

Validation of Ozone Monitoring Instrument Nitrogen Dioxide Columns

E. A. Celarier,¹ E. J. Brinksma,² J. F. Gleason,³ J. P. Veefkind,² A. Cede,⁴
J. R. Herman,³ D. Ionov,^{5,6} F. Goutail,⁶ J-P. Pommereau,⁶ J-C. Lambert,⁷
M. van Roozendael,⁷ G. Pinardi,⁷ F. Wittrock,¹¹ A. Schönhardt,¹¹
A. Richter,¹¹ O. W. Ibrahim,¹³ T. Wagner,¹² B. Bojkov,⁴ G. Mount,⁸
E. Spinei,⁸ C. M. Chen,⁹ T. J. Pongetti,⁹ S. P. Sander,⁹ E. J. Bucsela,⁴
M. O. Wenig,⁴ D. P. J. Swart,¹⁰ H. Volten,^{2,10} M. Kroon,² and P. F. Levelt²

Edward A. Celarier, SGT, Inc. 7701 Greenbelt Rd, Greenbelt, MD 20770 (Edward.Celarier@gsfc.nasa.gov)

Ellen Brinksma, KNMI, 3730 AE De Bilt, The Netherlands (ellen.brinksma@knmi.nl)

¹SGT, Inc., 7701 Greenbelt Rd Ste 400,

3 Abstract. We review the standard nitrogen dioxide (NO_2) data prod-
4 uct (Version 1.0.0), which is based on measurements made in the spectral
5 region 415–465 nm by the Ozone Monitoring Instrument (OMI) on the EOS-
6 Aura satellite. A number of ground- and aircraft-based measurements have
7 been used to validate the data product's three principal quantities: strato-
8 spheric, tropospheric, and total NO_2 column densities. It is found that OMI
9 underestimates the stratospheric column by about 14%, and underestimates
10 both the total and tropospheric columns by 15 – 30%. The validation of
11 the OMI NO_2 data is complicated by the fact that some of the ground based
12 measurements have not been well validated, themselves, and by problems in-
13 herent in comparing point measurements from the ground to large area av-
14 eraged satellite measurements. In addition, some of the ground based mea-
15 surements have only been made over a relatively short period of time, lim-
16 iting their use for statistical comparison with OMI. Nonetheless, by using all
17 the available ground based measurements, it is possible to arrive at some quan-
18 titative characterization of the biases in the OMI NO_2 data product.

Greenbelt MD 20770, USA.

1. Introduction

19 The Ozone Monitoring Instrument (OMI) is a space borne spectroradiometer that uses
20 a 2-dimensional CCD array detector to simultaneously measure the spectra of the earth
21 shine radiance at large number of viewing angles, approximately transverse to the Aura
22 spacecraft's flight track. OMI measures in three broad spectral regions (UV-1, UV-2, and
23 VIS), with a spectral resolution on the order of 0.5 nm. Applying spectral fitting techniques
24 to the OMI data permits the simultaneous retrieval of a wide range of atmospheric trace
25 gas concentrations as well as cloud and aerosol properties and loadings. Among the trace
26 gases that can be retrieved, ozone (O_3) and nitrogen dioxide are identified as essential
27 measurements, both for the ongoing monitoring of the Earth's stratospheric ozone layer
28 and for the monitoring of tropospheric air quality. A more extensive discussion of the OMI
29 instrument itself can be found in *Levelt and Bhartia* [2007].

30 The OMI NO_2 data production algorithm is designed to retrieve total vertical column
31 densities of NO_2 and separate stratospheric and tropospheric column densities; this en-
32 ables the improvement in the calculation of the total vertical column. This separation is
33 important (and possible) because the chemistry and dynamics of NO_2 are different be-
34 tween the stratosphere and the troposphere. Accurate measurements of the tropospheric
35 NO_2 are significant for the characterization of air quality, a primary objective of the Aura
36 and OMI missions.

37 This paper discusses only the validation of the OMI NO_2 standard product, archived at
38 the Goddard Earth Sciences Data and Information Services Center (GES-DISC). We do not

²Royal Netherlands Meteorological

39 discuss any other product, such as the Level-4 product, archived at the Royal Netherlands
40 Meteorological Institute (KNMI). Furthermore, comparison of OMI to other spaceborne
41 NO₂ sensors, which all have different equator crossing times from OMI is beyond the scope
42 of this paper.

43 A number of efforts toward NO₂ validation have been initiated, in which measurements
44 are made coincident with OMI overpass measurements. The purpose of this paper is to
45 provide an overview of results from these efforts. A variety of instruments and techniques
46 have been used, each with its characteristic sensitivity to stratospheric, tropospheric,
47 or total column NO₂. This paper will address the advantages and, in some cases, the
48 limitations of the various measurements.

49 Several of the techniques described are new, and have not been well-validated. In addition,
50 there is an essential difference between observations of NO₂ taken from the ground,
51 and observations averaged over a satellite field of view (FOV). Spatial inhomogeneity,
52 characteristic of airborne constituents emitted at (possibly moving) point sources, and
53 subject to surface-level winds, implies that a single point measurement will often not be
54 a representative sample within a “collocated” satellite FOV covering a region of the order
55 of several hundred square kilometers. Monthly average comparisons of ground-based and
56 satellite measurements can remove much of the variability due to FOV-point measurement
57 differences. A preliminary measurement of horizontal inhomogeneity in the NO₂ field is
58 presented in the DANDELIONS overview paper [Brinksma *et al.*, 2007], using a set of si-
59 multaneous tropospheric NO₂ measurements made at different azimuths. Veefkind *et al.*
60 [2007] show a comparison of regridded OMI NO₂ data with ground-based observations by

Institute, 3730 AE De Bilt, The

61 the Dutch national air quality network. This network distinguishes regional stations, and
62 city and street stations, which are close to source regions. For the period of the satellite
63 data, NO₂ reported by 35 stations around the Netherlands, averaged between 11:00 and
64 14:00 h local time, was compared to the collocated OMI measurements. A strong correla-
65 tion ($R = 0.94$) between the satellite data and the regional station data was found. By
66 contrast, correlations with urban stations are weak, because local conditions may vary
67 strongly over a few hundred meters, far smaller than the spatial resolution of OMI. Be-
68 cause of both the novelty of some of the techniques, and such spatial-scale effects, specific
69 results are sometimes limited to qualitative, or order-of-magnitude, conclusions.

70 Among the validation studies discussed here are ground based observations made within
71 the SAOZ and DOAS networks. These are zenith-sky, twilight measurements, which are
72 sensitive to the stratospheric NO₂ column (as explained in section 4.1.1). In addition,
73 the locations are very often pristine areas, or at elevation. Even if the instrumentation
74 were sensitive to tropospheric NO₂, the lack of pollution would lead to measurements
75 dominated by the stratospheric NO₂ amount.

76 To focus on polluted areas, where satellite NO₂ retrievals are most challenging, novel,
77 or as yet unvalidated techniques must be used.

78 Measurements of scattered light by the MultiAxial DOAS (MAX-DOAS) technique [Platt,
79 1994; Wittrock *et al.*, 2004], using a range of viewing angles, from nearly horizontal through
80 zenith, are sensitive to the tropospheric part of the column, and provide both total and

Netherlands.

⁸¹ tropospheric NO₂ amounts. We present results from MAX-DOAS measurements taken in
⁸² a polluted area, but away from immediate local sources, in section 4.2.1.

⁸³ Direct-sun ground based measurements, made with a Brewer spectrophotometer [*Cede*
⁸⁴ *et al.*, 2006] and with newly-developed direct-sun instruments, including a high-resolution
⁸⁵ Fourier-transform UV-FTS technique [*Cageao et al.*, 2001], and a number of direct-sun
⁸⁶ DOAS-type measurements, are sensitive to the total NO₂ column. We will briefly review
⁸⁷ some preliminary results from these methods in section 4.3.

⁸⁸ Validation of the OMI NO₂ data should take account of the sensitivity of the numerous
⁸⁹ geophysical and geometric algorithmic inputs. These include the *a priori* profile shapes,
⁹⁰ surface albedo, and measured and assumed cloud properties. These, in particular, greatly
⁹¹ affect the air mass factors (AMF; the ratio of slant-column density of the absorber along
⁹² the optical path to the vertical column density) the algorithm calculates. Tropospheric
⁹³ NO₂ profiles have been measured with lidar in the Netherlands, during a number of days in
⁹⁴ September 2006, and with airborne instrumentation during various validation campaigns.

⁹⁵ During the Polar Aura Validation Experiment (PAVE) (flights from New Hampshire,
⁹⁶ January and February 2005) the TD-LIF instrument [*Thornton et al.*, 2000; *Cleary et al.*,
⁹⁷ 2002] was used for *in situ* sampling of NO₂, during the aircraft flights. The NASA DC-8
⁹⁸ performed two flight legs at 300 m altitude, near the top of the boundary layer. When
⁹⁹ flights entered the boundary layer, strongly enhanced concentrations of NO₂ were found.

¹⁰⁰ During the INTEX-B campaign (flights from Houston, Texas, March 2006 and from
¹⁰¹ Honolulu, Hawaii, and Anchorage, Alaska, April and May 2006) the TD-LIF instrument

³Code 613.3, NASA Goddard Space

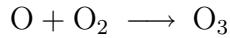
₁₀₂ measured NO_2 *in situ*. Spirals were flown by the NASA DC-8 during several flights in
₁₀₃ spatial and temporal collocation with OMI observations.

₁₀₄ Besides INTEX-B, a small number of other airborne campaigns have been carried out,
₁₀₅ measuring NO_2 *in situ*, and have been applied to satellite validation [*Heiland et al.*, 2002;
₁₀₆ *Martin et al.*, 2006].

₁₀₇ The remainder of Section 1 contains a brief description of NO_2 chemistry in the strato-
₁₀₈ sphere and troposphere, the OMI measurement of NO_2 , and the availability of the data
₁₀₉ sets. Section 2 describes the OMI measurement, and Section 3 describes the algorithm that
₁₁₀ reduces the raw OMI measurements to the various NO_2 columns. The various subsections
₁₁₁ of Section 4 discuss the validations of the three principal NO_2 products: stratospheric
₁₁₂ column (Section 4.1), tropospheric column (Section 4.2), and total column (Section 4.3).
₁₁₃ The conclusions are presented in Section 5.

1.1. Nitrogen dioxide in the stratosphere

₁₁₄ Nitrogen dioxide participates both directly and indirectly in the catalytic destruction of
₁₁₅ ozone in the stratosphere [*Finlayson-Pitts and Pitts*, 2000]. Direct catalytic destruction
₁₁₆ takes place via a $\text{NO} - \text{NO}_2$ cycle that catalyzes the reaction $\text{O}_3 + \text{O} \rightarrow 2\text{O}_2$, while
₁₁₇ while NO_2 concentrations indirectly control ozone loss through other catalytic cycles by
₁₁₈ controlling, for example, the distribution of chlorine between its catalytically active (ClO)
₁₁₉ and inactive, reservoir (ClONO_2) species. In the stratosphere, NO_2 concentration has a
₁₂₀ distinctive diurnal cycle, due largely to the photochemistry of nitrogen oxides. At night,
₁₂₁ all the photolysis reactions stop, shifting the steady state to NO_2 . NO_2 is converted,



Flight Center, Greenbelt MD 20771, USA.

122 through ozonolysis, to NO_3 , which can further combine with NO_2 to form N_2O_5 . This
123 results in a slow decrease of NO_2 over the course of the night. When the air is again
124 sunlit, the N_2O_5 rapidly redissociates to NO_2 and NO_3 , which photolyses instantaneously,
125 mostly to NO . Meanwhile, NO_2 photolyses very rapidly, and so decreases very rapidly
126 at sunrise. While in daylight, the dominant processes are the interconversion between
127 NO and NO_2 . Under most typical conditions of temperature and ozone concentration,
128 latitude, and season, there is a slow increase in NO_2 concentration over the course of the
129 daylight hours. In addition to the chemical and photochemical processes, transport by
130 the winds, particularly in the vicinity of the polar jets may mean that the air that one is
131 measuring has not had the photochemical history one would expect, based on location and
132 local time, alone. Some caution is therefore needed in matching satellite measurements
133 to the ground based measurements.

1.2. Nitrogen dioxide in the troposphere

134 In the troposphere, nitrogen oxides are a significant contributor to poor air quality.
135 Gaseous NO_2 is red in color, and gives rise to the characteristic brownish cast of polluted
136 air. Both NO and NO_2 are harmful to lung tissue, and, as a powerful oxidizing agent,
137 NO_2 is harmful to biological tissue generally. Besides its direct effects, photolysis of NO_2
138 contributes to ozone production [*Finlayson-Pitts and Pitts, 2000*] according to

⁴GEST Program, University of Maryland

₁₃₉ Nitrogen oxides are produced in high-temperature processes, most notably in com-
₁₄₀ bustion (fossil fuels and biomass burning) and in lightning. As a rule, the higher the
₁₄₁ combustion temperature, the more NO_x is produced. Nearly all the NO_x (NO + NO₂)
₁₄₂ that is significant for human health is produced by industrial and urban activity, including
₁₄₃ transportation and power generation.

₁₄₄ NO₂ is removed from the troposphere through conversion to HNO₃, nitric acid, which
₁₄₅ readily dissolves in any available water droplets. NO₂ plumes are detected only up to
₁₄₆ about 200 km from their source. In the neighborhood of industrial or urban sources,
₁₄₇ there is a distinct diurnal pattern in the concentration of NO_x. The diurnal signal at any
₁₄₈ location is the result of a complex interplay between the emission source field in space
₁₄₉ and time, photochemical lifetimes, advection, and the concentrations of chemical sinks
₁₅₀ for NO_x species. As mentioned before, these also give rise to spatial inhomogeneities on
₁₅₁ a sub-100 m scale. At mid- to low-latitudes, where a polar-orbiting satellite passes over
₁₅₂ a given location is only once or twice a day, the satellite only sees a “snapshot” of the
₁₅₃ state of the polluted atmosphere at the overpass times. In the mid-to-upper latitudes,
₁₅₄ inconsistent measurements, from one orbit to the next, over some location, may well result
₁₅₅ from significant changes in the NO₂ concentrations over the intervening 100 minutes, as
₁₅₆ well as from other rapid geophysical changes, e.g. in cloud cover.

1.3. OMI measurement of NO₂

₁₅₇ The Aura satellite is a polar-orbiting, sun-synchronous satellite, whose orbital period
₁₅₈ is 99 minutes. Aura flies over the entire surface of the Earth every 14–15 orbits. Using

Baltimore County, Baltimore MD, USA.

159 the 2-dimensional CCD array detector, with pixel binning factors chosen to optimize the
160 signal-to-noise ratio, the instrument measures earthshine radiance spectra simultaneously
161 in 60 effective fields of view (FOV), approximately transverse to the flight track, every 2
162 seconds (the CCD is read out every 0.4 s, and co-added in groups of 5), over a range of
163 angles 57° either side of nadir. This gives a sufficient “push-broom” width to view the
164 entire sunlit surface of the Earth, even in the tropics, with multiple orbital overlaps for
165 much of the mid- to high-latitude regions.

