following service functions: ACCESS, ALARM, BIT, CHDIR, CHMOD, 
CTIME, DRAND, DTIME, ETIME, FGETC, FPUTC, FSEEK, FSTAT, FTELL, 
GETC, GETCWD, GETFD, GETPID, HOSTNM, IARGC, IERRNO, INMAX, 
IRAND, JDATE, KILL, LNBLNK, LONG, LSTAT, MALLOC, NARGS, PUTC, 
RAN, RAND, RENAME, RINDEX, RTC, SECOND, SECNDS, SETDAT, SET-
TIM, SHORT, SIGNAL, STAT, TIMEF, UNLINK

Additional information on service routines is in the file readme_service_routines.txt 
(Windows) or service_routines (Linux).
LF Fortran 95 Language Reference 307



Appendix D    Porting Extensions
308 LF Fortran 95 Language Reference



E Glossary
action statement:  A single statement specifying a computational action.

actual argument:  An expression, a variable, a procedure, or an alternate return specifier that 
is specified in a procedure reference.

allocatable array:  A named array having the ALLOCATABLE attribute.  Only when it has 
space allocated for it does it have a shape and may it be referenced or defined.

argument:  An actual argument or a dummy argument.

argument association:  The relationship between an actual argument and a dummy argu-
ment during the execution of a procedure reference.

argument keyword:  A dummy argument name.  It may be used in a procedure reference 
ahead of the equals symbol provided the procedure has an explicit interface.

array:  A set of scalar data, all of the same type and type parameters, whose individual ele-
ments are arranged in a rectangular pattern.  It may be a named array, an array section, a 
structure component, a function value, or an expression.  Its rank is at least one.  

array element:  One of the scalar data that make up an array that is either named or is a struc-
ture component.

array pointer:  A pointer to an array.

array section:  A subobject that is an array and is not a structure component.

array-valued:  Having the property of being an array.

assignment statement:  A statement of the form ‘‘variable = expression’’.

association:  Name association, pointer association, or storage association.

assumed-size array:  A dummy array whose size is assumed from the associated actual argu-
ment.  Its last upper bound is specified by an asterisk.
LF Fortran 95 Language Reference 309



Appendix E    Glossary
attribute:  A property assigned to a data object that modifies how the object behaves. The 
property may be specified in a type declaration statement, or in an attribute assignment 
statement.

automatic data object:  A data object that is a local entity of a subprogram, that is not a 
dummy argument, and that has a nonconstant CHARACTER length or array bound.

belong:  If an EXIT or a CYCLE statement contains a construct name, the statement belongs 
to the DO construct using that name.  Otherwise, it belongs to the innermost DO construct in 
which it appears.

block:  A sequence of executable constructs embedded in another executable construct, 
bounded by statements that are particular to the construct, and treated as an integral unit.

block data program unit:  A program unit that provides initial values for data objects in 
named common blocks.

bounds:  For a named array, the limits within which the values of the subscripts of its array 
elements must lie.

character:  A letter, digit, or other symbol.

character string:  A sequence of characters numbered from left to right 1, 2, 3, .  .  .

collating sequence:  The order of all the different characters in a particular character set.

common block:  A block of physical storage that may be accessed by any of the scoping units 
in an executable program.

component:  A constituent of a derived type.

conformable:  Two arrays are said to be conformable if they have the same shape.  A scalar 
is conformable with any array.

conformance:  An executable program conforms to the standard if it uses only those forms 
and relationships described therein and if the executable program has an interpretation 
according to the standard.  A program unit conforms to the standard if it can be included in 
an executable program in a manner that allows the executable program to be standard con-
forming.  A processor conforms to the standard if it executes standard-conforming programs 
in a manner that fulfills the interpretations prescribed in the standard.

connected:
For an external unit, the property of referring to an external file.

 For an external file, the property of having an external unit that refers to it.

constant:  A data object whose value must not change during execution of an executable pro-
gram.  It may be a named constant or a literal constant.

constant expression:  An expression satisfying rules that ensure that its value does not vary 
during program execution.
310 LF Fortran 95 Language Reference



construct: A sequence of statements starting with a CASE, DO, IF, or WHERE statement 
and ending with the corresponding terminal statement.

contiguous: Having the property of being adjoining, or adjacent to.

data: A set of quantities that may have any of the set of values specified for its data type.

data entity:  A data object, the result of the evaluation of an expression, or the result of the 
execution of a function reference (called the function result).  A data entity has a data type 
(either intrinsic or derived) and has, or may have, a data value (the exception is an undefined 
variable).  Every data entity has a rank and is thus either a scalar or an array.

data object:  A data entity that is a constant, a variable, or a subobject of a constant or 
variable.

data type:  A named category of data that is characterized by a set of values, together with a 
way to denote these values and a collection of operations that interpret and manipulate the 
values.  For an intrinsic type, the set of data values depends on the values of the type 
parameters.

datum:  A single quantity that may have any of the set of values specified for its data type.

deferred shape: The declaration of an arrays rank only, leaving the size and shape of the 
array undefined.

definable:  A variable is definable if its value may be changed by the appearance of its name 
or designator on the left of an assignment statement.  An allocatable array that has not been 
allocated is an example of a data object that is not definable.  An example of a subobject that 
is not definable is C when C is an array that is a constant and I is an INTEGER variable.

defined:  For a data object, the property of having or being given a valid value.

defined assignment statement:  An assignment statement that is not an intrinsic assignment 
statement and is defined by a subroutine and an interface block that specifies ASSIGNMENT 
(=).

defined operation:  An operation that is not an intrinsic operation and is defined by a func-
tion that is associated with a generic identifier.

derived type:  A type whose data have components, each of which is either of intrinsic type 
or of another derived type.

designator:  See subobject designator.

disassociated:  A pointer is disassociated following execution of a DEALLOCATE or NUL-
LIFY statement, or following pointer association with a disassociated pointer.

dummy argument:  An entity whose name appears in the parenthesized list following the 
procedure name in a FUNCTION statement, a SUBROUTINE statement, an ENTRY state-
ment, or a statement function statement.

dummy array:  A dummy argument that is an array.
LF Fortran 95 Language Reference 311



Appendix E    Glossary
dummy pointer:  A dummy argument that is a pointer.

dummy procedure:  A dummy argument that is specified or referenced as a procedure.

elemental:  An adjective applied to an intrinsic operation, procedure, or assignment state-
ment that is applied independently to elements of an array or corresponding elements of a set 
of conformable arrays and scalars.

entity:  The term used for any of the following:  a program unit, a procedure, an operator, an 
interface block, a common block, an external unit, a statement function, a type, a named vari-
able, an expression, a component of a structure, a named constant, a statement label, a 
construct, or a namelist group.

