

•Ozone cross section errors

- •SO₂ contamination
- •Instrumental stray light
- •Aerosols
- •Cloud heights/assumptions

Figure 5: Ozone and SO₂ retrieved for a single day at Goddard Space andard retrieval method ter using the st e) and a 6

GMT

Error Budget & Conclusions

Error Budget	Satellite		Ground-based	
	V8	V8.5	Dobs	Brew
Profile Shape/Peak Height	<0.5%		<1.5%	<0.5%
Cross Section Errors	~1.5%	<0.1%	<0.3%	??
SO ₂ Contamination(urban)	<0.5%		<3.0% <1.0%	
SO ₂ Contamination(volcanic)	<15%	<3.0%	<25%	Unk
Stray Light	<1.0%		<	<7.0%
Cloud Height Errors	<10.0%	6 <3.0%	N/A	

1) Ozone Profile Shape effects

Figure 2: The error in the TOMS retrievals due to profile shape effects. The real profile (as measured by ozonesondes) are put into the TOMS retrieval algorithm and the retrieved total column ozone amount is then compared to the standard retrieval (V8) which uses a climatology.

channel method (blue line).

TOTAL : 2

12

Figure 6: SO₂ contamination of OMI retrieved ozone in Version 8 (lower left panel) and with the new Version 8.5 (lower right). The ~20DU error has now been removed

Cross section errors are probably the easiest to correct and this author recommends switching from Bass & Paur to Dumont as soon as possible. The temperature dependent changes in B&P are likely in error at lower (<-55C) temperatures. This would involve re-weighting the Brewer ozone retrieval coefficients. SO2 contamination can be corrected by reprocessing the OMI data and by applying a 6 wavelength retrieval to the Brewer algorithm (for double Brewers). Cloud height errors are the most prevalent errors in the TOMS/OMI ozone retrievals and can be corrected by measuring the Raman scattering at ~350nm to retrieve cloud top heights. Once The true cloud heights are known, the satellite column ozone retrievals are quite accurate. Ongoing work for the upcoming Version 9 algorithm includes: improved radiative transfer calculations, better Ring correction (Raman scattering), better surface reflectivity climatology, corrected high SZA retrievals, SO₂ filtering and better pseudo-spherical approximations.

HOW TO CONTACT THE AUTHORS		
Gordon Labow	SSAI & Goddard Space Flight Center, Greenbelt, MD labow@lglass.gsfc.nasa.gov	
P.K. Bhartia	NASA Goddard Space Flight Center, Greenbelt, Md Bhartia@chapman.gsfc.nasa.gov	
Richard McPeters	NASA Goddard Space Flight Center, Greenbelt, Md Richard.D.Mcpeters@gsfc.nasa.gov	