166 During normal operations, OMI measures the solar irradiance spectrum once every 24
167 hours. The ratio of the earthshine radiance to solar irradiance, the *spectral albedo*, is
168 calculated for each FOV. The OMI NO₂ retrieval algorithm is described in Section 3.

1.4. Data availability

169 The OMI NO₂ data product is available in a number of different geospatial forms:

- 170 • Level-2 orbital swath (L2);
- 171 • Daily global gridded, $0.25^{\circ} \times 0.25^{\circ}$ (L2G);
- 172 • Station and regional overpass (OVP).

173 The L2 and L2G datasets and associated documentation are freely available through the
174 NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC, URL:
175 <http://daac.gsfc.nasa.gov/Aura/OMI/index.shtml>).

176 The OVP data, generated daily for over 100 locations around the world, and also in
177 support of validation and regional pollution studies, are available through the Aura Vali-
178 dation Data Center (AVDC, URL: <http://avdc.gsfc.nasa.gov/Data/Aura/OMI/OMN02/>

⁵Department of Atmospheric Physics,

179 `index.html`). The subsetted data used for this paper were generated at the AVDC using
180 the recommended usage quality flags [*Celarier et al.*, 2006].

181 Both the L2G and OVP data products are derived from the L2 data set, and not all
182 of the fields found in the L2 data may be found in the derived data products. Complete
183 details concerning the contents of the Level-2 files are available in *Veefkind and Celarier*
184 [2006].

185 Each L2G file contains a $0.25^\circ \times 0.25^\circ$ grid data structure. Each cell of the grid contains
186 a stack of data values for all the FOVs whose centers fell within that cell. For each FOV a
187 subset of the available L2 fields is stored. Because it is organized geographically, the L2G
188 data set should be suitable for users who wish to study specific geographic locations, as,
189 for example, in the case of validation against ground based measurements, or for regional
190 air quality studies.

191 Though all the data have been publicly released and are freely available, prospective
192 data users are strongly encouraged to contact the principal investigators responsible for
193 the data sets.

2. OMI Measurement

194 Atmospheric NO₂ column densities are retrieved using spectral measurements of the
195 solar irradiance and earth shine radiance in the wavelength region 415–465 nm, using
196 the instrument's VIS detector. The measurements are made with a spectral resolution of
197 ~ 0.5 nm. Daily measurements of the solar irradiance have been made since the instru-
198 ment became operational, with the exception of the period 2006 February 28 through 2006

Research Institute of Physics, St.

199 March 3, when a problem with the instrument's folding mirror prevented making daily
200 irradiance measurements. Using measured irradiance spectra has resulted in the appear-
201 ance of stripe structure in virtually all the data products, in which the retrieved quantities
202 have different means at each of the 60 cross-track positions. This has necessitated the
203 implementation of "destriping" algorithms.

204 The OMI instrument design and performance have been described by *Levelt et al.*
205 [2006b, a]. *Dobber et al.* [2006] have discussed the calibration of the instrument, and
206 the origin of the striping, or cross-track bias.

3. OMI Algorithm

207 In this section we present the essential details of the algorithm. A much more detailed
208 description of the OMI NO₂ algorithm, its theoretical underpinnings, and uncertainty
209 analysis may be found in [Bucsela et al., 2006; Boersma et al., 2002; Wenig et al., 2007;
210 Boersma et al., 2004].

3.1. Slant column densities

211 The first part of the calculation of NO₂ columns consists in calculating the slant column
212 densities. Since the OMI-measured radiance and irradiance spectra, and the laboratory
213 spectra are all measured on different wavelength scales, the measured spectra are in-
214 terpolated onto a common scale. The spectral albedo, R , is then fitted by a nonlinear
215 least-squares technique onto the function

$$R(\lambda) = P_3(\lambda) \cdot \exp(-c_{\text{NO}_2} \cdot \sigma_{\text{NO}_2}(\lambda) - c_{\text{O}_3} \cdot \sigma_{\text{O}_3}(\lambda)) \cdot$$

Petersburg State University, St. Petersburg,

$$(1 + c_{\text{ring}} \cdot \sigma_{\text{ring}}(\lambda)) , \quad (1)$$

216 where σ is the absorption cross section of the indicated species, and P_3 is a third-order
 217 polynomial in the wavelength, which models the component of the spectrum that is
 218 smoothly varying, due to Rayleigh and Mie scattering. Literature spectra are used for
 219 σ_{NO_2} [Vandaele *et al.*, 1998], σ_{O_3} [Burrows *et al.*, 1999a], and σ_{ring} [Chance and Spurr,
 220 1997]. These spectra were convolved with a model OMI instrument slit function prior to
 221 use in the fitting algorithm. In all, each measured spectrum is subjected to a nonlin-
 222 ear least-squares fit with a total of seven free parameters (c_{NO_2} , c_{O_3} , c_{ring} , and the four
 223 coefficients in $P_3(\lambda)$). The algorithm also estimates the uncertainties in each of the fit
 224 parameters, as well as the χ^2 error and R.M.S. error of the fit.

225 The determination of the SCD does not include fitting to the absorption spectra of either
 226 H_2O or $\text{O}_2 - \text{O}_2$. The introduction of these species were found not to have a large effect
 227 on the retrieved NO_2 SCD, and resulted in longer execution times.

3.2. Initial vertical column densities

228 Initial estimates of the vertical column density (V_{init}) are calculated using AMFs de-
 229 rived from typical climatological profile shapes, with a nominal amount of NO_2 assumed
 230 in the troposphere (AMF_{init}). That is, the initial vertical columns are computed under
 231 the assumption that the troposphere is not polluted. The profiles assumed are a 1-year

Russia

232 average of daily profiles computed using the GEOS-CHEM model in the troposphere, and
233 the Goddard Chemical Transport Model in the stratosphere [Bucsela *et al.*, 2006].

3.3. Stratosphere-troposphere separation

234 At the core of the OMI NO₂ algorithm is a procedure to identify fields-of-view (FOV)
235 where there is significant tropospheric NO₂. This is required because the air mass factor
236 depends upon the profile shape (though not the total amount, since the trace gas is op-
237 tically thin): FOVs where there is significant tropospheric NO₂ require a different AMF to
238 compute the VCD from the SCD. It is observed [Gordley *et al.*, 1996] that the stratospheric
239 NO₂ field has relatively small gradients, particularly in the zonal direction. Our procedure
240 for the stratosphere-troposphere separation essentially identifies the slowly-varying com-
241 ponent of the total NO₂ field as the stratospheric field, and the rest as the tropospheric
242 field.

243 Each orbit is treated as follows. The “target” orbit’s data are read in, along with the
244 data from all other available orbits that were measured within ± 12 hours of the target.
245 Each FOV is identified with a grid cell on a $1^\circ \times 1^\circ$ grid in latitude and longitude. For
246 all the FOVs that are identified with a particular grid cell, a “cost” is computed from
247 the initial AMF and uncertainty estimate for the V_{init} ; the value of V_{init} having the lowest
248 cost is saved in its associated grid cell. A “mask” identifying grid cells where there are
249 known, persistent sources of NO₂ was developed for use in the algorithm; no V_{init} values
250 are stored in masked grid cells. The V_{init} values are averaged in the meridional direction
251 with a boxcar function of half width 5° . For each 1° latitude band, a wave analysis is

⁶CNRS, Route des Gatines, 91370

252 performed, fitting waves 0, 1, and 2, to give a preliminary background field. Grid cells
253 whose V_{init} value exceeds the preliminary background field by more than one standard
254 deviation are then excluded, and the wave analysis is redone. The result of this is a
255 background field (V_{bg}) that has been influenced very little by the presence of regions
256 of high NO₂ concentration. Since the V_{init} values were obtained using an AMF that is
257 appropriate to a profile having most of the NO₂ in the stratosphere, no further correction
258 to the background field is required.

3.4. Vertical column densities

259 For each FOV, the value of V_{init} is compared to the evaluated background field at that
260 location. If V_{init} is less than the background field, then the final value of V (the total NO₂
261 column amount) is taken to be V_{init} . If V_{init} is larger than the background field, then the
262 “polluted” part ($V_{\text{init}} - V_{\text{bg}}$) is scaled by the ratio AMF_{init}/AMF_{pol}, where AMF_{pol} is obtained
263 using the climatological GEOS-CHEM-modeled profile [Bey *et al.*, 2001; Martin *et al.*, 2002].
264 This procedure gives the total column, the background column, and the polluted column.
265 In addition, a tropospheric column, equal, in the polluted case, to the polluted column
266 plus the amount of the unpolluted profile that exists below the tropopause (assumed to
267 be at 200 hPa). Finally, if, according to the standard cloud product, the cloud fraction is

Verrières le Buisson, France

₂₆₈ larger than 0.1, then the “below cloud amount” (the amount of NO₂ that is inferred to
₂₆₉ be below the visible surface of the clouds) is also computed.

3.5. Destriping

₂₇₀ Due to radiometric calibration and dark-current drift in OMI’s CCD detectors, which
₂₇₁ affects the radiance measurements differently from the irradiance measurements, nearly
₂₇₂ all OMI Level-2 data products show some degree of cross-track bias, which appears as
₂₇₃ stripes of systematically elevated or diminished values at certain cross-track scan positions,
₂₇₄ persisting throughout each orbital track [Dobber *et al.*, 2006]. While the origin of much
₂₇₅ of the cross-track bias is now understood, and an improvement in the Level-0 to Level-1
₂₇₆ processing algorithm is being implemented, the data available for the purpose of validation
₂₇₇ to date have had significant cross-track bias.

₂₇₈ A “destriping” procedure has been implemented in the OMI NO₂ algorithm. In this
₂₇₉ procedure, the NO₂ SCDS and AMFs are collected for the 15 orbits (or fewer, depending on
₂₈₀ data availability) used to construct the background field. These are then used to construct
₂₈₁ separate SCD correction offsets for the northern and southern hemispheres:

$$\Delta_i = \overline{\text{SCD}}_i - \overline{\text{AMF}}_i \cdot \frac{\langle \text{SCD} \rangle}{\langle \text{AMF} \rangle}, \quad (2)$$

₂₈₂ where i is the cross-track scan position (1 to 60), the overlines indicate averages for single
₂₈₃ scan positions, and angle-brackets indicate averages over all scan positions. The Δ_i are
₂₈₄ subtracted from the SCDS before applying the final air mass factors.

₂₈₅ One concern about this procedure has been that it could introduce an unknowable bias
₂₈₆ in the computed NO₂ column densities. This will be discussed in light of the ground-based

⁷Chemistry and Physics of Atmospheres,

287 validation data. Another concern is that it is observed that, even using this procedure,
288 there is some residual striping in the data. The data that have severe bias are generally
289 flagged (and so not used in the validation). We assume that the residual biases are small,
290 and are sufficiently symmetrically distributed, that the biases cancel: The cross-track
291 biases change from orbit to orbit, and successive overpasses of any site are viewed with
292 different FOVs.

4. Validation of OMI NO₂ columns

4.1. Stratospheric column

293 4.1.1. SAOZ and DOAS instruments in the NDACC network

294 The NDACC (Network for the Detection of Atmospheric Composition Change) is an
295 international cooperative network that coordinates the operations and data analysis at
296 more than 30 stations at various latitudes on the globe from 76°S to 79°N. The ground-
297 based UV-Visible zenith-sky spectrometers include both SAOZ (*Système d'Analyse par*
298 *Observations Zénithales*) as well as DOAS instruments, which provide ozone and NO₂ ver-
299 tical columns at sunrise and sunset using the Differential Optical Absorption Spectroscopy
300 (DOAS) technique [Platt, 1994] in the spectral range 410–530 nm. Zenith-sky measure-
301 ments made at solar zenith angles between 86–91° are averaged to give estimates of the
302 column NO₂. Because of the optical geometry of the measurement, the retrieved NO₂
303 column is much more sensitive to the stratospheric NO₂ column than to the tropospheric
304 column. Most of the instruments are located in remote geographical regions, far from
305 any significant source of tropospheric NO₂. Figure 1 shows the geographical distribution

Federal Space Pole, Belgian Institute for

306 of the SAOZ stations that are operated by the French *Centre National de la Recherche*
307 *Scientifique* (CNRS). Only the instruments at the Observatoire Haute-Provence (OHP),
308 France, and Bauru, Brazil, are in any proximity to presumed anthropogenic sources of
309 NO_2 . Measurements from the SAOZ instruments have been previously used to compare
310 with NO_2 measurements by the space borne GOME [*Burrows et al.*, 1999b] and SCIA-
311 MACHY [*Bovensmann et al.*, 1999] instruments [*Ionov et al.*, 2006a, b, 2007; *Piters et al.*,
312 2006; *Lambert et al.*, 2001].

313 Stratospheric NO_2 exhibits a pronounced diurnal cycle due to its daytime photolysis
314 into NO and nighttime conversion into N_2O_5 . The NO_2 daily cycle starts with a fast
315 drop shortly after sunrise, followed by a quasi-linear slow increase during the day, a fast
316 increase at sunset, and finally a slow decrease during the night. The time-dependence of
317 the stratospheric NO_2 concentration has important implications for the validation of the
318 space based NO_2 measurements. If the ground based measurements are not collocated
319 in time with the OMI measurements, they need to be corrected, using photochemical and
320 transport models, to account for the time difference. In addition, if the ground-based
321 measurements entail an optical path that is more horizontal than vertical, view and solar
322 geometries must be taken into consideration when identifying “collocated” measurements.

323 The diurnal cycle has been simulated with a photochemical box model derived from
324 the SLIMCAT 3D chemical-transport model [*Denis*, 2005]. It includes 98 chemical and 39
325 photochemical reactions, including heterogeneous chemistry on liquid and solid particles.
326 Calculations are made at 17 altitude levels with a time step of 1 minute. The NO_2 total
327 column is obtained by integrating the profile assuming a constant density in each layer.

Space Aeronomy, 3 Avenue Circulaire,

³²⁸ Figure 2 shows the results of simulations at two SAOZ stations, OHP at mid-latitude and
³²⁹ and Scoresby Sund in the Arctic, for spring and fall. Using this photochemical model, a

B-1180 Brussels, Belgium

⁸Laboratory for Atmospheric Research,
Dept. of Civil and Environmental
Engineering, Washington State University,
Pullman, WA 99164-2910, USA

⁹Science Division, NASA Jet Propulsion
Laboratory, California Institute of
Technology, Pasadena, CA 91109

¹⁰Netherlands National Institute for
Public Health and the Environment
(RIVM), Bilthoven, The Netherlands

¹¹Institute for Environmental Physics,
University of Bremen, D-28334 Bremen,
Germany

¹²Max-Planck-Institute for Chemistry,
Mainz, Germany

¹³Institute for Environmental Physics,
University of Heidelberg, D-69120
Heidelberg, Germany

330 diurnal time series of the ratio $\text{NO}_2(\text{sunrise})/\text{NO}_2(t)$ was calculated for each month, and
331 at each SAOZ location. As SAOZ is an average of measurements between 86° and 91° SZA
332 the NO_2 column at 88.5° SZA is taken as the sunrise reference. The OMI stratospheric
333 measurements (total minus tropospheric columns) were calculated and then normalized
334 to corresponding sunrise values using these ratios.