executable construct:  A CASE, DO, IF, or WHERE construct or an action statement.

executable program:  A set of program units that includes exactly one main program.

executable statement:  An instruction to perform or control one or more computational 
actions.

explicit interface:  For a procedure referenced in a scoping unit, the property of being an 
internal procedure, a module procedure, an intrinsic procedure, an external procedure that has 
an interface block, a recursive procedure reference in its own scoping unit, or a dummy pro-
cedure that has an interface block.

explicit-shape array:  A named array that is declared with explicit bounds.

expression:  A sequence of operands, operators, and parentheses.  It may be a variable, a con-
stant, a function reference, or may represent a computation.

extent:  The size of one dimension of an array.

external file:  A sequence of records that exists in a medium external to the executable 
program.

external procedure:  A procedure that is defined by an external subprogram or by a means 
other than Fortran.

external subprogram:  A subprogram that is not contained in a main program, module, or 
another subprogram.  

external unit:  A mechanism that is used to refer to an external file.  It is identified by a non-
negative INTEGER.

file:  An internal file or an external file.

function:  A procedure that is invoked in an expression.

function result:  The data object that returns the value of a function.

function subprogram:  A sequence of statements beginning with a FUNCTION statement 
that is not in an interface block and ending with the corresponding END statement.
312 LF Fortran 95 Language Reference



generic identifier:  A lexical token that appears in an INTERFACE statement and is associ-
ated with all the procedures in the interface block.

global entity:  An entity identified by a lexical token whose scope is an executable program.  
It may be a program unit, a common block, or an external procedure.

host:  A main program or subprogram that contains an internal procedure is called the host 
of the internal procedure.  A module that contains a module procedure is called the host of 
the module procedure.

host association:  The process by which an internal subprogram, module subprogram, or 
derived type definition accesses entities of its host.

implicit interface:  A procedure referenced in a scoping unit other than its own is said to 
have an implicit interface if the procedure is an external procedure that does not have an inter-
face block, a dummy procedure that does not have an interface block, or a statement function.

initialization expression: An expression that can be evaluated at compile time.

inquiry function:  An intrinsic function whose result depends on properties of the principal 
argument other than the value of the argument.

instance of a subprogram:  The copy of a subprogram that is created when a procedure 
defined by the subprogram is invoked.

intent:  An attribute of a dummy argument that is neither a procedure nor a pointer, which 
indicates whether it is used to transfer data into the procedure, out of the procedure, or both.

interface block:  A sequence of statements from an INTERFACE statement to the corre-
sponding END INTERFACE statement.

interface body:  A sequence of statements in an interface block from a FUNCTION or SUB-
ROUTINE statement to the corresponding END statement.

interface of a procedure:  See procedure interface.

internal file:  A CHARACTER variable that is used to transfer and convert data from inter-
nal storage to internal storage.

internal procedure:  A procedure that is defined by an internal subprogram.

internal subprogram:  A subprogram contained in a main program or another subprogram.

intrinsic:  An adjective applied to types, operations, assignment statements, and procedures 
that are defined in the standard and may be used in any scoping unit without further definition 
or specification.

invoke:
 To call a subroutine by a CALL statement or by a defined assignment statement.

 To call a function by a reference to it by name or operator during the evaluation of 
an expression.
LF Fortran 95 Language Reference 313



Appendix E    Glossary
keyword argument: The association of a calling program’s argument with the subprogram’s 
dummy argument by assigning a value to the dummy argument’s keyword. Keywords are 
associated with dummy arguments using either an implicit or explicit interface.

kind type parameter:  A parameter whose values label the available kinds of an intrinsic 
type.

label:  See statement label.

length of a character string:  The number of characters in the character string.

lexical token:  A sequence of one or more characters with an indivisible interpretation.

line:  A source-form record containing from 0 to 132 characters.

literal constant:  A constant without a name.

local entity:  An entity identified by a lexical token whose scope is a scoping unit.

logical mask: An array of logical values which can be derived from a logical array variable 
or a logical array expression.

main program:  A program unit that is not a module, subprogram, or block data program 
unit.

model representation: A formula which describes the finite set of numbers representable by 
a digital computer.

module:  A program unit that contains or accesses definitions to be accessed by other pro-
gram units.

module procedure:  A procedure that is defined by a module subprogram.

module subprogram:  A subprogram that is contained in a module but is not an internal 
subprogram.

name:  A lexical token consisting of a letter followed by up to 30 alphanumeric characters 
(letters, digits, and underscores).  

name association:  Argument association, use association, or host association.

named:  Having a name.

named constant:  A constant that has a name.  

numeric type:  INTEGER, REAL or COMPLEX type.

object:  Data object.

obsolescent feature:  A feature that was considered to have been redundant in FORTRAN 
77 but that is still in frequent use. Obsolescent features have modern counterparts that allow 
a greater measure of safety with less effort on the part of the programmer. 

operand:  An expression that precedes or succeeds an operator.
314 LF Fortran 95 Language Reference



operation:  A computation involving one or two operands.

operator:  A lexical token that specifies an operation.

pointer:  A variable that has the POINTER attribute.  A pointer must not be referenced or 
defined unless it is pointer associated with a target.  If it is an array, it does not have a shape 
unless it is pointer associated.

pointer assignment:  The pointer association of a pointer with a target by the execution of a 
pointer assignment statement or the execution of an assignment statement for a data object of 
derived type having the pointer as a subobject.

pointer assignment statement:  A statement of the form ‘‘pointer-name => target’’.

pointer associated:  The relationship between a pointer and a target following a pointer 
assignment or a valid execution of an ALLOCATE statement.

pointer association:  The process by which a pointer becomes pointer associated with a 
target.

positional argument: The association of a calling program’s argument list with the subpro-
gram’s dummy argument list in sequential order. 

present:  A dummy argument is present in an instance of a subprogram if it is associated with 
an actual argument and the actual argument is a dummy argument that is present in the invok-
ing procedure or is not a dummy argument of the invoking procedure.

procedure:  A computation that may be invoked during program execution.  It may be a 
function or a subroutine.  It may be an intrinsic procedure, an external procedure, a module 
procedure, an internal procedure, a dummy procedure, or a statement function.  A subpro-
gram may define more than one procedure if it contains ENTRY statements.

procedure interface:  The characteristics of a procedure, the name of the procedure, the 
name of each dummy argument, and the generic identifiers (if any) by which it may be 
referenced.

processor:  The combination of a computing system and the mechanism by which executable 
programs are transformed for use on that computing system.

program:  See executable program and main program.

program unit:  The fundamental component of an executable program.  A sequence of state-
ments and comment lines.  It may be a main program, a module, an external subprogram, or 
a block data program unit.

rank:  The number of dimensions of an array.  Zero for a scalar.

record:  A sequence of values that is treated as a whole within a file.
LF Fortran 95 Language Reference 315



Appendix E    Glossary
reference:  The appearance of a data object name or subobject designator in a context requir-
ing the value at that point during execution, or the appearance of a procedure name, its 
operator symbol, or a defined assignment statement in a context requiring execution of the 
procedure at that point.  

scalar:
 A single datum that is not an array.

