MINX Document 3 MINX – Overview and Plume Case Studies

David Nelson

Raytheon Company, Jet Propulsion Laboratory, California Institute of Technology

May, 2012

- Smoke plume over Alaska
- Dust in Taklamakan Basin
- Volcanic ash over Chile
- Snow storm in Antarctica

- Smoke plume over Alaska
- Dust in Taklamakan Basin
- Volcanic ash over Chile
- Snow storm in Antarctica

Fires are a world-wide complex phenomenon

Mean Annual MODIS Fire Radiative Power

[*Giglio et al.*, 2006]

Fire impacts regional air quality

June 2002 Hayman Fire over Colorado caused worst air quality ever in Denver

Long-range transport of fire emissions

2004 Alaska fire emissions reached southern U.S. and Europe!! [e.g., Val Martin et al., 2006; Real et al., 2007; Duck et al., 2007]

http://asl.umbc.edu/pub/mcmillan/www/index_INTEXA.html

Scientific Motivation for MINX

- In 2005, the EPA (Environmental Protection Agency) and NASA funded a proposal to develop an aerosol injection height climatology in support of studying forest fires, climate change and air quality.
 - Team scientists: Jennifer Logan (PI Harvard), David Diner and Dominic Mazzoni (NASA-JPL), Ralph Kahn (NASA-GSFC)
- "The elevation at which aerosols are injected into the atmosphere has a strong influence on how the smoke is dispersed, and is a key input to aerosol transport models." (Kahn, et al, 2008)
- Aerosols that rise into the free troposphere can remain aloft longer and be transported farther than those that remain in the boundary layer.
 - Smoke can warm the atmosphere and enhance melting of snow and ice
 - Dust may carry pathogens
 - Volcanic eruptions can affect global transportation

- Smoke plume over Alaska
- Dust in Taklamakan Basin
- Volcanic ash over Chile
- Snow storm in Antarctica

Plume Project Website - 2

http://misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/

We gratefully acknowledge support from NASA and the EPA for this work. We also acknowledge contributions by the NASA Langley Atmospheric Science Data Center and Raytheon Company

Plume Project Website - 3

Plume Project Website - 4

View, Sort and Retrieve Raw Data Files

Advanced search parameters

- Any or all raw plume text files for a project area can be selected for downloading
- You will receive an email with a "cURL" file and instructions for downloading
- You must have the "curl" app to retrieve the data – it's standard with Macs – PC users can download a free copy
 Click on column headers to sort

Alaska-Yukon Fire Plume Statistics, Summer 2004

- MINX found that at least 10% of wildfire smoke plumes reached the free troposphere.
 CALIOP concluded this was very rare
- CALIOP's swath width is ~ 4000 times narrower than MISR's suggesting that poor horizontal sampling is responsible

First science results from Plume Website data R. Kahn, Y. Chen, D. Nelson et al., GRL 2008

Large variability in vertical injection heights

Plume distribution, atmospheric conditions and fire properties

Histogram of Plume Height Retrievals

Atmospheric Stability Profile

- Meteorological fields from GEOS
- Fire properties (size and power) from MODIS

Stability =
$$\frac{d\vartheta}{dz}$$
, where $\vartheta = T \left(\frac{P_0}{P}\right)^{R/c_p}$

- Smoke plume over Alaska
- Dust in Taklamakan Basin
- Volcanic ash over Chile
- Snow storm in Antarctica

Smoke Plumes - Alaska, USA Orbit 24152, July 2, 2004

Alaska Fire, July 2, 2004 (5054 MW)

- Smoke plume over Alaska
- Dust in Taklamakan Basin
- Volcanic ash over Chile
- Snow storm in Antarctica

Dust Plumes - Taklamakan Desert in Tarim Basin North of Tibetan Plateau (MODIS Image)

Taklamakan Dust – Orbit 17575 – April 8, 2003

Taklamakan Dust – Orbit 17575 – April 8, 2003

Several dust sources are linear - probably dry stream beds

Wind speed increases abruptly on plume 1

Dust rises about 3 km on plume 3

Taklamakan Desert

Digitizing Alternatives – Lines or Polygons

Courtesy of Michael Goetz, Olga Kalashnikova and Mike Garay, JPL, 2011

Taklamakan vs Gobi Dust Plume Heights and Wind Speeds

Courtesy of Michael Goetz, Olga Kalashnikova and Mike Garay, JPL, 2011

- Smoke plume over Alaska
- Dust in Taklamakan Basin
- Volcanic ash over Chile
- Snow storm in Antarctica

Volcanic Plumes - Puyehue-Cordon, Chile - June, 2011

Puyehue-Cordon Eruption - Animation

Puyehue-Cordon Eruption

Orbit 61064 - June 11, 2011

Puyehue-Cordon – Height Retrievals

- Smoke plume over Alaska
- Dust in Taklamakan Basin
- Volcanic ash over Chile
- Snow storm in Antarctica

Snow Plumes - Antarctic Blizzard

Orbit 38671 - March, 2007

Antarctic Blizzard – Red-band Animation

Antarctic Blowing Snow - Height/Wind Retrievals

References

- Val Martin, M., et al, 2009. "Vertical Transport of Wildfire Smoke over North America: Merging Satellite Observations and Models", presentation to European Geosciences Union.
- MISR Plume Height Project website http://wwwmisr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/