335 The optical geometry of the twilight SAOZ measurements is such that the light paths
336 traverse rather large distances through the stratosphere, so the stratosphere is sampled at
337 some distance from the measurement site. This should be taken into account when seeking
338 “match up” satellite FOVs corresponding to the ground-based measurements, especially in
339 regions with large stratospheric NO_2 gradients. However, in the present studies, a simpler
340 approach was adopted, in which the match up criterion was that the ground site was
341 within an OMI field-of-view. If multiple match ups are identified for a single day, the one
342 whose center fell closest to the ground station was used.

343 Finally, the OMI NO_2 algorithm provides total column NO_2 , and the tropospheric col-
344 umn NO_2 . Since SAOZ measurements are roughly 50 times as sensitive to the stratospheric
345 column as to the tropospheric column, it is of interest to compare the SAOZ-derived values
346 to the difference of the total and the tropospheric columns.

347 Figure 3 shows the time series of the difference between the sunrise SAOZ measurements
348 and the matching OMI measurements from eight SAOZ sites, adjusted to account for the
349 difference between the satellite overpass time and sunrise. The statistical characteristics of
350 these differences are presented in Table 1. Besides a comparison to just the stratospheric
351 column, the table presents a comparison between the OMI total column and the SAOZ
352 instrument measurements. It is seen that, at virtually all latitudes, there is very good

353 agreement, on average, between the ground-based and satellite-based measurements of
354 the total stratospheric NO₂ column. However, a small annual cycle is apparent in the
355 time-series for the higher latitudes, with lower values in the winter than in the summer.
356 This cycle, which appears in both the northern and southern hemisphere high latitudes,
357 may be related to the OMI sampling under those conditions, or may reflect a sensitivity
358 to the choice of matching OMI FOV corresponding to a given ground-based observation,
359 or may be due to a bias either in the satellite measurement at high solar zenith angle,
360 or in the ground-based measurements as the sunrise azimuth tends poleward. While the
361 influence of the seasonal cycle on the overall statistics is fairly small, understanding it
362 may be an avenue of further study.

363 The correlation coefficients between the SAOZ and OMI-measured stratospheric NO₂
364 columns are better, and the mean absolute differences smaller, for the mid-to-high latitude
365 sites than for the tropical sites. Since the stratospheric NO₂ concentrations are smaller
366 in the tropics in the first place (annual mean of about $2.5 \times 10^{15} \text{ cm}^{-2}$, compared to an
367 annual mean of $4 - 5 \times 10^{15} \text{ cm}^{-2}$ at the high latitude sites), the *relative* differences are
368 much greater in the tropics, and even the mid-latitude sites (OHP and Kerguelen), than
369 at the high-latitude sites.

4.2. Tropospheric column

370 4.2.1. MAX-DOAS

371 The MultiAxis DOAS (MAX-DOAS) technique is an extension of the zenith-sky DOAS
372 technique described in Section 4.1.1, but having much greater sensitivity to lower tro-
373 pospheric layers. In brief, a MAX-DOAS typically consists of two main parts: A grating
374 spectrometer mounted inside a thermostatted box that is located inside a building, and

375 one or more scanning telescopes connected to the spectrometer via fiber optics. Consec-
376 utive measurements at increasing elevation angles are performed in an acquisition cycle
377 that always contains observations at a number of low elevations, and a zenith observation.

378 From each of the measurements, a slant column is retrieved using the DOAS method
379 described in Section 4.1.1[*Platt, 1994*]. Besides NO₂, a number of other absorbers, plus
380 the Ring effect, are included in the fit, as are a multiplicative polynomial and an additive
381 polynomial for stray light correction. In order to account for the temperature dependence
382 of the NO₂ absorption spectrum, a second cross-section (295 K and 221 K) may be intro-
383 duced in the retrieval to improve the fit and correct the derived vertical column. Some
384 groups use one-temperature retrievals, while other groups use two-temperatures, and this
385 may cause some discrepancy between the MAX-DOAS instrument results. In contrast,
386 the OMI retrieval uses a single temperature, and applies a height-dependent tempera-
387 ture correction, based on climatological temperature profiles, in the calculation of the
388 AMFs[*Bucsela et al., 2006; Boersma et al., 2002*].

389 The lowest-elevation measurements have a large sensitivity to absorption in the bound-
390 ary layer, while the zenith measurements are used as background reference spectra which
391 contain Fraunhofer structures and the stratospheric absorption features. Since photon
392 scattering largely occurs below the tropopause, the photons collected from different el-
393 evation angles have essentially the same stratospheric path, but different light paths in
394 the troposphere. The difference between successive off-axis line-of-sight (LOS) and zenith
395 measurements is therefore only sensitive to the troposphere. For NO₂ retrieval, radiative
396 transfer simulations show that under polluted conditions, the stratospheric contamination
397 is generally smaller than 1%. A more in-depth description of the MAX-DOAS measure-

398 ments, as they were done at the DANDELIONS campaign, can be found in *Brinksma et al.*
399 [2007].

400 During the DANDELIONS campaigns [*Brinksma et al.*, 2007], various MAX-DOAS instru-
401 ments operated quasi continuously from the Cabauw Experimental Site for Atmospheric
402 Research [*Russchenberg et al.*, 2005] throughout May through mid July 2005 and through-
403 out September 2006. These instruments were provided and operated by BIRA-IASB, the
404 University of Bremen, and the University of Heidelberg.

405 The Heidelberg MAX-DOAS instrument differs from the others in that it has a set of
406 three movable telescopes, which enable simultaneous measurement cycles in three azimuth
407 viewing directions *Wagner et al.* [2004]).

408 For the Bremen instrument [*Wittrock et al.*, 2004], the zenith direction is viewed without
409 a mirror, while the other elevation angles in the measurement cycle are selected through a
410 rotating mirror inside the telescope. The range of elevation angles is $0^\circ - 30^\circ$. In the 2006
411 DANDELIONS campaign, separate UV and VIS instruments were operated by the Bremen
412 group.

413 **4.2.2. Agreement Between MAX-DOAS Instruments**

414 The level of agreement achieved between the MAX-DOAS instruments is quantitatively
415 summarized in correlation plots (Fig. 4) where tropospheric NO₂ columns from the BIRA
416 instrument are compared to those from the other groups, for the 2005 campaign. This
417 comparison is useful because there are differences between the instruments and their data
418 reduction procedures, and because instruments viewing different directions can be used
419 to detect directional dependences of the measurements. Very good agreement is found
420 between the BIRA and Bremen data sets (correlation coefficients of 0.9 and slope of 1.1),

421 and also between BIRA and the three Heidelberg telescopes (correlations between 0.82
422 and 0.91), especially considering that the BIRA instrument was 200 m away from the
423 other two instruments.

424 When the BIRA and Heidelberg data sets were re-retrieved using identical NO₂ absorp-
425 tion cross-sections, an even better agreement is found, reaching a correlation coefficient
426 of 0.92 and a slope of 0.99. This level of agreement is only achieved when considering
427 the southwest-pointing Heidelberg telescope: this is approximately in the same direction
428 as the two other instruments. This highlights the degree to which horizontal inhomomo-
429 geneities in the NO₂ field can strongly affect the agreement between ground based and
430 satellite based measurements.

431 **4.2.3. Heterogeneity of the NO₂ Field**

432 If the tropospheric NO₂ layer were horizontally homogenous, the observed NO₂ SCDs for
433 the different azimuth angles observed from the three telescopes of the Heidelberg instru-
434 ment would have been similar. The horizontal inhomogeneity of the NO₂ concentration
435 field can be estimated from the observed differences among the various viewing directions.
436 Estimating the horizontal inhomogeneity is very important for the validation of satellite
437 instruments with ground based observations. In the presence of strong horizontal gradi-
438 ents, ground based observations may not be representative for the average value within a
439 satellite ground pixel.

440 Since the horizontal extent of the absorption paths along the line of sight is largest
441 for low telescope elevation, those at 3° were used to estimate the heterogeneity of the
442 tropospheric NO₂ concentration field. This was done by evaluating the SCD in the three
443 azimuthal viewing directions at 3° elevation, and calculating the ratio of the maximum

444 and the minimum. A horizontally homogenous concentration field yields a ratio of one; the
445 more this ratio deviates from unity, the larger are the horizontal gradients. In addition to
446 the strength of the horizontal gradients, the direction of the NO₂ gradient was estimated,
447 though in a limited way, since the Heidelberg MAX-DOAS was measuring in only three
448 azimuth directions. Fig. 5 displays the time series of the ratios at daily noon. High ratios
449 indicate strong gradients, and the color of the points indicates the direction of positive
450 gradient.

451 To interpret the retrieved information on the gradient of the tropospheric NO₂ concen-
452 tration field, it is important to consider two effects that can affect the observed SCDS,
453 especially for low elevation angles: First, the sensitivity to the relative azimuth angle
454 (between the telescope and the sun). This dependency becomes more pronounced for
455 increasing solar zenith angle (SZA) and increasing aerosol load [Wagner *et al.*, 2004]. Sec-
456 ond, the effect of the atmospheric aerosol load on the atmospheric visibility, and thus on
457 the horizontal extents of the absorption paths along the line of sight. Thus, depending
458 on the aerosol load, the calculated ratio represents information on gradients over areas
459 of different horizontal extent. The dependence on the azimuth angle was found to be
460 below 15%, for SZA between 20° and 80°. Almost all observed ratios of the maximum and
461 minimum NO₂ SCDS (see Fig. 5) were much larger than this. Effective path lengths are
462 enhanced by aerosols above about 1 km, and diminished by aerosols below 1 km. For an
463 elevation angle of 3°, the effective path length is about 19 km in a pure Rayleigh-scattering
464 atmosphere, but this can be reduced to as little as 4.5 km by surface-level aerosols, or

⁴⁶⁵ enhanced to 25 km by higher-altitude aerosols [*Brinksma et al.*, 2007; *Deutschmann and*
⁴⁶⁶ *Wagner, 2006; Wagner et al.*, 2007, 2004].

⁴⁶⁷ **4.2.4. Comparisons with OMI tropospheric NO₂**

⁴⁶⁸ The different MAX-DOAS data sets are compared to the OMI Level-2 cloud-free data
⁴⁶⁹ (O₂–O₂ cloud fractions in the OMI products less than 20%) for 2005, in order to produce
⁴⁷⁰ the correlation plot presented in Figure 6 and Table 2. The MAX-DOAS data were linearly
⁴⁷¹ interpolated to the satellite overpass time.

⁴⁷² The OMI tropospheric vertical columns were generally distributed from 0 to about $2.5 \times$
⁴⁷³ 10^{16} cm⁻². In one case the ground based MAX-DOAS column (3×10^{16} cm⁻²) significantly
⁴⁷⁴ exceeded the corresponding satellite values, possibly due to a local enhancement of the
⁴⁷⁵ NO₂ concentration at Cabauw. Because of its obvious anomaly, this point has been
⁴⁷⁶ excluded from the regression analysis.

⁴⁷⁷ The regression analyses show that similar results were achieved with the BIRA and
⁴⁷⁸ the Bremen data sets, the correlation coefficient between ground based and satellite data
⁴⁷⁹ being about 0.6. A lower correlation was obtained with the Heidelberg data when con-
⁴⁸⁰ sidering only the southwest direction measurements (closest to the viewing direction of
⁴⁸¹ both Bremen and BIRA instruments), possibly due to the smaller number of coincidences
⁴⁸² with this instrument, and also the shorter integration time used, which may increase the
⁴⁸³ sensitivity to local inhomogeneities in the NO₂ field. In order to further explore the im-
⁴⁸⁴ pact of possible horizontal smoothing effects on the comparison results, the Heidelberg
⁴⁸⁵ measurements simultaneously recorded from all three directions have been averaged and
⁴⁸⁶ again compared with satellite data. The resulting correlation coefficients, also given in
⁴⁸⁷ Table 2, have significantly improved and are now the highest of the three MAX-DOAS in-

488 instruments. This suggests that the scatter in MAX-DOAS versus satellite comparisons is,
489 indeed, largely dominated by the difference in their spatial and temporal averaging.

490 As is evident from the regression results, the OMI tropospheric NO₂ columns seem to be
491 systematically lower than the MAX-DOAS results, for both OMI products considered. How-
492 ever, it must be noted that the correlation coefficients are rather poor in all cases, which
493 might be due to several reasons including uncertainties in both ground based (geometrical
494 approximation) and satellite retrievals (AMF sensitivity to errors in aerosols, clouds and
495 NO₂ profile shape). However, the slopes are poorly determined, due to the small number
496 of points and the large data scatter.

4.3. Total column

497 4.3.1. Brewer

498 Cede *et al.* [2006] have described a method for retrieval of total-column NO₂ from direct-
499 sun measurements using a Brewer MK-III double monochromator spectrophotometer. The
500 Brewer MK-III instrument was primarily designed to make measurements of ozone from
501 wavelengths below 320 nm, and can measure spectral irradiance and radiance from 285
502 to 365 nm. Its measurement modes include a spectral scan mode, where the gratings
503 are moved and any wavelength can be selected, and a slit mask mode, in which a slit
504 mask is introduced in the optical path allowing nearly simultaneous measurements at 6
505 wavelengths, spaced about 3 nm apart. The spacing of the slits in the slit mask was
506 chosen to optimize the ozone retrievals between 303 and 320 nm, but in the 345–365 nm
507 range the measured wavelengths fall very nearly on maxima and minima in the NO₂
508 absorption spectrum (see Figure 7), which permits the retrieval of total column NO₂.
509 These measurements have been made at the NASA Goddard Space Flight Center, on a

510 nearly continual basis since August 2004, with measurements made every half hour during
511 the sunlit hours.

512 The retrieved NO₂ columns have a large instrumental noise, so data must be averaged
513 over several hours time in order to make meaningful comparisons to the OMI-measured
514 values. However, the location of the instrument, 3 km from the Washington Capital
515 Beltway and 2 km from the Baltimore-Washington Parkway, on the outskirts of a major
516 metropolitan area, is such that there are often substantial sub-hour time variations in the
517 actual tropospheric NO₂ concentrations. The combination of the intrinsic variability of the
518 measurements with the frequent occurrence of significant actual concentration variations
519 within a given time-window used for collocation with OMI overpasses complicates the
520 process of using the Brewer data for validation of OMI NO₂ measurements. Comparisons
521 having useful statistical significance can be made using monthly averages of the Brewer
522 and OMI datasets.

523 Figure 8 shows the comparison between the monthly mean Brewer-measured and OMI-
524 measured NO₂ columns. In the Washington DC area, early afternoon NO₂ columns are
525 dominated by the boundary layer columns. The difference that is seen, with OMI-measured
526 columns that are about 35% smaller than the Brewer-measured columns, can thus be
527 largely attributed to the tropospheric NO₂. In Figure 9 the daily and monthly mean
528 values are plotted, along with the line of linear regression to the monthly means. The
529 regression analysis, performed on the monthly means, and weighted according to the
530 standard deviations, gives a slope of 0.67, with a correlation coefficient $R = 0.95$.