 Not having the property of being an array.

scope:  That part of an executable program within which a lexical token has a single inter-
pretation.  It may be an executable program, a scoping unit, a single statement, or a part of a 
statement.

scoping unit:  One of the following:
 A derived-type definition,

 An interface body, excluding any derived-type definitions and interface bodies con-
tained within it, or

 A program unit or subprogram, excluding derived-type definitions, interface bodies, 
and subprograms contained within it.

section subscript:  A subscript, vector subscript, or subscript triplet in an array section 
selector.

selector:  A syntactic mechanism for designating:
 Part of a data object.  It may designate a substring, an array element, an array section, 

or a structure component.

 The set of values for which a CASE block is executed.

shape: The rank and extents of an array.  The shape of an array may be represented by a rank-
one array whose size is the rank of the array, and whose elements are the extents of each 
dimension.

size:  For an array, the total number of elements.

specification expression: A scalar INTEGER expression that can be evaluated on entry to 
the program unit at the time of execution.

statement:  A sequence of lexical tokens.  It usually consists of a single line, but the amper-
sand symbol may be used to continue a statement from one line to another and the semicolon 
symbol may be used to separate statements within a line.

statement entity:  An entity identified by a lexical token whose scope is a single statement 
or part of a statement.

statement function:  A procedure specified by a single statement that is similar in form to 
an assignment statement.
316 LF Fortran 95 Language Reference



statement keyword:  A word that is part of the syntax of a statement and that may be used 
to identify the statement.

statement label:  A lexical token consisting of up to five digits that precedes a statement and 
may be used to refer to the statement.

stride:  The increment specified in a subscript triplet.

string delimiter: A character which is used in source code to mark the beginning and end of 
character data. Fortran string delimiters are the apostrophe (‘) and the quote (“).

structure:  A scalar data object of derived type.

structure component:  The part of a data object of derived type corresponding to a compo-
nent of its type.

subobject:  A portion of a named data object that may be referenced or defined indepen-
dently of other portions.  It may be an array element, an array section, a structure component, 
or a substring.

subobject designator:  A name, followed by one or more of the following:  component 
selectors, array section selectors, array element selectors, and substring selectors.

subprogram:  A function subprogram or a subroutine subprogram.  

subroutine:  A procedure that is invoked by a CALL statement or by a defined assignment 
statement.

subroutine subprogram:  A sequence of statements beginning with a SUBROUTINE state-
ment that is not in an interface block and ending with the corresponding END statement.

subscript:  One of the list of scalar INTEGER expressions in an array element selector.  

subscript triplet:  An item in the list of an array section selector that contains a colon and 
specifies a regular sequence of INTEGER values.

substring:  A contiguous portion of a scalar character string.  Note that an array section can 
include a substring selector; the result is called an array section and not a substring.

target:  A named data object specified in a type declaration statement containing the TAR-
GET attribute, a data object created by an ALLOCATE statement for a pointer, or a subobject 
of such an object.

type:  Data type.

type declaration statement:  An INTEGER, REAL, DOUBLE PRECISION, COMPLEX, 
CHARACTER, LOGICAL, or TYPE statement.

type parameter:  A parameter of an intrinsic data type.  KIND= and LEN= are the type 
parameters.

type parameter values:  The values of the type parameters of a data entity of an intrinsic 
data type.
LF Fortran 95 Language Reference 317



Appendix E    Glossary
ultimate component:  For a derived-type or a structure, a component that is of intrinsic type 
or has the POINTER attribute, or an ultimate component of a component that is a derived 
type and does not have the POINTER attribute.

undefined:  For a data object, the property of not having a determinate value.

use association:  The association of names in different scoping units specified by a USE 
statement.

variable:  A data object whose value can be defined and redefined during the execution of 
an executable program.  It may be a named data object, an array element, an array section, a 
structure component, or a substring.  

vector subscript:  A section subscript that is an INTEGER expression of rank one.

whole array:  A named array without a subscript reference.
318 LF Fortran 95 Language Reference



F ASCII Character Set
FORTRAN programs may use the full ASCII Character Set as listed below.  The characters 
are listed in collating sequence from first to last.  Characters preceded by up arrows (^) are 
ASCII Control Characters.

DOS uses <control-Z> (^Z) for the end-of-file delimiter and <control-M> (^M) for car-
riage return.  To enter these two characters in a CHARACTER constant, use concatenation 
and the CHAR function.
LF Fortran 95 Language Reference 319



Appendix F    ASCII Character Set
Attempting to input or output ^Z (end-of-file), ^M (new line), or ^C (break) in a sequential 
file is not recommended and may produce undesirable results.

