SUBROUTINE Dust_Emission c **************************************************************************** c * This subroutine updates the surface mixing ratio of dust aerosols for c * NMX size bins. The uplifting of dust depends in space on the source c * function, and in time and space on the soil moisture and surface c * wind spedd (10 meters). Dust is uplifted if the wind speed is greater c * than a threshold velocity which is calculated with the formula of c * Marticorena et al. (JGR, v.102, p 23277-23287, 1997). c * To run this subroutine you need the source function which can be c * obtained by contacting Paul Ginoux at ginoux@rondo.gsfc.nasa.gov c * If you are not using GEOS DAS met fields, you will most likely need c * to adapt the adjusting parameter. c * c * Contact: Paul Ginoux (ginoux@rondo.gsfc.nasa.gov) c * c * c * Input: c * SRCE Source function (-) c * DUSTDEN Dust density (kg/m3) c * DUSTREFF Effective radius (um) c * DXY Surface of each grid cell (m2) c * AIRMAS Air mass for each grid box (kg) c * NTDT Time step (s) c * W10m Velocity at the anemometer level (10meters) (m/s) c * GWET Surface wetness (-) c * c * Update: c * TC Mixing ratio at first model level over Earth surface c * c * c * Parameters used in GOCART c * c * Longitude: IMX = 144 c * Latitude : JMX = 91 c * Levels : LMX = 20 (GEOS-1), 26 (GEOS-strat), 30 (GEOS-terra) c * Size bins: NMX = 4 c * c * Dust properties used in GOCART c * c * Size classes: 01-1, 1-1.8, 1.8-3, 3-6 (um) c * Radius: 0.7, 1.5, 2.5, 4 (um) c * Density: 2500, 2650, 2650, 2650 (kg/m3) c * c * References: c * 1) Ginoux, P., M. Chin, I. Tegen, J. Prospero, B. Hoben, O. Dubovik, c * and S.-J. Lin, "Sources and distributions of dust aerosols simulated c * with the GOCART model", J. Geophys. Res., 2001 c * c **************************************************************************** c parameter (imx=144,jmx=91,lmx=26,nmx=4) c Input dimension GWET(imx,jmx),W10M(imx,jmx),SRCE(imx,jmx) dimension AIRMAS(imx,jmx,LMX),DXY(imx,jmx) dimension AIRDEN(imx,jmx,lmx) c Mixing Ratio dimension TC(imx,jmx,lmx,nmx) c c Soil size distribution dimension FRAC_S(nmx) c dimension DUSTREFF(nmx),DUSTDEN(nmx) c Particle radii (m) data DUSTREFF/0.75e-6,1.5e-6,2.5e-6,4e-6/ c Soil density (kg/m3) data DUSTDEN/2500.,2650.,2650.,2650./ c c Fraction of each size classes (deduced from Tegen and Fung, 1994) c data frac_s/0.1,0.25,0.25,0.25/ c Ch_dust = 1.e-9 ! Transfert coeff for type natural source c ! (kg*s2/m5) c Loop over each size bins c do n = 1, nmx c Threshold velocity as a function of the dust density and the diameter c from Bagnold (1941), valid for particles larger than 10 um c c u_ts0 = 6.5*sqrt(dustden(n)*g0*2.*dustreff(n)) c Threshold velocity from Greely and Iversen (1985) c Convert units to fit dimensional parameters den=dustden(n)*1.e-3 diam=2.*dustreff(n)*1.e2 g=9.81*1.e2 TSRC = 0. c c Loop over each longitude c do i = 1, IMX c c Loop over each latitude c do j = 1, JMX rhoa=airden(i,j,1)*1.e-3 u_ts0=0.13*1.e-2*sqrt(den*g*diam/rhoa)* > sqrt(1.+0.006/den/g/diam**2.5)/ > sqrt(1.928*(1331*(diam)**1.56+0.38)**0.092-1) c Case of surface dry enough to erode if (gwet(i,j).lt.0.5) then u_ts=amax1(0.,u_ts0*(1.2+0.2*alog10(amax1(1.e-3, > gwet(i,j))))) else c Case of wet surface, no erosion u_ts=100. endif SRCE_p=frac_s(n)*SRCE(i,j)*DXY(i,j) ! (m2) DSRC=Ch_dust*SRCE_p*W10m(i,j)**2 > * (W10m(i,j)-u_ts)*NTDT ! (kg) if (DSRC.lt.0.) DSRC=0. c c Update dust mixing ratio at first model level. c TC(i,j,1,n) = TC(i,j,1,n) + DSRC / AIRMAS(i,j,1) enddo enddo enddo c RETURN END