531 **4.3.2. MultiFunction DOAS (MFDOAS) measurements**

532 The MF-DOAS instrument observes scattered skylight with a 1° vertical FOV at varying
533 viewing azimuth and elevation angles, as well as direct sunlight in the UV-visible spectral
534 region. From these measurements are retrieved NO₂, O₃, SO₂, and CH₂O slant columns.
535 The MF-DOAS spectrograph is a single pass commercial Czerny-Turner spectrograph of
536 focal length 300 mm. The instrument covers a wavelength range from 280 nm to 490 nm
537 with a spectral resolution of 0.82 nm (6 pixels FWHM). Scattered sky light is collected by
538 a 12 cm telescope and passes into the spectrograph through two filter wheels that contain
539 depolarizers, spectral flattening filters, and UV cutoff filters. Direct sunlight is fed into
540 a spectralon integrating sphere of diameter 8 cm before passing through the filter wheels
541 and results in a signal level similar to that from the scattered sky. A two-dimensional
542 CCD detector (512 × 2048 pixels) is used in the focal plane. Spectrograph stray light is
543 reduced by a spectral flattening filter, which reduces the long wavelength throughput of
544 the instrument relative to the short wavelength signal. A solar tracker moves the entire
545 instrument for positioning and sun tracking. An instrument schematic is presented in
546 Figure 10.

547 This ground-based MF-DOAS instrument was fielded in a prototype form during the
548 INTEX-B campaign for Aura/OMI validation. It was positioned on the roof of a building at
549 Pacific Northwest National Laboratory in Richland, WA (PNNL; 46.3409°N, 119.2787°W),
550 located in an urban area known as Tri-Cities (the merged cities of Kennewick, Pasco and
551 Richland, WA) with total population of approximately 150,000 in an area of 250 km².
552 PNNL is situated approximately 15 km north of the center of Richland, and northwest

553 of the area's population center. The major source of local NO₂ pollution is vehicular
554 exhaust.

555 NO₂ differential slant columns (DSCD) were derived using the DOAS technique, based
556 on Beers law. A nonlinear least squares algorithm was used to fit our measured spectral
557 cross sections of NO₂, O₃, instrument spectral polarization, and Ring effect in the spectral
558 region 400–419 nm. A polynomial was included to remove slowly varying Rayleigh and
559 Mie scattering spectral shapes. The reference solar spectrum used for the data analysis
560 was measured at zenith at local noon on April 30, 2006, a day with very low pollution
561 levels. Raw spectra were corrected for detector dark background and flat field. Figure
562 11 shows typical residual optical densities after the least squares fitting procedure for
563 observations taken on May 9, 2006 at 5° elevation and 4 azimuth angles. The LIDORT
564 radiative transfer code [Spurr, 2001; Spurr *et al.*, 2001] was used to calculate the air mass
565 factors (AMF) to convert the DSCD to vertical column density (VCD). As an example of
566 the results, Figure 12 presents the spatial and temporal variation of NO₂ differential slant
567 column for May 9, a polluted day. Higher column densities were observed to the south and
568 east, toward the urban center, as expected. Measurements taken at 5° elevation showed
569 higher NO₂ tropospheric column compared to 15° and 45° angles, as expected. These
570 elevated NO₂ slant column densities were particularly pronounced during the morning
571 rush hour.

572 The Aura satellite flies over Tri-Cities area around 1330h with spatial resolution ap-
573 proximately 13 km × 24 km. Figure 13 shows contour plots of OMI tropospheric NO₂ VCD
574 for May 9, derived from the Level-2 OMI data product. OMI tropospheric NO₂ vertical
575 column densities “integrated” over several pixels in the MF-DOAS observation direction

576 were compared to MF-DOAS tropospheric NO₂ VCD using *a priori* differential AMFs for
577 clear days at PNNL from the LIDORT radiative transfer code. Figure 14 shows results for
578 the time period April 30 through May 13, 2006, with reasonable correlation observed for
579 these clear days.

580 The slope of the data in Figure 14 shows that OMI determinations of tropospheric NO₂
581 VCD are 0.81 ± 0.11 of that determined from MF-DOAS with a correlation coefficient R^2 of
582 0.92. Thus, OMI measures a somewhat smaller VCD than that determined from MF-DOAS.

583 **4.3.3. Pandora-1 Direct Sun DOAS measurements**

584 The lightweight, portable Pandora-1 spectrometer system measures direct-sun irradi-
585 ances from 270 to 500 nm at ~ 0.5 nm resolution. The outdoor head sensor is mounted
586 on a tracking system and holds a single strand fiber optic cable, which collects the light
587 passed through a collimator (1.6° FWHM field of view) and a filter wheel. The other
588 end of the fiber is connected to a 75 mm focal length symmetric Czerny-Turner grating
589 spectrometer using a 1024×1 pixel CMOS detector, stabilized to $20^\circ \pm 1$. The total NO₂
590 column is retrieved by the DOAS method, in the 400–440 nm window, using a fixed ref-
591 erence spectrum determined from Pandora-1 data obtained over an extended period of
592 at least 2 weeks. To estimate the NO₂ amount in the reference spectrum, a bootstrap
593 method as described in *Cede et al.* [2006] was applied, on the assumption that a few
594 measurements were obtained when there were low tropospheric NO₂ amounts (e.g., just
595 after sunrise). Figure 15 shows Pandora-1 data during the SCOUT campaign in July 2006
596 at Thessaloniki, Greece. Excellent agreement is seen between the OMI and Pandora-1
597 measurements, though the OMI overpass times seem to occur just before or just after the
598 mid-day maximum in NO₂ concentration; this limits the range of NO₂ concentration val-

599 uses explored in this comparison. A number of further field campaigns are planned, during
600 which Pandora-1/OMI comparisons will be done.

601 4.3.4. Direct Sun DOAS (BIRA)

602 During the second DANDELIONS campaign, a direct-sun DOAS instrument was operated
603 in addition to the MAX-DOAS instrument. The well-defined optical path and air mass
604 factor make this instrument equally sensitive to absorption along the whole optical path
605 and so provides accurate NO₂ total columns.

606 The instrument is similar in concept to the MAX-DOAS: Inside the building, in a thermo
607 regulated box, a grating spectrometer covering the UV-Vis region is coupled to a cooled
608 CCD detector, connected by depolarizing fiber optic bundle to the external optical head.
609 Outside, alongside the MAX-DOAS scanning telescope, a collimating optic tube is mounted
610 on a BRUSAG commercial sun-tracking system, holding the fiber.

611 The retrieval is also done using the DOAS approach: The ratios of the measured radiance
612 spectra to a reference spectrum are analyzed with respect to a set of reference spectra,
613 in the 425–450 nm window, including laboratory spectra of O₃, H₂O, O₂–O₂, the com-
614 puted the Ring effect spectrum, and NO₂ cross-sections at two different temperatures. In
615 contrast to the analysis of MAX-DOAS data, a fixed reference spectrum (measured on 7
616 September 2006) has been used for the whole time-series. The NO₂ residual slant column
617 amount included in this reference spectrum has been obtained by analysing it with re-
618 spect to the Kurucz solar atlas [Kurucz *et al.*, 1984], which was assumed to be free of NO₂
619 absorption. The Kurucz solar spectrum was convolved with a precisely measured instru-
620 ment slit function to match the instrument's spectral resolution. Based on this analysis,

621 total absolute slant columns could be derived from direct sun measurements; these were
622 transformed into total vertical columns using geometrical AMFs.

623 Figure 16 shows the time series for the BIRA DOAS measurements of the total column
624 NO_2 (filled dots), which provides a good idea of the diurnal variation of NO_2 levels.
625 The open squares show the collocated OMI measurements (one or two per day). The
626 OMI snapshots of vertical column NO_2 , for the most part, appear to be in quite good
627 agreement with the ground-based measurements. Note that the OMI data are filtered for
628 clouds (cloud fraction $\leq 20\%$).

629 Figure 17 shows the correlation plot of the collocated data (the point nearest in time
630 to the OMI overpass). A linear regression, constrained to pass through the origin, gives a
631 slope of 0.84 ± 0.05 . The scatter in the data ($R = 0.68$), and the relatively small number
632 of data points ($N = 26$) do not permit a statistically significant estimation of an additive
633 bias.

634 4.3.5. FTUVS measurements at Table Mountain, California

635 Another instrument that has been used to validate OMI NO_2 total column measurements
636 uses the Fourier Transform Ultraviolet Visible Spectrometer (FTUVS), a UV-VIS-NIR in-
637 terferometer, at the Table Mountain Facility (TMF), north of Los Angeles, California, at
638 $34^\circ 22.9' \text{ N}$, $117^\circ 40.8' \text{ W}$, at an altitude of 2290 m (7300') [Cageao *et al.*, 2001]. Spectra are
639 recorded in the direct solar absorption mode with a spectral resolution of 0.0013 nm, which
640 is sufficient to resolve NO_2 vibronic features. By measuring the doppler-shifted spectra
641 from the east and west solar limbs, and taking the ratio of the two, one can remove the

642 solar Fraunhofer lines; there is no need to measure a high-sun reference spectrum, as in a
643 number of the other methods described in this overview.

644 The instrument is not readily transportable. The FTUVS observation site overlooks the
645 Antelope Valley, north of the Los Angeles Basin. This area is characterized by relatively
646 clean air under most conditions, but is often influenced by polluted air from Los Angeles
647 in the afternoon, advected through the Cajon Pass. While considerably above the tro-
648 pospheric background under these conditions, the NO₂ column abundance values rarely
649 exceed 1×10^{16} molecules cm⁻², which is considerably smaller than values measured di-
650 rectly downwind of a polluted urban area (see Fig. 8). Because the altitude of TMF is
651 about 2500 feet above the Antelope Valley, FTUVS column abundance measurements of
652 NO₂ will be biased relative to the center of the OMI footprint. The bias is small relative
653 to the total column, and will not have a significant effect on the slope of the OMI-FTUVS
654 correlation. The OMI data used for validation were sorted by distance from the TMF
655 site, in order to mitigate somewhat the possible effects of the distribution of elevations
656 within a FOV. It was found that a minimum distance of about 10 km is required for good
657 intercomparison.

658 The FTUVS instrument time is shared with other Aura validation activities. On average,
659 measurements were acquired twice a week over the period March–November, 2006.

660 The slant column NO₂ amounts are retrieved by fitting the measured absorption spectra
661 to laboratory spectra at a number of temperatures [Nizkorodov *et al.*, 2004], in windows
662 containing 10 to 20 NO₂ rotational lines. Geometric AMFs were used to convert the
663 SCDS to VCDS. Figure 18 presents the comparison of the OMI-derived and FTUVS-derived
664 measurements of total column NO₂. In this figure, the points where the OMI FOV center

665 fell within 10 km of the Table Mountain Facility site are colored red. The linear regression
666 line shown is fit only to those points. As shown, this line has a slope of 0.77 ± 0.41 , and
667 it does not go through the origin. This data set suggests that the OMI NO₂ totals are
668 underestimated in the middle of the data range, but that there may also be a positive
669 additive bias.

4.4. NO₂ Profile measurements

670 As pointed out in previous sections, and in *Boersma et al.* [2002] and *Bucsela et al.*
671 [2006], the shape of the vertical profile of NO₂ influences the (physical) air mass fac-
672 tors. The OMI NO₂ algorithm uses a set of assumed profiles, which were derived from
673 model studies; these assumed profiles thus affect the retrieved total and tropospheric NO₂
674 amounts. It is therefore important to evaluate how well the assumed profiles approximate
675 the actual profiles, *vis-à-vis* the air mass factor calculation. There have been very few
676 efforts to measure NO₂ profiles [*Heiland et al.*, 2002; *Martin et al.*, 2006]. Recent efforts
677 include measurements during the September 2006 DANDELIONS campaign (lidar, *in situ*
678 at two altitudes, and MAX-DOAS at two altitudes, see section 4.4.1), and aircraft-based *in*
679 *situ* measurements taken during the INTEX-B campaign in North America.

4.4.1. NO₂ lidar

680 NO₂ profiles were measured by a lidar system, developed at RIVM, during the DAN-
681 DELIONS campaign in September 2006 [*Brinksma et al.*, 2007]. The lidar consists of an
682 emitter and a receiver unit. The entire system is housed in a truck, constituting a fully
683 self-supporting mobile laboratory. The emitter unit consists of a pulsed pump laser-dye
684 laser combination, running at 30 Hz. The dye laser is tuned to 449.10 nm and detuned
685 to 448.31 nm every other pulse. The latter wavelength is absorbed more strongly by NO₂
686

687 than the former. The laser pulses, 40 mJ in energy, 10 ns in duration, are directed into the
688 atmosphere, where they are scattered by gas molecules and aerosol particles. The receiver
689 unit collects the backscattered light, through a 280 mm telescope, onto a photomultiplier
690 tube, with an interference filter to block daylight. A digitizer samples the signals with a
691 range resolution of 3.75 m.

692 The NO₂ concentration at a certain altitude is derived from the log of the ratio of
693 the backscattered signals at the two wavelengths, using the differential absorption lidar
694 (DIAL) method. Since the laser pulses are not emitted from the center of the telescope, the
695 laser beam is not in view of the telescope at close range, and thus the lidar is effectively
696 blind for the first 500 m. When measurements starting near the surface are required, the
697 emitter section and receiving telescope are tilted through various elevation angles; the
698 measurements are combined into a single profile, where elevations close to the horizontal
699 yield NO₂ concentrations at low altitudes but pertaining to a certain horizontal extent
700 away from the instrument (for a near-horizontal measurement, typically about 2500 m),
701 while a zenith observation is performed exactly above the truck. Completing one vertical
702 profile typically takes 50 minutes, providing data in a altitude range of a few meters up to
703 approximately 2500 m, with an accuracy of 0.2–0.4 $\mu\text{g m}^{-3}$. Range and accuracy depend
704 on atmospheric conditions. The vertical resolution of a profile varies, and typically is
705 about 15 m at the lowest altitude, increasing to over 500 m at the highest altitude. The

706 resolution arises from averaging of data over an altitude range, based on signal-to-noise
707 considerations.

708 A paper describing the lidar and other time-resolved three dimensional observations
709 of NO₂ during the 2006 DANDELIONS campaign is in preparation (H. Volten et al., in
710 preparation).

711 Figure 19 presents examples of profile measurements for a relatively clean day, Septem-
712 ber 9, 2006, and for a polluted day, September 12, 2006; in both cases, there was little-
713 to-no cloud cover. The concentration of NO₂ is high at ground level, and drops to zero
714 (within the accuracy of the measurement) above the boundary layer. The boundary layer
715 heights, provided by the boundary layer lidar at Cabauw, are indicated in Figure 19 by a
716 dashed line. The figure shows that the day-to-day variations in NO₂ at the surface may
717 be considerable, from around 3 $\mu\text{g NO}_2 \text{ m}^{-3}$ on a clean day to more than 50 $\mu\text{g NO}_2 \text{ m}^{-3}$
718 on a polluted day. Large diurnal variations may also occur.