Table 22: ASCII Chart

Character HEX 
Value

Decimal 
Value

ASCII 
Abbr. Description

^@ 00 0 NUL null<R>

^A 01 1 SOH start of heading 

^B 02 2 STX start of text 

^C 03 3 ETX break, end of text 

^D 04 4 EOT end of transmission 

^E 05 5 ENQ enquiry 

^F 06 6 ACK acknowledge 

^G 07 7 BEL bell 

^H 08 8 BS backspace 

^I 09 9 HT horizontal tab 

^J 0A 10 LF line feed 

^K 0B 11 VT vertical tab 

^L 0C 12 FF form feed 

^M 0D 13 CR carriage return 

^N 0E 14 SO shift out 

^O 0F 15 SI shift in 

^P 10 16 DLE data link escape 

^Q 11 17 DC1 device control 1 

^R 12 18 DC2 device control 2 

^S 13 19 DC3 device control 3 

^T 14 20 DC4 device control 4 

^U 15 21 NAK negative acknowledge 
320 LF Fortran 95 Language Reference



^V 16 22 SYN synchronous idle 

^W 17 23 ETB end of transmission block 

^X 18 24 CAN cancel 

^Y 19 25 EM end of medium 

^Z 1A 26 SUB end-of-file

^[ 1B 27 ESC escape 

^\ 1C 28 FS file separator 

^] 1D 29 GS group separator 

^^ 1E 30 RS record separator 

^ 1F 31 US unit separator 

20 32 SP space, blank 

! 21 33 ! exclamation point 

“ 22 34 “ quotation mark 

# 23 35 # number sign 

$ 24 36 $ dollar sign 

% 25 37 % percent sign 

& 26 38 & ampersand 

‘ 27 39 ‘ apostrophe 

( 28 40 ( left parenthesis 

) 29 41 ) right parenthesis 

* 2A 42 * asterisk 

+ 2B 43 + plus 

, 2C 44 , comma 

- 2D 45 - hyphen, minus 

Table 22: ASCII Chart

Character HEX 
Value

Decimal 
Value

ASCII 
Abbr. Description
LF Fortran 95 Language Reference 321



Appendix F    ASCII Character Set
. 2E 46 . period, decimal point 

/ 2F 47 / slash, slant  

0 30 48 0 zero 

1 31 49 1 one 

2 32 50 2 two 

3 33 51 3 three 

4 34 52 4 four 

5 35 53 5 five  

6 36 54 6 six 

7 37 55 7 seven 

8 38 56 8 eight 

9 39 57 9 nine 

: 3A 58 : colon 

; 3B 59 ; semicolon 

< 3C 60 < less than 

= 3D 61 = equals 

> 3E 62 > greater than 

? 3F 63 ? question mark 

@ 40 64 @ commercial at sign

A 41 65 A uppercase A 

B 42 66 B uppercase B 

C 43 67 C uppercase C 

D 44 68 D uppercase D 

E 45 69 E uppercase E 

Table 22: ASCII Chart

Character HEX 
Value

Decimal 
Value

ASCII 
Abbr. Description
322 LF Fortran 95 Language Reference



F 46 70 F uppercase F 

G 47 71 G uppercase G 

H 48 72 H uppercase H 

I 49 73 I uppercase I 

J 4A 74 J uppercase J 

K 4B 75 K uppercase K 

L 4C 76 L uppercase L 

M 4D 77 M uppercase M 

N 4E 78 N uppercase N 

O 4F 79 O uppercase O 

P 50 80 P uppercase P 

Q 51 81 Q uppercase Q 

R 52 82 R uppercase R 

S 53 83 S uppercase S 

T 54 84 T uppercase T 

U 55 85 U uppercase U 

V 56 86 V uppercase V 

W 57 87 W uppercase W 

X 58 88 X uppercase X 

Y 59 89 Y uppercase Y 

Z 5A 90 Z uppercase Z 

[ 5B 91 [ left bracket 

\ 5C 92 \ backslash  

] 5D 93 ] right bracket 

Table 22: ASCII Chart

Character HEX 
Value

Decimal 
Value

ASCII 
Abbr. Description
LF Fortran 95 Language Reference 323



Appendix F    ASCII Character Set
^ 5E 94 ^ up-arrow, circumflex, caret 

_ 5F 95 UND back-arrow, underscore 

‘ 60 96 GRA grave accent

a 61 97 LCA lowercase a 

b 62 98 LCB lowercase b 

c 63 99 LCC lowercase c 

d 64 100 LCD lowercase d 

e 65 101 LCE lowercase e 

f 66 102 LCF lowercase f 

g 67 103 LCG lowercase g 

h 68 104 LCH lowercase h 

i 69 105 LCI lowercase i 

j 6A 106 LCJ lowercase j 

k 6B 107 LCK lowercase k 

l 6C 108 LCL lowercase l 

m 6D 109 LCM lowercase m 

n 6E 110 LCN lowercase n 

o 6F 111 LCO lowercase o 

p 70 112 LCP lowercase p 

q 71 113 LCQ lowercase q 

r 72 114 LCR lowercase r 

s 73 115 LCS lowercase s 

t 74 116 LCT lowercase t 

Table 22: ASCII Chart

Character HEX 
Value

Decimal 
Value

ASCII 
Abbr. Description
324 LF Fortran 95 Language Reference



u 75 117 LCU lowercase u 

v 76 118 LCV lowercase v 

w 77 119 LCW lowercase w 

x 78 120 LCX lowercase x  

y 79 121 LCY lowercase y 

z 7A 122 LCZ lowercase z 

{ 7B 123 LBR left brace 

| 7C 124 VLN vertical line 

} 7D 125 RBR right brace 

~ 7E 126 TIL tilde 

7F 127 DEL,RO delete, rubout

Table 22: ASCII Chart

Character HEX 
Value

Decimal 
Value

ASCII 
Abbr. Description
LF Fortran 95 Language Reference 325



Appendix F    ASCII Character Set
326 LF Fortran 95 Language Reference



Index
A
A edit descriptor 28
ABS function 61, 284
ACCESS= specifier 162, 209
ACHAR function 62, 292
ACOS function 62, 289
ACOSD function 300
action statement 309
ACTION= specifier 162, 209
actual argument 309
adjustable array 15
ADJUSTL function 63, 292
ADJUSTR function 63, 292
ADVANCE= specifier 230, 271
AIMAG function 64, 284
AIMAX0 function 286
AIMIN0 function 286
AINT function 64, 284
AJMAX0 function 286
AJMIN0 function 286
ALGAMA function 300
ALL function 65, 294
allocatable array 13, 309
ALLOCATABLE attribute and 

statement 9, 36, 66
ALLOCATE statement 19, 39, 67–

69
ALLOCATED function 69, 294, 

296
ALOG function 290
ALOG10 function 290
alternate return 50
AMAX0 function 286
AMAX1 function 286
AMIN0 function 286
AMIN1 function 286
AMOD function 287
ANINT function 69, 284
ANY function 70, 294
apostrophe edit descriptor 30
apostrophes 30
argument 309
argument association 309
argument keyword 309
arguments
alternate return 50
intent 49
keyword 49
optional 50
procedure 49–51

arithmetic IF statement 34, 71
arithmetic operators 21
array 309
array constructor 15
array element 11, 309
array element order 11
array pointer 13, 309
array reference 10
array section 12, 309
arrays 10–16

adjustable 15
allocatable 13
assumed shape 14
assumed size 14
automatic 15
constructor 15
dynamic 13
element 11
element order 11
pointer 13
reference 10
section 12
subscript triplet 12
vector subscript 12

array-valued 309
ASIN function 72, 289
ASIND function 300
ASSIGN statement 39, 73
assigned GOTO statement 34, 73
assignment and storage statements 39
assignment statement 39, 74, 309
assignments

defined 54
ASSOCIATED function 77, 296
association 309
assumed-shape array 14
assumed-size array 14, 309
asterisk comment character 3
ATAN function 78, 289
ATAN2 function 79, 289
LF Fo
ATAN2D function 300
ATAND function 300
attribute 8–9, 310
automatic array 15
automatic data object 310
AUTOMATIC statement 305

B
B edit descriptor 26
BACKSPACE statement 23, 38, 80
belong 310
binary files 24
BIT_SIZE function 81, 296
BITEST function 298
BJTEST function 298
BLANK= specifier 162, 209
blanks 3
block 310
block data program unit 310
BLOCK DATA statement 39, 56, 81
BLOCKSIZE= specifier 162, 209
BN edit descriptor 30
bounds 310
BTEST function 82, 298
BYTE statement 306
BZ edit descriptor 30