719 **4.4.2. In-situ aircraft measurements**

720 *In situ* measurements of NO₂ from the DC-8 aircraft were obtained during the INTEX-A
721 (summer 2004), PAVE (winter 2005) and INTEX-B (spring 2006) campaigns. These have
722 been discussed by Bucsela *et al.* [2007]. The NO₂ profiles from these experiments are useful
723 for validating both the shapes of the model profiles used in the OMI retrieval algorithm,
724 and, in turn, the tropospheric column amounts from the satellite retrievals. The aircraft
725 profiles obtained during INTEX-A and PAVE were combined into composite land and ocean
726 profiles. The *in situ* profiles were seen to be very similar to the annual mean GEOS-CHEM
727 profiles used to retrieve tropospheric NO₂ columns from OMI, and the AMFs computed from
728 the measured profiles were slightly larger than those calculated using the model profiles.

729 A more quantitative analysis was performed using a set of approximately 70 profiles
730 measured during INTEX-B. Error-weighted linear regressions comparing the AMFs yielded
731 a slope of 1.10 ± 0.10 (*in situ* profile AMF greater than that used by the OMI algorithm).
732 This means that the OMI VCD would overestimate the actual VCD by 10% ($\pm 10\%$).

733 *In situ* measurements of NO₂ can also be used to validate tropospheric column amounts
734 from OMI. The INTEX-B data were used for this analysis by *Bucsela et al.* [2007] (see
735 also *Boersma et al.* [2007]). Two representative profile analyses are shown in Figure 20.
736 The full set of profiles from INTEX-B were used. The correlation between the aircraft
737 and OMI data sets was good ($R = 0.83$). This comparison is shown in Figure 21. The
738 integrated *in situ* tropospheric columns were found to be somewhat larger than the OMI
739 Level-2 columns, as indicated by the slope of 1.10 ± 0.08 . Although some of the *in situ*
740 columns required significant extrapolations, sensitivity studies indicated that the overall
741 results were generally robust with respect to the choices made for the profile binning,
742 integration and extrapolation, as well as being relatively insensitive to the errors assumed
743 for the weights. The insensitivity to extrapolation is consistent with findings in a similar
744 aircraft study by *Heiland et al.* [2002].

5. Conclusions and discussion

745 This paper has presented a number of results of experiments where ground- and aircraft-
746 based measurements of NO₂ can be compared with collocated measurements and retrieval
747 by OMI. Since some measurements estimate the stratospheric column, others the tropo-
748 spheric column, and still others the total column, their results can be used to validate the
749 OMI NO₂ standard data product's estimates of these columns.

750 Table 3 summarizes the results of the numerous validation studies that have been dis-
751 cussed in this overview.

752 On the basis of the SAOZ and DOAS measurements, which are most sensitive to the
753 stratospheric NO₂ columns, the OMI stratospheric NO₂ appears to agree with the ground-
754 based measurements to within $\sim 10\%$.

755 The OMI tropospheric column appears to be consistently lower than the various ground-
756 based measurements, though there is some inconsistency amongst those ground-based
757 measurements. Though many of the various instruments and methods for measuring
758 tropospheric and total NO₂ have not themselves been validated, it is noteworthy that they
759 all give NO₂ estimates that are on average greater than those retrieved from OMI. This
760 may indicate a bias in the OMI retrieval. However, a number of cases have been studied,
761 where average differences between OMI and ground based measurements decrease as the
762 geographic match up criterion is tightened. It is likely to be due to the inhomogeneity of
763 the tropospheric NO₂ field, and, in particular, the fact that ground-based measurements
764 are often made in or near regions of moderate to strong sources of NO₂: The OMI FOV
765 that includes the site will also include a substantial ($\sim 10^2 \text{ km}^2$) regions where much lower
766 NO₂ concentrations prevail. This was borne out in the Brewer studies [Cede *et al.*, 2006]
767 and in the correlation studies of *Veefkind et al.* [2007] (see also Section 1.) However, the
768 data taken at TMF (Section 4.3.5) were mostly obtained under conditions of relatively
769 clean tropospheric air, and these data also suggested a negative bias for OMI retrieval.

770 Potential biases can arise at any of the steps in the algorithm. Instrumental artifacts
771 are known to give rise to the cross-track bias (striping) and the destriping process can
772 certainly give rise to a general bias. The stratosphere-troposphere separation is based

773 on an initial AMF, and any bias in that AMF will result in a bias in the background
774 (mostly stratospheric) field. After the stratosphere-troposphere separation, a new AMF
775 is constructed, based on model-based-climatology derived *a priori* profiles. The aircraft
776 *in situ* measurements of NO₂ profile shape suggest that the *a priori* profile shapes are
777 essentially correct, in that the two do not give appreciably different AMFs. The AMF
778 is also sensitive to the surface albedo. The OMI algorithm uses a climatological surface
779 albedo, and this may be a worthy subject for future validation studies.

780 It should be mentioned that all the validation studies reviewed here focused on mostly
781 cloud-free conditions. However, while OMI FOVs are considerably smaller than those of
782 earlier atmospheric remote sensing instruments, they are still large enough that very few
783 can be expected to be completely uncontaminated by clouds.

784 Acknowledgments

785 Part of this research was carried out at the Jet Propulsion Laboratory, California Insti-
786 tute of Technology, under contract with the National Aeronautics and Space Administra-
787 tion.

References

References

788 Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. Li, H. Y.
789 Liu, L. J. Mickley, and M. G. Schultz (2001), Global modeling of tropospheric chem-
790 istry with assimilated meteorology: Model description and evaluation, *J. Geophys.
791 Res.*, 106, 23 073–23 096.

792 Boersma, K. F., E. Bucsela, E. Brinksma, and J. F. Gleason (2002), NO₂, in *OMI*
793 *Algorithm Theoretical Basis Document, Volume IV: Trace Gas Algorithms*, edited by
794 K. Chance, KNMI, NASA/GSFC, FMI, pp. 15–36.

795 Boersma, K. F., H. J. Eskes, and E. J. Brinksma (2004), Error analysis for tropospheric
796 NO₂ retrieval from space, *J. Geophys. Res.*, 109, doi:10.1029/2003JD003962, D04311.

797 Boersma, K. F., D. J. Jacob, E. J. Bucsela, A. E. Perring, R. Dirksen, R. J. van der A,
798 R. M. Yantosca, R. J. Park, and R. C. Cohen (2007), Validation of OMI tropospheric
799 NO₂ observations during INTEX-B and application to constrain NOx emissions over
800 the eastern United States and Mexico, *J. Geophys. Res.*, —, doi:---, —.

801 Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, V. V. Rozanov, K. V. Chance,
802 and A. P. H. Goede (1999), SCIAMACHY: Mission objectives and measurement
803 modes, *J. Atmos. Sci.*, 56, 127–150.

804 Brinksma, E. J., G. Pinardi, R. Braak, H. Volten, A. Richter, A. Schönhardt, M. van
805 Roozendael, C. Fayt, C. Hermans, R. J. Dirksen, T. Vlemmix, A. J. C. Berkhouw,
806 D. P. J. Swart, H. Oetjen, F. Wittrock, T. Wagner, O. W. Ibrahim, G. de Leeuw,
807 M. Moerman, R. L. Curier, E. A. Celarier, W. H. Knap, J. P. Veefkind, H. J. Eskes,
808 M. Allaart, R. Rothe, A. J. M. Piters, and P. F. Levelt (2007), The 2005 and 2006
809 DANDELIONS NO₂ and aerosol validation campaigns, *J. Geophys. Res.*, —, —.

810 Bucsela, E., A. E. Perring, R. C. Cohen, J. F. Gleason, K. F. Boersma, M. O. Wenig,
811 T. H. Bertram, P. J. Wooldridge, R. Dirksen, E. A. Celarier, and J. Veefkind (2007),
812 A comparison of NO₂ *in situ* aircraft measurements with data from the Ozone Mon-
813 itoring Instrument, *J. Geophys. Res.*, —, doi:---, —.

814 Bucsela, E. J., E. A. Celarier, M. O. Wenig, J. F. Gleason, J. P. Veefkind, K. F.
815 Booersma, and E. J. Brinksma (2006), Algorithm for NO₂ vertical column retrieval
816 from the Ozone Monitoring Instrument, *IEEE Trans. Geosci. Rem. Sens.*, *44*(5),
817 doi:10.1109/TGRS.2005.863715, 1245–1258.

818 Burrows, J. P., A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal
819 (1999a), Atmospheric remote sensing reference data from GOME-2. temperature-
820 dependent absorption cross-sections of O₃ in the 231–794 nm range, *J. Quant. Spec-
821 trosc. Radiat. Transfer*, *61*, 509517.

822 Burrows, J. P., M. Weber, M. Buchwitz, V. V. Rozanov, A. Ladstatter-Weissenmayer,
823 A. Richter, R. DeBeek, R. Hoogen, K. Bramstedt, and K. U. Eichmann (1999b), The
824 global ozone monitoring experiment (GOME): Mission concept and first scientific
825 results, *J. Atmos. Sci.*, *56*, 151–175.

826 Cageao, R. P., J. F. Blavier, J. P. McGuire, Y. B. Jiang, V. Nemtchinov, F. P. Mills, and
827 S. P. Sander (2001), High resolution fourier transform ultraviolet-visible spectrometer
828 for the measurement of atmospheric trace species: Application to OH, *Appl. Opt.*, *40*,
829 2024–2030.

830 Cede, A., J. Herman, R. Richter, N. Krotkov, and J. Burrows (2006), Measurements of
831 nitrogen dioxide total column amounts using a brewer double spectrophotometer in
832 direct sun mode, *J. Geophys. Res.*, *111*, doi:10.1029/2005JD006585.

833 Celarier, E. A., J. F. Gleason, E. J. Bucsela, K. F. Boersma, E. Brinksma, J. P. Veefkind,
834 and P. Levelt (2006), OMNO2 README file, Tech. rep., NASA Goddard Space Flight
835 Center. URL http://toms.gsfc.nasa.gov/omi/no2/OMNO2_readme.pdf.

836 Chance, K. V. and R. J. D. Spurr (1997), Ring effect studies: Rayleigh scattering,
837 including molecular parameters for rotational Raman scattering, and the Fraunhofer
838 spectrum, *Appl. Opt.*, 36(21), 5224–5230.

839 Cleary, P. A., P. J. Wooldridge, and R. C. Cohen (2002), Laser-induced fluorescence de-
840 tection of atmospheric NO₂ with a commercial diode laser and a supersonic expansion,
841 *Appl. Opt.*, 41, 6950–6956.

842 Denis, L. e. a. (2005), A new software suite for NO₂ vertical profile retrieval from
843 ground-based zenith-sky spectrometers, *J. Quant. Spectrosc. Radiat. Transfer*, 92(3),
844 321–333.

845 Deutschmann, T. and T. Wagner (2006), *TRACY-II Users manual*, University of Hei-
846 delberg.

847 Dobber, M., R. Dirksen, P. Levelt, G. van den Oord, R. Voors, Q. Kleipool, G. Jaross,
848 M. Kowalewski, E. Hilsenrath, G. Leppelmeier, J. de Vries, W. Dierssen, and N. Roze-
849 meijer (2006), Ozone monitoring instrument calibration, *IEEE Trans. Geosci. Rem.
850 Sens.*, 44(5), doi:10.1109/TGRS.2006.869987, 1209–1238.

851 Finlayson-Pitts, B. J. and J. Pitts, James N. (2000), *Chemistry of the Upper and Lower
852 Atmosphere: Theory, Experiments, and Applications*, Academic Press, ISBN 012-
853 257060X.

854 Gordley, L., J. Russell, L. Mickley, J. Frederick, J. Park, K. Stone, G. Beaver, J. McIn-
855 erney, L. Deaver, G. Toon, F. Murcray, R. Blatherwick, M. Gunson, J. Abbatt,
856 R. Mauldin, G. Mount, B. Sen, and J. Blavier (1996), Validation of nitric oxide
857 and nitrogen dioxide measurements made by the halogen occultation experiment for
858 UARS platform, *J. Geophys. Res.*, 101(D6), doi:A1996UJ40400034, 10 241–10 266.

859 Heland, J., H. Schlager, A. Richter, and J. P. Burrows (2002), First comparison of
860 tropospheric NO₂ column densities retrieved from GOME measurements and in situ
861 aircraft profile measurements, *Geophys. Res. Lett.*, 29(20), Article No. 1983.

862 Ionov, D., F. Goutail, and J. Pommereau (2006a), Validation of satellite data on total
863 NO₂: GOME, SCIAMACHY and OMI nadir viewing instruments compared to UV-
864 visible SAOZ network, in *Proc. of 3rd International DOAS Workshop, Bremen, 20-22*
865 *March, 2006*, pp. —.

866 Ionov, D., F. Goutail, J.-P. Pommereau, A. Bazureau, E. Kyro, T. Portafaix, G. Held,
867 P. Erickson, and V. Dorokhov (2006b), Ten years of NO₂ comparisons between ground-
868 based SAOZ and satellite instruments (GOME, SCIAMACHY, OMI), in *Atmospheric*
869 *Science Conference, ESRIN, Frascati, Italy, 8-12 May 2006*, ESA SP-628, pp. —.

870 Ionov, D., Y. Timofeyev, F. Goutail, J.-P. Pommereau, and A. Shalamyansky (2007),
871 Delta-validation of ENVISAT SCIAMACHY total ozone and NO₂ with the data of
872 ground-based UV-VIS measurements (m-124 and SAOZ), in *3rd Workshop on the*
873 *Atmospheric Chemistry Validation of Envisat (ACVE-3), ESRIN, Italy, 4-7 December*
874 *2006*, ESA SP-642, pp. —.

875 Kurucz, R. L., I. Furenlid, J. Brault, and L. Testerman (1984), *Solar flux atlas from*
876 *296 nm to 1300 nm*, vol. National Solar Observatory Atlas No. 1, National Solar
877 Observatory.

878 Lambert, J., M. Van Roozendael, P. Simon, J. Pommereau, F. Goutail, J. Glea-
879 son, S. Andersen, D. Arlander, N. Van, H. Claude, J. de la Noe, M. De Maziere,
880 V. Dorokhov, P. Erickson, A. Green, K. Tornkvist, B. Hoiskar, E. Kyro, J. Lev-
881 eau, M. Merienne, G. Milinevsky, H. Roscoe, A. Sarkissian, J. Shanklin, J. Stahe-

lin, C. Tellefsen, and G. Vaughan (2001), Combined characterisation of GOME and TOMS total ozone measurements from space using ground-based observations from the NDSC, *Adv. Space Res.*, 26(12), 1931–1940.

Leveld, P. F. and P. K. Bhartia (2007), Tbd, *J. Geophys. Res.*, TBD(TBD), doi:TBD, TBD.

Leveld, P. F., E. Hilsenrath, G. W. Leppelmeier, G. H. J. van den Oord, P. K. Bhartia, J. Taminnen, J. F. de Haan, and J. P. Veefkind (2006a), Science objectives of the Ozone Monitoring Instrument, *IEEE Trans. Geosci. Rem. Sens.*, 44(5), doi:10.1109/TGRS.2006.872336, 1199–1208.