C
C comment character 3
CABS function 284
CALL statement 34, 83
CARG function 86, 302
carriage control 24
CARRIAGECONTROL= 

specifier 162, 209
CASE construct 88
CASE statement 34, 88
CCOS function 289
CDABS function 284
CDCOS function 289
CDEXP function 289
CDLOG function 290
CDSIN function 290
CDSQRT function 290
CEILING function 90, 284
rtran 95 Language Reference 327



Index
CEXP function 289
CHAR function 91, 292
character 310
CHARACTER constant edit 

descriptors 30
CHARACTER data type 4, 7
CHARACTER edit descriptor 28, 

30
CHARACTER literal 7
character set 1
CHARACTER statement 36
character string 310
CLOG function 290
CLOSE statement 38, 94
CMPLX function 95, 284
collating sequence 310
colon edit descriptor 30
column 3
comments 3

asterisk 3
trailing 3

common block 36, 59, 96, 310
COMMON statement 36, 96–98
COMPLEX data type 4, 7
COMPLEX literal 7
COMPLEX statement 36
component 310
computed GOTO statement 34, 

100
concatenation operator 21
conformable 310
conformance 310
CONJG function 101, 284
connected 310
constant 6
constant expression 310
construct 311
construct name 42
constructors

array 15
structure 18

constructs
executable 42

CONTAINS statement 39, 48, 
102

contiguous 311
continuation character 4
continuation line 3, 4, 305
CONTINUE statement 34, 103
control edit descriptors 29
328 LF Fortran 95 Language Refe
control statements 34–35
COS function 103, 289
COSD function 300
COSH function 104, 289
COTAN function 300
COUNT function 104, 294
CPU_TIME subroutine 105, 299
CQABS function 284
CQCOS function 289
CQSQRT function 290
Cray pointer 217
CSHIFT function 106, 294
CSIN function 290
CSQRT function 290
CYCLE Statement 107
CYCLE statement 34

D
D edit descriptor 26
DABS function 284
DACOS function 289
DACOSD function 300
DASIN function 289
DASIND function 300
data 4–19, 311

literal 6
named 8

data edit descriptors 25
data entity 311
data object 311
DATA statement 36, 108
data type 311
data types

CHARACTER 4, 7
COMPLEX 4, 7
DOUBLE PRECISION 4
INTEGER 4, 6
LOGICAL 4, 7
REAL 4, 6

DATAN function 289
DATAN2 function 289
DATAN2D function 300
DATAND function 300
DATE_AND_TIME subroutine 110, 

299
datum 311
DBLE function 111, 284
DBLEQ function 284
DCMPLX function 284
DCONJG function 284

DCOS function 289
DCOSD function 300
DCOSH function 289
DCOTAN function 300
DDIM function 285
DEALLOCATE statement 39, 112
deferred shape 311
deferred-shape specifier 13
definable 311
defined 311
defined assignment 54
defined assignment statement 311
defined operation 53, 311
DELIM= specifier 162, 209
DERF function 300
DERFC function 300
derived type component reference 18
derived types 16–18, 56, 311

component reference 18
declaration 17
definition 16
structure constructor 18

DEXP function 289
DFLOAT function 284
DFLOTI function 287
DFLOTJ function 287
DGAMMA function 301
DIGITS function 113, 296
DIM function 113, 285
DIMAG function 284
DIMENSION attribute and 

statement 8, 10, 36, 114
DINT function 284
DIRECT= specifier 162
disassociated 311
DLGAMA function 300
DLL_EXPORT attribute and 

statement 9, 36, 115
DLL_IMPORT attribute and 

statement 9, 36, 116
DLOG function 290
DLOG10 function 290
DMAX1 function 286
DMIN1 function 286
DMOD function 287
DNINT function 284
DO Construct 116
DO statement 34, 116
DO UNTIL statement 305
DOT_PRODUCT function 119, 294
rence



Index
DOUBLE PRECISION data type 4
DOUBLE PRECISION 

statement 36
DPROD function 122, 285
DREAL function 284
DSIGN function 288
DSIN function 290
DSIND function 301
DSINH function 290
DSQRT function 290
DTAN function 290
DTAND function 301
DTANH function 291
dummy argument 311
dummy array 311
dummy pointer 312
dummy procedure 51, 312
DVCHK subroutine 122, 302
dynamic arrays 13

E
E edit descriptor 26
edit descriptors 25–31

A 28
apostrophe 30
B 26
BN 30
BZ 30
CHARACTER 28, 30
CHARACTER constant 30
colon 30
control 29
D 26
data 25
E 26
EN 27
ES 27
F 26
G 28
generalized 28
H 31
I 26
INTEGER 26
L 28
LOGICAL 28
numeric 26
O 26
P 30
position 29
Q 26
quotation mark 30
REAL 26
S 30
slash 29
SP 30
SS 30
T 29
TL 29
TR 29
X 29
Z 26

elemental 312
elemental procedure 44, 48, 123
ELSE IF statement 34, 156
ELSE statement 34, 156
ELSE WHERE statement 268
ELSEWHERE statement 34, 268
EN edit descriptor 27
END DO statement 34, 116
END IF statement 35, 156
END INTERFACE statement 170
END MAP statement 305
END SELECT statement 35, 88
END statement 39, 125
END STRUCTURE statement 305
END TYPE statement 16
END UNION statement 305
END WHERE statement 35, 268
END= specifier 230, 271
ENDFILE statement 23, 38, 126
entity 312
ENTRY statement 35
EOR= specifier 230, 271
EOSHIFT function 129, 294
EPSILON function 130, 296
EQUIVALENCE statement 36, 131
ERF function 300
ERFC function 300
ERR= specifier 80, 94, 127, 162, 209, 

230, 236, 271
ERROR subroutine 132, 302
ES edit descriptor 27
executable construct 312
executable constructs 42
executable program 312
executable statement 312
EXIST= specifier 162
EXIT statement 35, 133
EXIT subroutine 133, 302
EXP function 134, 289
LF Fo
explicit interface 56, 312
explicit interfaces 51
explicit-shape array 312
EXPONENT function 134, 285
expression 312
expressions 19–54
extent 312
EXTERNAL attribute and 

statement 8, 36, 135
external file 312
external function 47
external procedure 43, 312
external subprogram 312
external unit 312

F
F edit descriptor 26
file 312
file position 22
file types 23–24
FILE= specifier 162, 209
files 22–24

carriage control 24
formatted direct 23
formatted sequential 23
internal 24
position 22
unformatted direct 24
unformatted sequential 23