Leveld, P. F., G. H. J. van den Oord, M. R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J. Lundell, and H. Saari (2006b), The Ozone Monitoring Instrument, *IEEE Trans. Geosci. Rem. Sens.*, 44(5), doi:10.1109/TGRS.2006.872333, 1093–1101.

Martin, R., C. Sioris, K. Chance, T. Ryerson, T. Bertram, P. Woolridge, R. Cohen, J. Neuman, A. Swanson, and F. Flocke (2006), Evaluation of space-based constraints on nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern north america, *J. Geophys. Res.*, 111, doi:10.1029/2005JD006680.

Martin, R. V., D. J. Jacob, J. A. Logan, I. Bey, R. M. Yantosca, A. C. Staudt, Q. Li, A. M. Fiore, B. N. Duncan, H. Liu, P. Ginoux, and V. Thouret (2002), Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations, *J. Geophys. Res.*, 107(D18), Article No. 4351.

Nizkorodov, S. A., S. P. Sander, and L. R. Brown (2004), Temperature and pressure dependence of high-resolution air-broadened absorption cross sections of NO₂ (415–525 nm), *J. Phys. Chem.*, A108, 4864–4872.

905 Piters, A., K. Bramstedt, J. Lambert, and B. Kirchhoff (2006), Overview of sciamachy
906 validation: 2002-2004, *Atmos. Chem. & Phys.*, 6, 127–148.

907 Platt, U. (1994), *Chemical Analysis Series, 127, Differential optical absorption spec-*
908 *troscopy (DOAS), Air monitoring by spectroscopic techniques*, John Wiley & Sons,
909 Inc.

910 Russchenberg, H., F. Bosveld, D. Swart, H. ten Brink, G. de Leeuw, R. Uijlenhoet,
911 B. Arbesser-Rastburg, H. van der Marel, L. Ligthart, R. Boers, and A. Apituley
912 (2005), Groundbased atmospheric remote sensing in The Netherlands; European out-
913 look, *IEICE Transactions on Communications, E88-B(6)*, doi:10.1093/ietcom/e88-b.
914 6.2252, 2252–2258.

915 Spurr, R. J. D. (2001), Linearized radiative transfer theory: A general discrete ordi-
916 nate approach to the calculation of radiances and analytic weighting functions, with
917 application to atmospheric remote sensing, Ph.D. thesis, Technical University of Eind-
918 hoven, The Netherlands.

919 Spurr, R. J. D., T. P. Kurosu, and K. V. Chance (2001), A linearized discrete ordinate
920 radiative transfer model for atmospheric remote sensing retrieval, *J. Quant. Spectrosc.*
921 *Radiat. Transfer*, 68, 689–735.

922 Thornton, J. A., P. J. Wooldridge, and R. C. Cohen (2000), Atmospheric NO₂: In
923 situ laser-induced fluorescence detection at parts per trillion mixing ratios, *Analytical*
924 *Chemistry*, 72, 528–539.

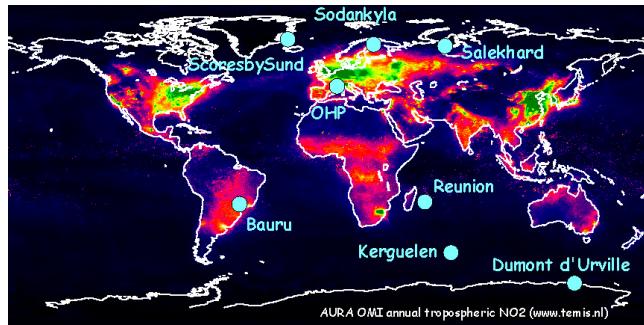
925 Vandaele, A. C., C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F.
926 Mérienne, A. Jenouvrier, and B. Coquart (1998), Measurements of the NO₂ absorp-
927 tion cross-section from 42000 cm⁻¹ to 10000 cm⁻¹ (238–1000 nm) at 220 K and 294

929 Veefkind, J. P. and E. A. Celarier (2006), OMI level 2 NO₂ data product specifica-
930 tion, Tech. Rep. SD-OMIE-KNMI-352, KNMI and NASA Goddard Space Flight
931 Center. URL [http://disc.sci.gsfc.nasa.gov/Aura/OMN02_data_product_](http://disc.sci.gsfc.nasa.gov/Aura/OMN02_data_product_specification.pdf)
932 [specification.pdf](http://disc.sci.gsfc.nasa.gov/Aura/OMN02_data_product_specification.pdf).

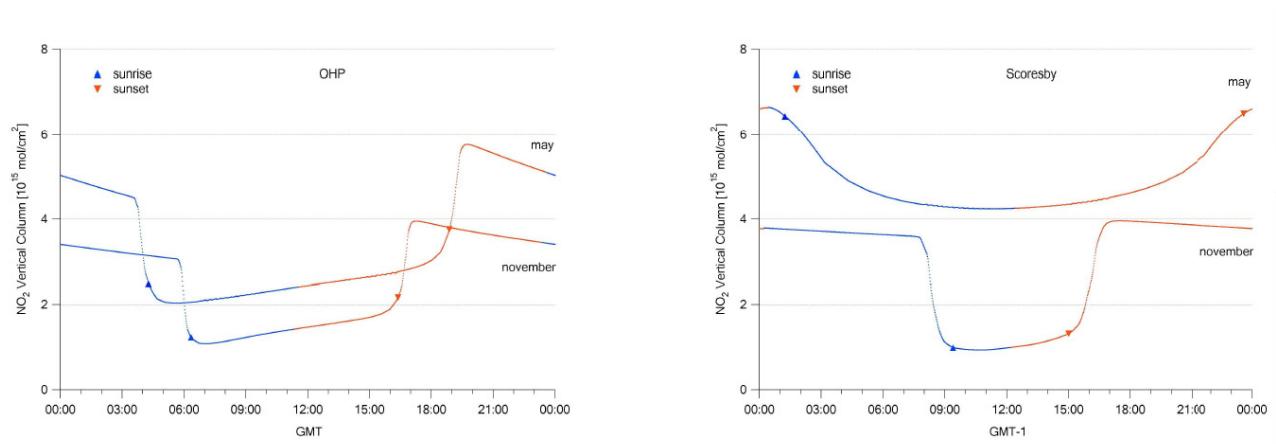
933 Veefkind, J. P., E. J. Brinksma, K. F. Boersma, H. Eskes, J. F. Gleason, E. J. Bucsela,
934 E. A. Celarier, M. O. Wenig, and P. F. Levelt (2007), High spatial resolution NO₂
935 observations over europe using data from the ozone monitoring instrument, *Geophys.*
936 *Res. Lett.* (To appear.).

937 Wagner, T., B. Dix, C. v. Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt
938 (2004), MAX-DOAS O₄ measurements - a new technique to derive information on
939 atmospheric aerosols. (I) Principles and information content, *J. Geophys. Res.*, 109,
940 doi:10.1029/2004JD004904.

941 Wagner, T., J. Burrows, T. Deutschmann, B. Dix, F. Hendrick, C. von Friedeburg,
942 U. Frieß, K. Heue, H. Irie, H. Iwabuchi, Y. Kanaya, J. Keller, C. A. McLinden,
943 H. Oetjen, E. Palazzi, A. Petritoli, U. Platt, O. Postylyakov, J. Pukite, A. Richter,
944 M. van Roozendael, A. Rozanov, V. Rozanov, R. Sinreich, S. Sanghavi, and F. Wit-
945 trock (2007), Comparison of Box-Air-Mass-Factors and Radiances for Multiple-Axis
946 Differential Optical Absorption Spectroscopy (MAX-DOAS) Geometries calculated
947 from different UV/visible Radiative Transfer Models, *Atm. Chem. Phys.*, accepted.


948 Wenig, M. O., A. M. Cede, E. J. Bucsela, E. A. Celarier, K. F. Boersma, J. P. Veefkind,
949 E. Brinksma, J. F. Gleason, and J. R. Herman (2007), Validation of omi tropospheric
950 no₂ column densities using direct-sun mode brewer measurements at nasa goddard

951 space flight center, *J. Geophys. Res.*, —, doi:---, —.


952 Wittrock, F., H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P.

953 Burrows (2004), MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund

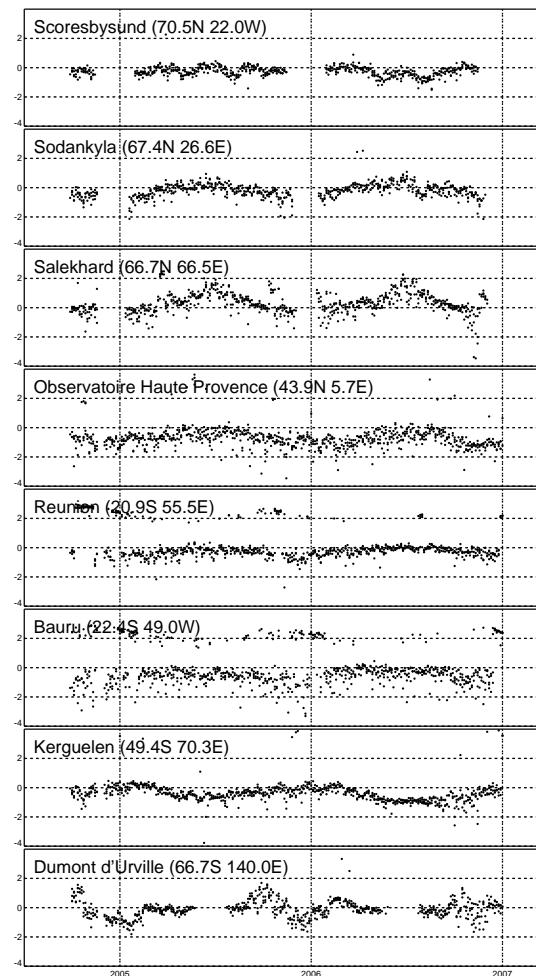
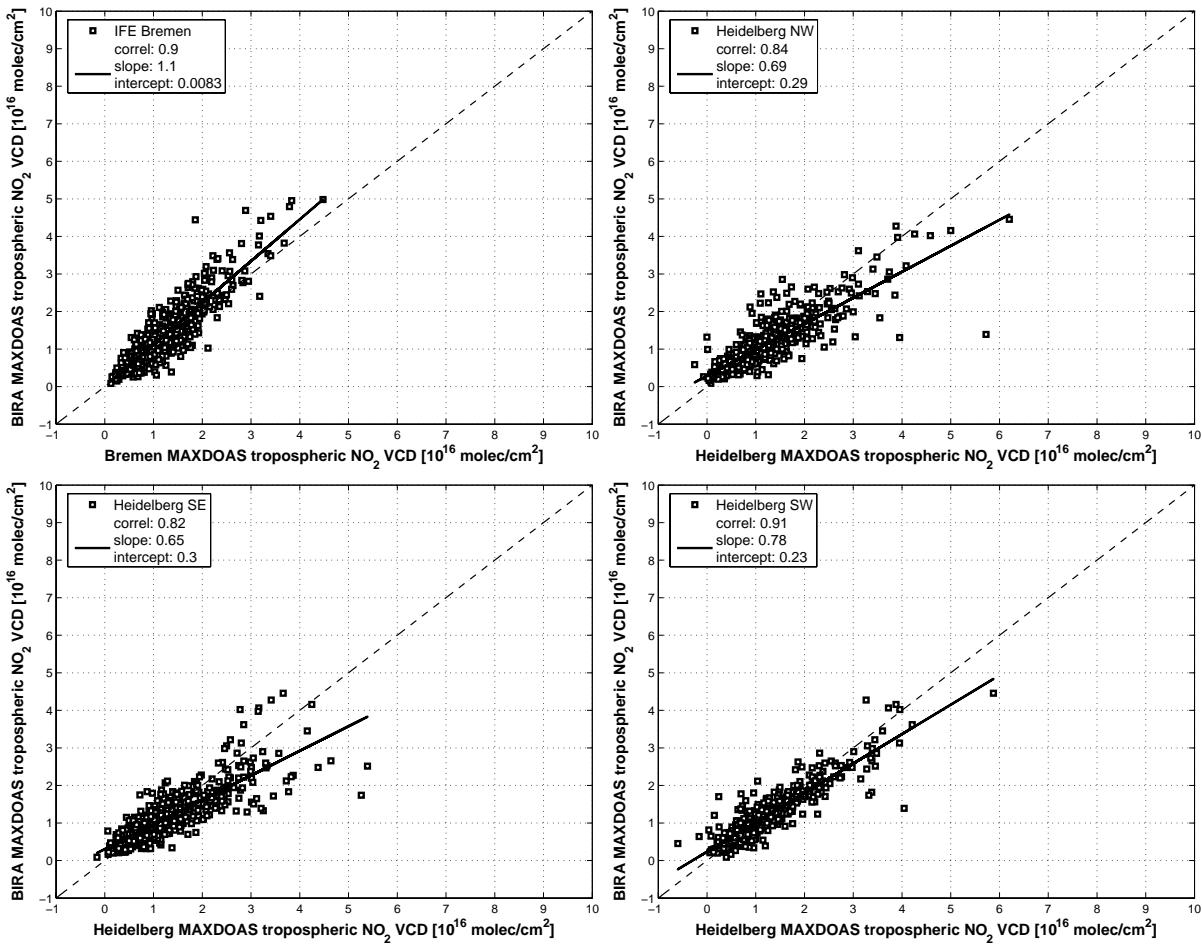

954 - Radiative transfer studies and their application, *Atmos. Chem. Phys.*, 4, 955–966.

Figure 1. Geographical distribution of eight CNRS-operated SAOZ stations in the NDACC network. The colored field presented is the annual mean tropospheric NO₂ column amounts, as measured by OMI.


Figure 2. Simulated time-history of stratospheric NO₂ at a mid-latitude station (OHP), and a high-latitude station (Scoresbysund), for spring and fall.

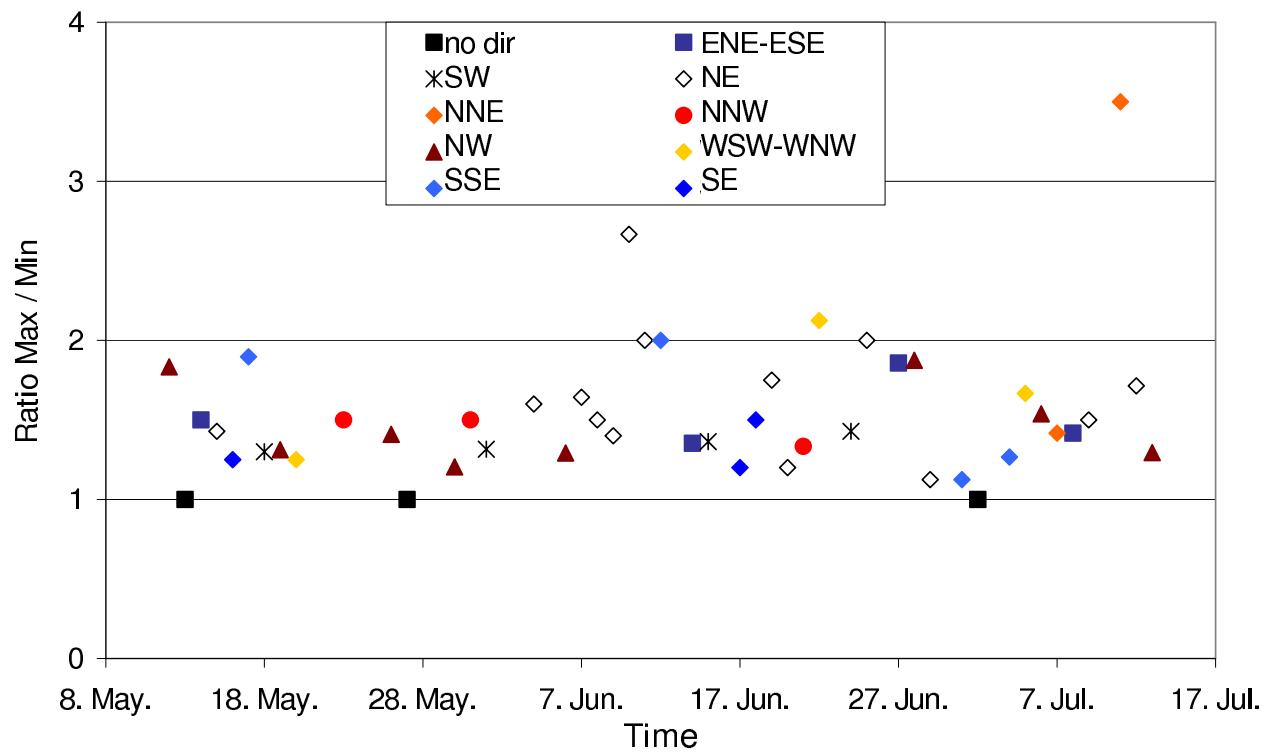

Figure 3. Time series of the difference between OMI and SAOZ-measured stratospheric NO_2 in units of 10^{15}cm^{-2} . The sites are ordered from North to South.

Table 1. Absolute average and r.m.s. difference (Δ , ρ ; $\times 10^{15}$ cm $^{-2}$), and correlation (R) between ground-based SAOZ and satellite data, adjusted to sunrise OMI total and stratospheric NO $_2$ (2004-2006)

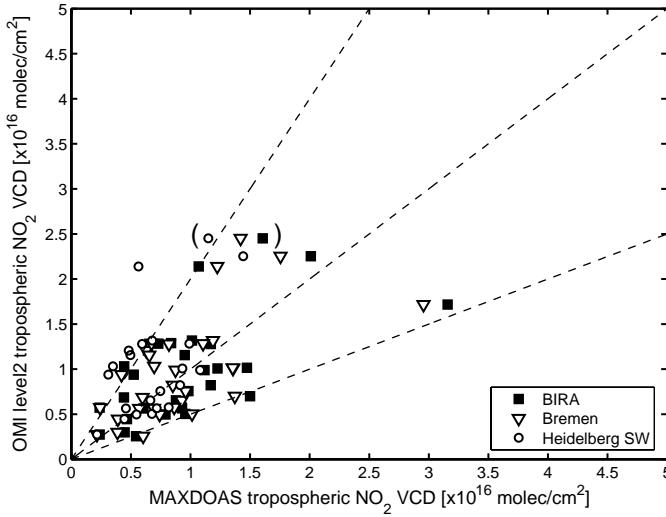

Station	OMI–SAOZ			OMI–SAOZ		
	total column		strat. column			R
	Δ	ρ	R	Δ	ρ	R
Scoresby Sund	+0.02	0.82	0.93	-0.33	0.44	0.99
Sodankyla	+0.58	2.03	0.71	-0.28	0.56	0.97
Salekhard	+1.05	1.57	0.86	+0.24	0.73	0.95
OHP	+1.48	2.39	0.49	-0.71	0.90	0.74
Reunion	+0.17	0.73	0.31	-0.45	0.56	0.67
Bauru	+0.63	2.03	0.17	-0.80	0.97	0.58
Kerguelen	-0.04	0.58	0.88	-0.37	0.59	0.89
Dumont d'Urville	+0.27	1.10	0.88	-0.23	0.66	0.96
OVERALL:	+0.53	1.56	0.70	-0.37	0.70	0.92

Figure 4. Scatter plots of the tropospheric NO_2 columns retrieved during the 2005 campaign from the BIRA MAX-DOAS instrument and, respectively, the Bremen MAX-DOAS (top left), the Heidelberg MAX-DOAS for the 3 pointing directions North-West (top right), South-East (bottom left) and South-West (bottom right). The regression analysis parameters are given in the legends. It has to be noted that agreement with the Heidelberg observations can be further improved after homogenisation of the retrieval settings (see text).

Figure 5. Maximum and minimum NO₂ SCD observed for an elevation angle of 3° of the Heidelberg MAX-DOAS telescopes observing under three different azimuth angles at Cabauw during the DANDELIONS campaign in 2005. High ratios indicate large horizontal gradients of the tropospheric NO₂ concentration field, colors indicate the direction of the gradient (directed toward higher values).

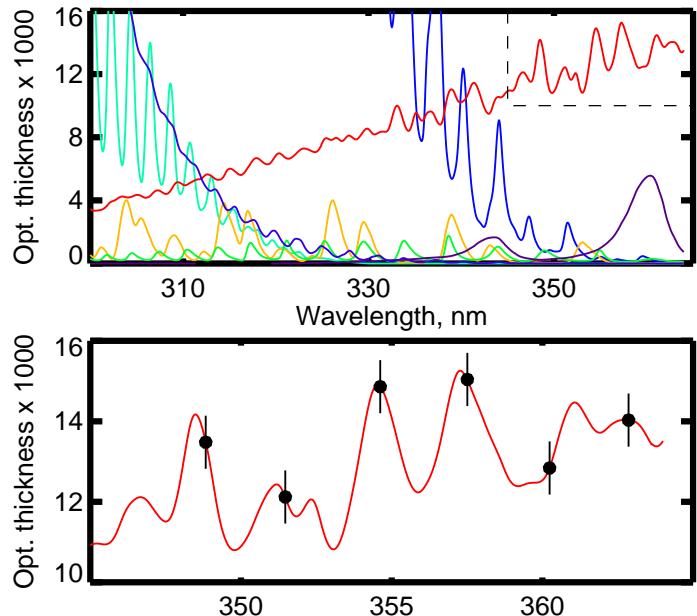
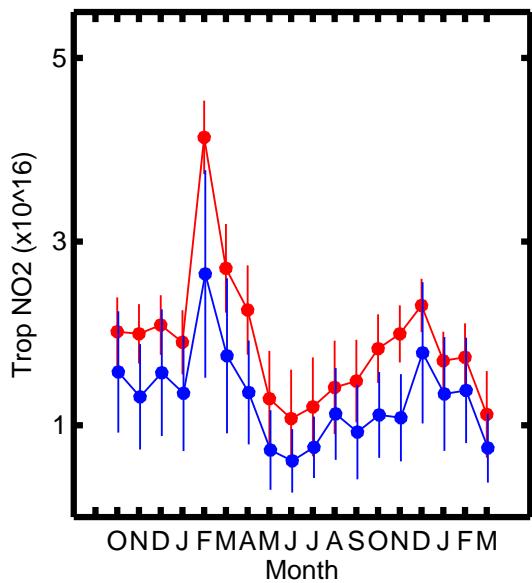
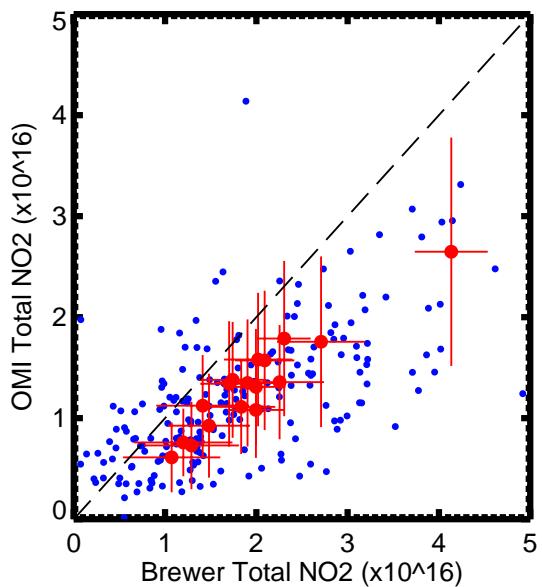
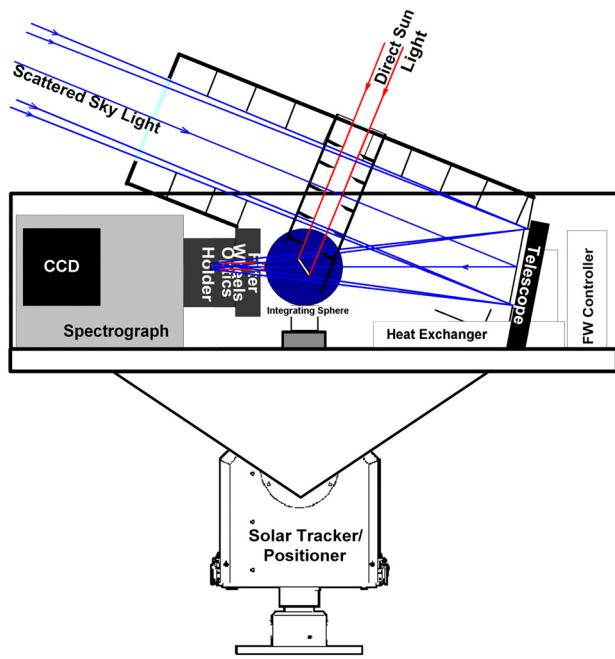


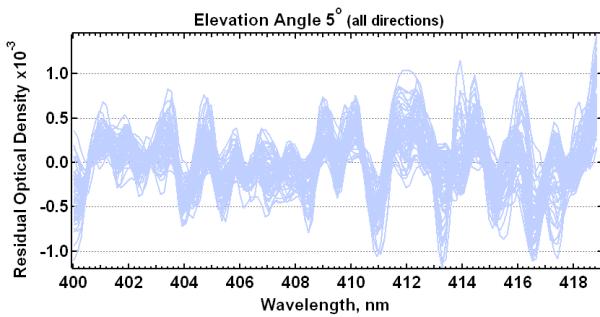
Figure 6. Correlations between tropospheric NO₂ from the three MAX-DOAS instruments at Cabauw (BIRA, Bremen, and Heidelberg SW direction) and OMI Level-2 OMI data are included if cloud fractions were less than 20%. Correlation and regression coefficients are summarized in Table 2. The dashed lines are provided as a visual aid, and show slopes of 1/2, 1, and 2. The data point in brackets is clearly an outlier (see text), and was not included in the regression analysis presented in table 2.

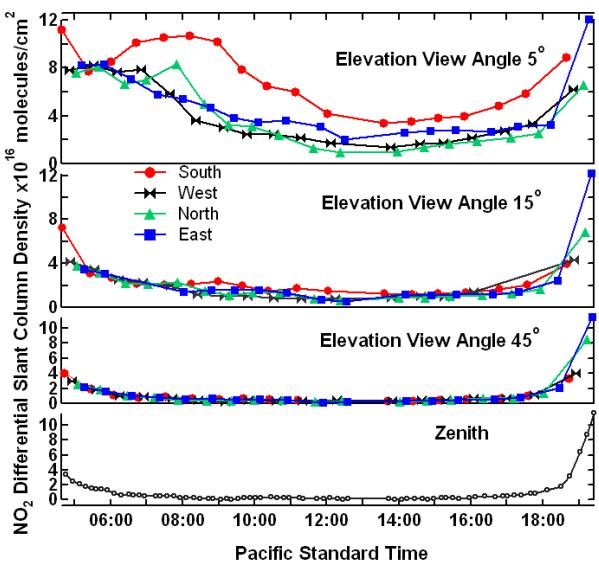

Table 2. Summary of statistical analyses of comparisons between tropospheric NO₂ from MAX-DOAS data and OMI Level-2.

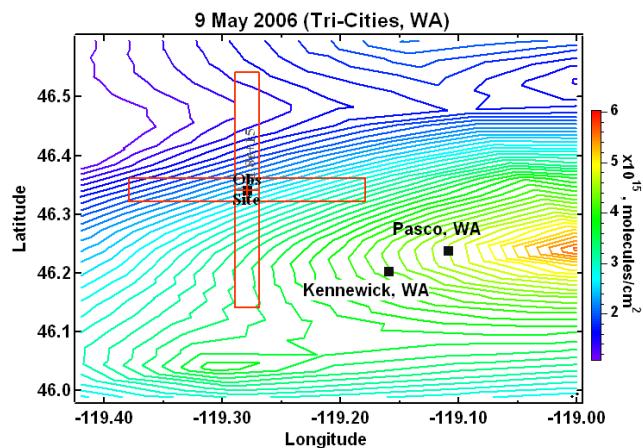
	N	R	Intercept	Slope	RMS diff.	Relative RMS diff.
BIRA south	29	0.60	4.29	0.52	4.82	52%
Bremen southwest	29	0.63	3.93	0.59	4.44	48%
Heidelberg southwest	21	0.45	4.27	0.8	5.38	56%
Heidelberg spatial average	21	0.65	1.99	0.85	3.89	40%

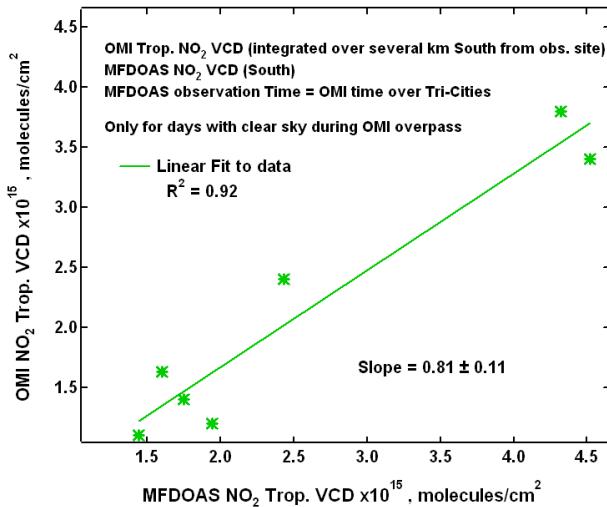

N denotes number of collocations, and R is Pearson correlation coefficient. The intercept and (absolute) RMS difference are in units of 10^{15} m^{-2}