FIND statement 305
fixed source form 2
FLEN= specifier 162
FLOAT Function 287
FLOATI function 287
FLOATJ function 287
FLOOR function 136, 285
FLUSH subroutine 137, 302
FMT= specifier 230, 271
FORALL construct 137
FORALL statement 138
FORM= specifier 162, 209
format control 25
format specification 25
FORMAT statement 25, 38, 139
formatted direct file 23
formatted input/output 25–31
formatted sequential file 23
FORMATTED= specifier 162
FRACTION function 146, 285
free source form 3
rtran 95 Language Reference 329



Index
function 312
function reference 46
function result 312
FUNCTION statement 39, 47, 

146
function subprogram 312
functions 45

external 47
reference 46
statement 47

G
G edit descriptor 28
GAMMA function 301
Gamma function 175
generalized edit descriptor 28
generic identifier 313
generic interfaces 53
generic procedure 44
GETCL subroutine 149, 302
GETENV function 149
global data 56
global entity 313
GOTO statement 35, 134, 150, 

178
GOTO, computed 34, 100

H
H edit descriptor 31
HFIX function 285
Hollerith constant 31, 306
host 313
host association 59, 313
HUGE function 150, 296

I
I edit descriptor 26
I2ABS function 284
I2DIM function 285
I2MAX0 function 286
I2MIN0 function 286
I2MOD function 287
I2NINT function 287
I2SIGN function 288
IABS function 284
IACHAR function 151, 292
IAND function 152, 298
IBCLR function 152, 298
IBITS function 153, 298
330 LF Fortran 95 Language Refe
IBSET function 154, 298
ICHAR function 155, 292
IDIM function 285
IDINT function 285
IDNINT function 287
IEOR function 155, 298
IF construct 156
IF statement 35, 157
IFIX function 285
IF-THEN statement 35, 156
IIABS function 284
IIAND function 298
IIBCLR function 298
IIBITS function 298
IIBSET function 298
IIDIM function 285
IIDINT function 285
IIDNNT function 287
IIEOR function 298
IIFIX function 285
IINT function 285
IIOR function 298
IISHFT function 298
IISHFTC function 298
IISIGN function 288
IMAX0 function 286
IMAX1 function 286
IMIN0 function 286
IMIN1 function 286
IMOD function 287
implicit interface 313
IMPLICIT statement 8, 36, 158
implicit typing 8
IMPLICIT UNDEFINED 

statement 306
implied-do 108, 220, 229, 271
INCLUDE line 160
INDEX function 161, 292
ININT function 287
initialization expression 20, 313
INOT function 299
input/output 22–33

edit descriptors 25–31
editing 25–33
formatted 25–31
list-directed 31
namelist 33
non-advancing 22, 23
statements 38–39

input/output units 22

preconnected 22
INQUIRE statement 38, 162
inquiry function 313
instance of a subprogram 313
INT function 166, 285
INT2 function 285
INT4 function 285
INTEGER data type 4, 6
INTEGER division 22
INTEGER edit descriptors 26
INTEGER literal 6
INTEGER statement 36, 167
intent 313
INTENT attribute and statement 9, 

36, 49, 168
interface 51
interface block 52, 313
interface body 313
INTERFACE statement 40, 51, 52, 

169, 170
interfaces

explicit 51, 56
generic 53

internal file 24, 313
internal procedure 43, 48, 313
internal subprogram 313
intrinsic 313
INTRINSIC attribute and statement 9, 

37, 175
intrinsic data types 4
intrinsic operations 21
INVALOP subroutine 176, 302
invoke 313
IOR function 176, 213, 262, 298
IOSTAT= specifier 80, 94, 127, 162, 

209, 230, 236, 271
IOSTAT_MSG subroutine 177, 302
IQINT function 285
IQNINT function 287
ISHFT function 178, 298
ISHFTC function 179, 298
ISIGN function 288
IZEXT function 301
IZEXT2 function 301

J
JIABS function 284
JIAND function 298
JIBCLR function 298
JIBITS function 298
rence



Index
JIBSET function 298
JIDIM function 285
JIDINT function 285
JIDNNT function 287
JIEOR function 298
JIFIX function 285
JINT function 285
JIOR function 298
JISHFT function 298
JISHFTC function 298
JISIGN function 288
JMAX0 function 286
JMAX1 function 286
JMIN0 function 286
JMIN1 function 286
JMOD function 287
JNINT function 287
JNOT function 299
JZEXT function 301
JZEXT2 function 301
JZEXT4 function 301

K
keyword argument 49, 314
kind 4
KIND function 179, 296
kind type parameter 4, 314

L
L edit descriptor 28
label 314
LBOUND function 180, 294, 296
LEN function 181, 292, 296
LEN_TRIM function 182
length 6
length of a character string 314
length type parameter 6
LENTRIM function 292
lexical token 314
LGE function 182, 292
LGT function 183, 292
line 314
list-directed formatting 31
list-directed input/output 31
literal constant 6, 314
literal data 6
literals

CHARACTER 7
COMPLEX 7
INTEGER 6
LOGICAL 7
REAL 6

LLE function 184, 292
LLT function 185, 292
LOC function 307
local entity 314
LOG function 186, 290
LOG10 function 187, 290
LOGICAL data type 4, 7
LOGICAL edit descriptor 28
LOGICAL function 187, 299
LOGICAL literal 7
logical mask 314
logical operators 21
LOGICAL statement 37, 188

M
main program 55, 314
MAP statement 305
masked array assignment 268
MATMUL function 190, 294
MAX function 191, 286
MAX0 function 286
MAX1 function 286
MAXEXPONENT function 192, 296
MAXLOC function 192, 294
MAXVAL function 193, 294
MERGE function 194, 294
MIN function 195, 286
MIN0 function 286
MIN1 function 286
MINEXPONENT function 196, 296
MINLOC function 197, 295
MINVAL function 198, 295
ML_EXTERNAL attribute and 

statement 9, 37, 199
MOD function 199, 287
model representation 314
module 314
module procedure 58, 314
MODULE PROCEDURE 

statement 37, 201
MODULE statement 40, 57, 200
module subprogram 314
modules 56

name conflicts 58
use 58

MODULO function 202, 287
MVBITS subroutine 202, 298, 299
LF Fo
N
name 314
name association 314
NAME= specifier 162
named constant 314
named data 8
NAMED= specifier 162
namelist formatting 33
namelist input/output 33
NAMELIST statement 33, 37, 203
names 1
NDPERR function 204, 302
NDPEXC subroutine 205, 303
NEAREST function 206, 287
newlink logmask 314
NEXTREC= specifier 162
NINT function 206, 287
NML= specifier 33, 230, 271
non-advancing input/output 23
NOT function 207, 299
NULL function 208, 299
NULLIFY statement 39, 208
NUMBER= specifier 162
numeric edit descriptors 26
numeric type 314