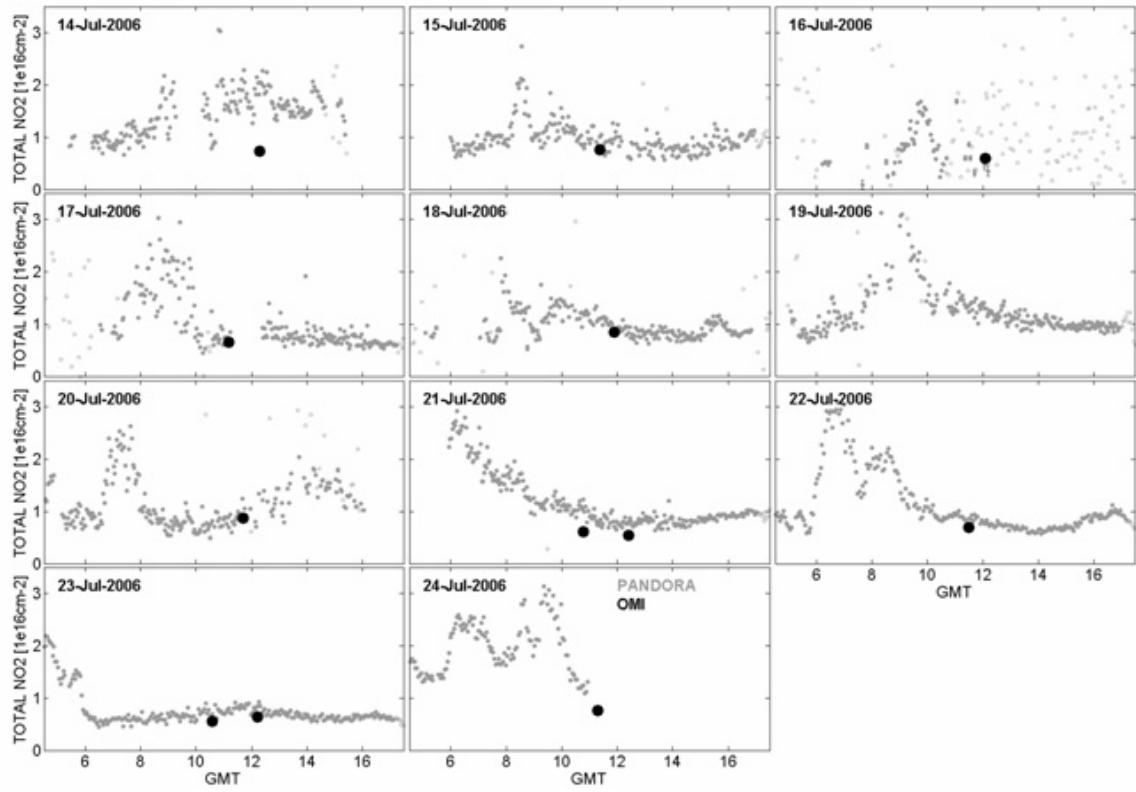

Figure 7. Typical optical depths of the main trace gases in the Brewer MK-III wavelength range. Lower: NO₂ optical depth for 1 DU ($= 2.7 \times 10^{16} \text{ cm}^{-2}$), 6 slit positions with noise estimates.


Figure 8. Comparison between the monthly mean Brewer-measured and OMI-measured NO_2 total columns.


Figure 9. Daily mean and monthly mean values of NO_2 total column measured by the Brewer instrument and OMI. The line of linear regression is also shown.


Figure 10. Schematic drawing of the MF-DOAS instrument.


Figure 11. Representative residual optical densities for observations of May 9, 2006 at 5° elevation and 4 azimuth angles.


Figure 12. Example of measured spatial and temporal variation of MF-DOAS-measured NO₂ differential SCD for May 9, 2006

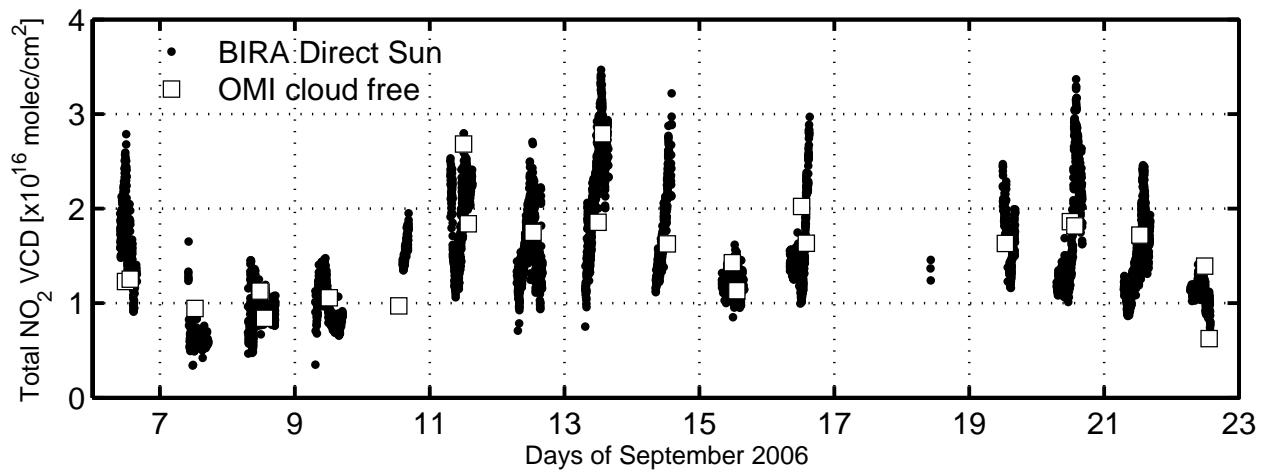

Figure 13. Tropospheric NO₂ VCD over the Tri-Cities area of Washington State on May 9, 2006. The contour map is derived from the individual OMI FOV measurements.

Figure 14. Correlation between OMI tropospheric NO₂ vertical column and MF-DOAS NO₂ tropospheric VCD for measurements made from April 30 through May 13, 2006

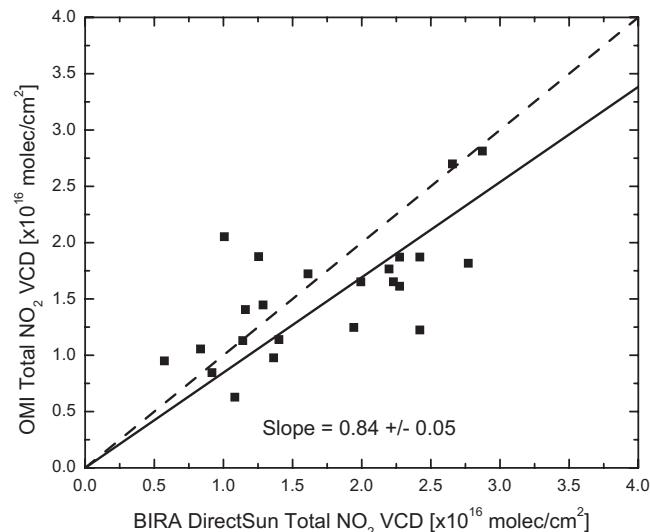


Figure 15. Pandora-1 Data measured during the period 14–24 July 2006, in Thessaloniki (grey dots) and OMI overpass data for the site (large black dots).

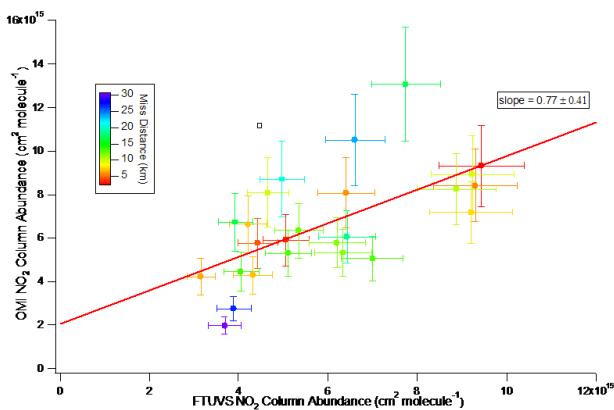
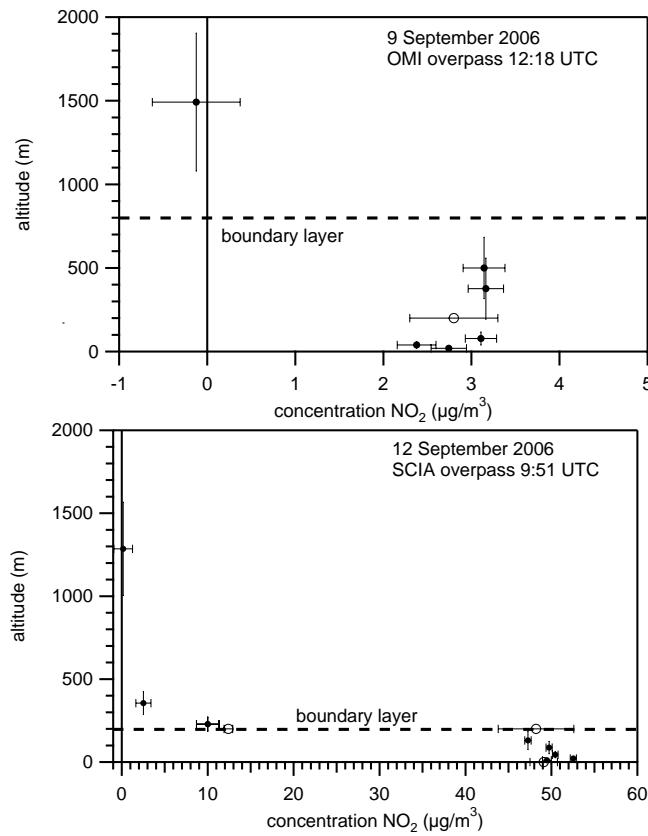
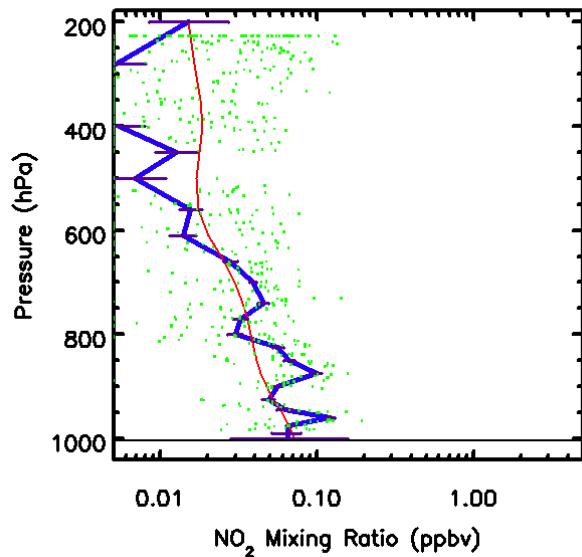
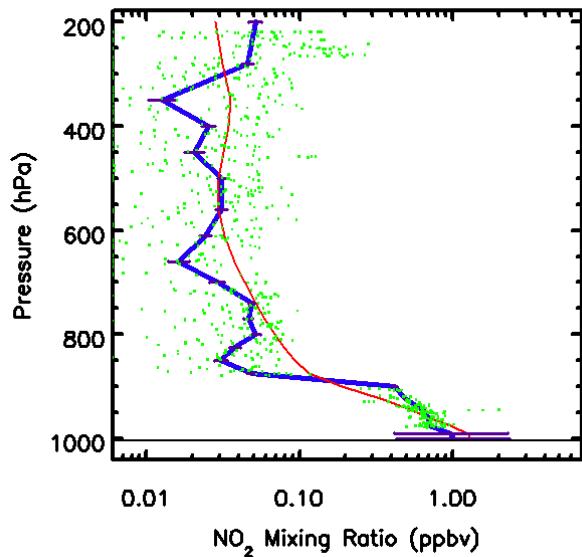


Figure 16. Time series of NO₂ VCD measured by the BIRA direct-sun DOAS instrument.


The open squares show the collocated OMI measurements.



Figure 17. Correlation plot showing the collocated OMI and BIRA direct-sun DOAS instrument measurements (open squares in Figure 16).

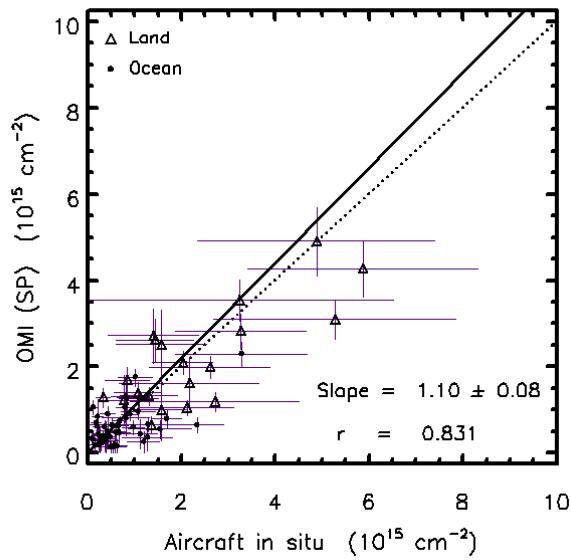

Figure 18. OMI versus FTUVS measurements of total column NO₂, binned by distance between TMF and the centroid of the OMI FOV (distance indicated by color, see inset scale)

Figure 19. Lidar NO_2 profile (black circles) and NO_2 monitor value (open circle) measured at Cabauw. Horizontal bars indicate two-sigma values for the concentration. For the lidar data, vertical bars indicate the height intervals over which concentrations have been determined. The boundary layer height is indicated by a dashed line. Top panel: Clean day, September 9, 2006 (lidar measurement from 12:04–12:52 UT). On this day, the NO_2 monitor at ground level was not operational. NO_2 monitor data at 200 m were averaged over the lidar integration time. Bottom panel: Polluted day, September 12, 2006 (lidar measurement from 9:37–10:26 UT). For the NO_2 monitor data at ground level an average was made for the time the monitor was operational during this interval, from 10:03–10:17. For the data of the NO_2 monitor at 200 m two averages were determined; the lower average, for 9:37–10:17 UT, is for the situation that the NO_2 monitor is above the boundary layer, the higher value, for 10:16–10:26 UT, is for the situation that the NO_2 monitor is situated below the boundary layer.

Figure 20. Two INTEX-B NO₂ profiles. The upper panel shows data for a profile measured over the Mississippi-Alabama border (32.0 N, 88.3 W), while the lower panel shows data for a profile measured over the Gulf of Mexico (23.0 N, 91.1 W). Green dots are original measurements, the blue line is binned profile, and the red line is the annual mean GEOS-CHEM model profile for that location.

Figure 21. Tropospheric NO₂ columns with *in situ* columns from INTEX-B. The symbols indicate land measurements (triangle) or ocean measurements (dot). The dotted line is a 1:1 ratio and the solid line is the fit to the data.

Table 3. Summary of validation study results for OMI NO₂ data product.

Instrument	Column	Group	OMI, rel. to GB	Remarks
SAOZ	Strat.	CNRS	+10%	As large as 50% in tropics.
MAX-DOAS	Trop.	BIRA, etc.	-15%	Large scatter in the data.
Brewer	Total	GSFC	-33%	Large N , large scatter.
MF-DOAS	Total	WSU	-19%	Very small N .
Pandora-1	Total	GSFC	-15%	Very small N .
DS-DOAS	Total	BIRA	-16%	Small N , large scatter.
FTUVS	Total	JPL	-23%	Small N , but good correlation.
Aircraft <i>in situ</i>	Trop.	UC Berkeley, GSFC	+10%	Large scatter.