O
O edit descriptor 26
object 314
obsolescent feature 276, 314
OFFSET function 303
OPEN statement 22, 38, 209
OPENED= specifier 162
operand 314
operation 315
operations

defined 53
intrinsic 21

operator 315
operators 21

arithmetic 21
concatenation 21
logical 21

optional argument 50
OPTIONAL attribute and 

statement 9, 37, 50, 212
OVEFL subroutine 213, 303
rtran 95 Language Reference 331



Index
P
P edit descriptor 30
PACK function 213, 262, 295
PAD= specifier 162, 209
PARAMETER attribute and 

statement 8, 37, 214
PAUSE statement 35, 215
pointer 315
pointer assignment 315
pointer assignment statement 19, 

39, 215, 315
pointer associated 315
pointer association 315
POINTER attribute and 

statement 8, 19, 37, 217
POINTER function 216, 303
pointers 19

association 19
declaration 19
pointer assignment 

statement 19
position edit descriptors 29
POSITION= specifier 162, 209
positional argument 315
PRECFILL subroutine 218, 303
PRECISION function 218, 296
pre-connected units 22
present 315
PRESENT function 50, 219, 296
PRINT statement 38, 220
PRIVATE attribute and 

statement 9, 16, 37, 221
procedure 315
procedure arguments 49–51
procedure interface 315
procedures 43–55

arguments 49–51
dummy 51
elemental 44
external 43
function 45
generic 44
interface 51
internal 43, 48
module 58
specific 44
subroutine 44

processor 315
PRODUCT function 222, 295
program 315
332 LF Fortran 95 Language Refe
PROGRAM statement 40, 55, 223
program structure statements 39–40
program unit 315
program units 55–58

block data 56
main program 55
module 56

PROMPT subroutine 303
PUBLIC attribute and statement 9, 

37, 224
pure procedures 48, 225

Q
Q edit descriptor 26
QABS function 284
QACOSD function 300
QASIND function 300
QATAN2D function 300
QATAND function 300
QCMPLX function 284
QCONJ function 284
QCOS function 289
QCOSD function 300
QCOSH function 289
QCOTAN function 300
QDIM function 285
QERF function 300
QERFC function 300
QEXP function 289
QGAMMA function 301
QIMAG function 284
QLGAMA function 300
QLOG function 290
QLOG10 function 290
QMAX1 function 286
QMIN1 function 286
QMOD function 287
QNINT function 284
QSIGN function 288
QSIN function 290
QSIND function 301
QSINH function 290
QSQRT function 290
QTAN function 290
QTAND function 301
QTANH function 291
quotation mark edit descriptor 30
quotation marks 30

R
RADIX function 226, 296
RANDOM_NUMBER 

subroutine 227, 299
RANDOM_SEED subroutine 227, 

299
RANGE function 228, 296
rank 315
READ statement 38, 229
READ= specifier 162
READWRITE= specifier 162
REAL data type 4, 6
REAL edit descriptors 26
REAL function 231, 287
REAL literal 6
REAL statement 37, 232
RECL= specifier 162, 209
record 315
RECORD statement 305
recursion 48
RECURSIVE attribute 48
reference 316
relational operators 21
REPEAT function 234, 292
RESHAPE function 16, 234, 295
RESULT option 48
RETURN statement 35, 235
REWIND statement 23, 38, 236
RRSPACING function 237, 287

S
S edit descriptor 30
SAVE attribute and statement 9, 37, 

237
scalar 316
scale factor 30
SCALE function 238, 288
SCAN function 239, 292
scope 58, 316
scoping unit 41, 56, 59, 316
section subscript 316
SEGMENT function 303
SELECT CASE statement 35, 88
SELECTED_INT_KIND function 4, 

240, 296
SELECTED_REAL_KIND 

function 5, 241, 296
selector 316
SEQUENCE attribute 9
SEQUENCE statement 16, 37, 242
rence



Index
SEQUENTIAL= specifier 162
SET_EXPONENT function 242, 

288
shape 316
SHAPE function 243, 295, 297
SIGN function 244, 288
significant blank 305
SIN function 244, 290
SIND function 301
SINH function 245, 290
size 316
SIZE function 245, 295, 297
SIZE= specifier 230, 271
slash edit descriptor 29
SNGL function 287
SNGLQ function 287
source form 2–4

fixed 2
free 3

SP edit descriptor 30
SPACING function 246, 288
special characters 1
specific procedure 44
specification expression 20, 316
specification statements 36–38
SPREAD function 247, 295
SQRT function 248, 290
SS edit descriptor 30
statement 316
statement entity 316
statement function 40, 47, 248, 316
statement keyword 317
statement label 2, 317
statement order 40
statement separator 3, 4
statements 33

assignment and storage 39
control 34–35
input/output 38–39
order 40, 41
program structure 39–40
specification 36–38

STATIC statement 305
STATUS= specifier 94, 209
STOP statement 35, 249
stride 317
string delimiter 317
structure 317
structure component 317
structure constructor 18
STRUCTURE statement 305
subobject 317
subobject designator 317
subprogram 317
subroutine 317
SUBROUTINE statement 40, 45, 250
subroutines 44
subscript 317
subscript triplet 12, 317
substring 9, 12, 317
SUM function 251, 295
SYSTEM function 252
SYSTEM subroutine 252, 303
SYSTEM_CLOCK subroutine 253, 

299

T
T edit descriptor 29
TAN function 253, 290
TAND function 301
TANH function 254, 291
target 19, 317
TARGET attribute and statement 8, 19, 

38, 255
TINY function 297
TL edit descriptor 29
TR edit descriptor 29
trailing comment 3
TRANSFER function 256, 299
TRANSPOSE function 257, 295
TRIM function 257, 293
type declaration statement 8, 317
type parameter 317
type parameter values 317
TYPE statement 38, 258

U
UBOUND function 260, 295, 297
ultimate component 318
undefined 318
UNDFL subroutine 261, 303
unformatted direct file 24
unformatted sequential file 23
UNFORMATTED= specifier 162
UNION statement 305
UNIT= specifier 80, 94, 127, 162, 209, 

230, 236, 271
units 22
UNPACK function 262, 295
use association 318
LF Fo
USE statement 38, 58, 263

V
VAL function 264, 303, 307
VALUE statement 265, 305
variable 318
vector subscript 12, 318
VERIFY Function 266
VERIFY function 293
VOLATILE attribute and 

statement 9, 38, 267

W
WHERE Construct 268
WHERE Statement 270
WHERE statement 35, 268
WRITE statement 39, 271
WRITE= specifier 162

X
X edit descriptor 29

Z
Z edit descriptor 26
rtran 95 Language Reference 333


	Introduction
	Manual Organization
	Notational Conventions

	Elements of Fortran
	Character Set
	Names
	Statement Labels
	Source Form
	Data
	Table 1: Intrinsic Data Types

	Expressions
	Table 2: Intrinsic Operators

	Input/Output
	Table 3: Carriage Control

	Input/Output Editing
	Table 4: List-Directed Input Editing
	Table 5: List-Directed Output Editing

	Statements
	Table 6: Statement Order

	Executable Constructs
	Procedures
	Table 7: Procedures

	Program Units
	Scope

	Alphabetical Reference
	ABS Function
	ACHAR Function
	ACOS Function
	ADJUSTL Function
	ADJUSTR Function
	AIMAG Function
	AINT Function
	ALL Function
	ALLOCATABLE Statement
	ALLOCATE Statement
	ALLOCATED Function
	ANINT Function
	ANY Function
	Arithmetic IF Statement (obsolescent)
	ASIN Function
	Assigned GOTO Statement (obsolescent)
	ASSIGN Statement (obsolescent)
	Assignment Statement
	ASSOCIATED Function
	ATAN Function
	ATAN2 Function
	BACKSPACE Statement
	BIT_SIZE Function
	BLOCK DATA Statement
	BTEST Function
	CALL Statement
	CARG Function
	Table 8: CARG result types

	CASE Construct
	CEILING Function
	CHAR Function
	CHARACTER Statement
	CLOSE Statement
	CMPLX Function
	COMMON Statement
	COMPLEX Statement
	Computed GOTO Statement (obsolescent)
	CONJG Function
	CONTAINS Statement
	CONTINUE Statement
	COS Function
	COSH Function
	COUNT Function
	CPU_TIME Subroutine
	CSHIFT Function
	CYCLE Statement
	DATA Statement
	DATE_AND_TIME Subroutine
	DBLE Function
	DEALLOCATE Statement
	DIGITS Function
	DIM Function
	DIMENSION Statement
	DLL_EXPORT Statement
	DLL_IMPORT Statement
	DO Construct
	DOT_PRODUCT Function
	DOUBLE PRECISION Statement
	DPROD Function
	DVCHK Subroutine (Windows Only)
	ELEMENTAL Procedure
	END Statement
	ENDFILE Statement
	ENTRY Statement
	EOSHIFT Function
	EPSILON Function
	EQUIVALENCE Statement
	ERROR Subroutine
	EXIT Statement
	EXIT Subroutine
	EXP Function
	EXPONENT Function
	EXTERNAL Statement
	FLOOR Function
	FLUSH Subroutine
	FORALL Construct
	FORALL Statement
	FORMAT Statement
	Table 9: Format edit descriptors

	FRACTION Function
	FUNCTION Statement
	GETCL Subroutine
	GETENV Subroutine
	GO TO Statement
	HUGE Function
	IACHAR Function
	IAND Function
	IBCLR Function
	IBITS Function
	IBSET Function
	ICHAR Function
	IEOR Function
	IF Construct
	IF Statement
	IMPLICIT Statement
	INCLUDE Line
	INDEX Function
	INQUIRE Statement
	INT Function
	INTEGER Statement
	INTENT Statement
	INTERFACE Block
	INTRINSIC Statement
	INVALOP Subroutine (Windows only)
	IOR Function
	IOSTAT_MSG Subroutine
	ISHFT Function
	ISHFTC Function
	KIND Function
	LBOUND Function
	LEN Function
	LEN_TRIM Function
	LGE Function
	LGT Function
	LLE Function
	LLT Function
	LOG Function
	LOG10 Function
	LOGICAL Function
	LOGICAL Statement
	MATMUL Function
	MAX Function
	MAXEXPONENT Function
	MAXLOC Function
	MAXVAL Function
	MERGE Function
	MIN Function
	MINEXPONENT Function
	MINLOC Function
	MINVAL Function
	ML_EXTERNAL Statement
	MOD Function
	MODULE Statement
	MODULE PROCEDURE Statement
	MODULO Function
	MVBITS Subroutine
	NAMELIST Statement
	NDPERR Function (Windows Only)
	Table 10: NDPERR bits

	NDPEXC Subroutine (Windows Only)
	NEAREST Function
	NINT Function
	NOT Function
	NULL Function
	NULLIFY Statement
	OPEN Statement
	OPTIONAL Statement
	OVEFL Subroutine (Windows Only)
	PACK Function
	PARAMETER Statement
	PAUSE Statement (obsolescent)
	Pointer Assignment Statement
	POINTER Function
	POINTER Statement
	PRECFILL Subroutine
	PRECISION Function
	PRESENT Function
	PRINT Statement
	PRIVATE Statement
	PRODUCT Function
	PROGRAM Statement
	PUBLIC Statement
	PURE Procedure
	RADIX Function
	RANDOM_NUMBER Subroutine
	RANDOM_SEED Subroutine
	RANGE Function
	READ Statement
	REAL Function
	REAL Statement
	REPEAT Function
	RESHAPE Function
	RETURN Statement
	REWIND Statement
	RRSPACING Function
	SAVE Statement
	SCALE Function
	SCAN Function
	SELECTED_INT_KIND Function
	SELECTED_REAL_KIND Function
	SEQUENCE Statement
	SET_EXPONENT Function
	SHAPE Function
	SIGN Function
	SIN Function
	SINH Function
	SIZE Function
	SPACING Function
	SPREAD Function
	SQRT Function
	Statement Function
	STOP Statement
	SUBROUTINE Statement
	SUM Function
	SYSTEM Function (Linux only)
	SYSTEM Subroutine
	SYSTEM_CLOCK Subroutine
	TAN Function
	TANH Function
	TARGET Statement
	TINY Function
	TRANSFER Function
	TRANSPOSE Function
	TRIM Function
	Type Declaration Statement
	TYPE Statement
	UBOUND Function
	UNDFL Subroutine (Windows Only)
	UNPACK Function
	USE Statement
	VAL Function
	Table 11: VAL result types

	VALUE Statement
	VERIFY Function
	VOLATILE Statement
	WHERE Construct
	WHERE Statement
	WRITE Statement

	Fortran 77 Compatibility
	Different Interpretation Under Fortran 95
	Different Interpretation Under Fortran 90
	Obsolescent Features

	New in Fortran 95
	Intrinsic Procedures
	Table 12: Numeric Functions
	Table 13: Mathematical Functions
	Table 14: Character Functions
	Table 15: Array Functions
	Table 16: Inquiry and Kind Functions
	Table 17: Bit Manipulation Procedures
	Table 18: Other Intrinsic Functions
	Table 19: Standard Intrinsic Subroutines
	Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents
	Table 21: Utility Procedures

	Porting Extensions
	Glossary
	ASCII Character Set
	Table 22: ASCII Chart
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z



