

Introductio

DustFlag

DustStorms

Dust Retrievals

Volcanoes : SO2 and ash and cirrus

OLR Calculations

Conclusions

Using AIRS to study dust and cirrus

Sergio DeSouza-Machado

Atmospheric Spectroscopy Laboratory (ASL) University of Maryland Baltimore County Physics Department and the Joint Center for Earth Systems Technology ASL Group Members: Larrabee Strow, Scott Hannon and Howard Motteler Aerosol Strategy Workshop, NASA-Goddard, Greenbelt MD

Oct 27, 2006

ASL AIRS : Atmospheric InfraRed Sounder

- Introduction
- Dust Flag
- Dust St orms
- Dust Retrievals
- Volcanoes : SO2 and ash and cirrus
- OLR Calculations
- Conclusions

- AIRS launched in May 2002 on board NASA-Aqua (A-train); operational since Sept 2002
- AIRS is a hyperspectral infrared sounder
- AIRS has low noise, high resolution thermal IR channels (650 2800 cm $^{-1}$ with $\nu/\delta\nu\simeq$ 1200) (3.7 to 15.4 $\mu m)$
- 13.5 km footprint, scans \pm 45*deg* from nadir, twice daily global coverage
- Produces temperature profiles with 1K/km accuracy (rms errors ≤ 1.25 K), water vapor (rms errors 20-40%) and trace gas profiles
- Very stable instrument with well characterized radiances
- Standard products include cloud top heights

ASL Clouds, Dust and AIRS radiances

- Introduction
- Dust Flag
- Dust St orms
- Dust Retrievals
- Volcanoes : SO 2 and ash and cirrus
- O L R Calculations
- Conclusions

- Magnitude of climate forcing by clouds/aerosols is uncertain, especially in the longwave
- Can use MODIS to identify dusty scenes, MISR to obtain optical depths and CERES to obtain broadband TOA LW flux
- AIRS has sensitivity to silicate-based absorbers and cirrus : radiance spectra exhibit their spectral signatures
- Can potentially use AIRS to study all three over ocean or land eg use AIRS radiances day and night, over ocean and land to
 - detect dust
 - retrieve optical depths
 - obtain quick estimates of OLR forcing

ASL Dust Flag

Introduction

Dust Flag

- Dust St orms
- Dust Retrievals
- Volcanoes : SO2 and ash and cirrus
- OLR Calculations
- Conclusions

- Set up a sequence of "threshold dust cloud tests"
- 5 channels chosen are [822.4 900.3 961.1 1129.03 1231.3] cm⁻¹
- Tests involve split window brightness temperature differences
- Use t=380 over water; t=360 over land (warning : needs improvement)

ASL Long Range Transport of Sahara Dust AIRS data for July 2003

Introduction

Dust Flag

Dust St orms

Dust Retrievals

Volcanoes : SO2 and ash and cirrus

O L R Calculations

Conclusions

ASL March 08,09,10,11 2006 MODIS-VISIBLE

- Introduction Dust Flag
- Dust Storms
- Dust Retrievals
- Volcanoes : SO2 and ash and cirrus
- OLR Calculations
- Conclusions

ASL DustFlag applied over Sea and Land March 08, 2006

ASL DustFlag applied over Sea and Land March 09, 2006

ASL DustFlag applied over Sea and Land March 10, 2006

ASL DustFlag applied over Sea and Land March 11, 2006

ASL Retrieval of Dust Optical Depths Over Ocean and Land

- use SARTA (PCLSAM : Chou et al, AMS Jan 1999 pg 159)
 - uses Masuda emissivity for ocean
 - uses Global Infrared Land Surface Emissivity Database (SSEC/U.Wisc) (E. Borbas, S. Wetzel-Seemann, R. O. Knuteson, P. Antonelli, J. Li and H.-L. Huang)
 - uses ECMWF (or AIRS retrievals) for T(z),Q(z) fields, with adjusted surface temperature (George Aumann) for sea and land
 - very fast \leq 1 second per profile (even if looping over *ptop*, *dme*)

- t ro ductio
- Dust Flag
- DustStorms

Dust Retrievals

- Volcanoes : SO2 and ash and cirrus
- OLR Calculations
- Conclusions

AIRS Retrieval October 19, 2002 over E. Mediterranean

Introduction Dust Flag

Dust St orms

Dust Retrievals

Volcanoes : SO 2 and ash and cirrus

OLR Calculations

Conclusions

ASL Comparing MODIS to AIRS

Introduction Dust Flag

Dust Storms

Dust Retrievals

Volcanoes : SO2 and ash and cirrus

OLR Calculations

Conclusions

MODIS channel 2 (0.55 um) compared to AIRS 900 cm-1 $\tau_{IR} = 0.425 \tau_{VIS} - 0.084$, with a correlation of 0.935 GRL Paper with Sergio DeSouzaMachado, Larrabee Strow, Scott Hannon and Howard Motteler

ASL True color image made from MODIS data, for March 6, 2004 at approximately 1430 UTC

- Introduction
- Duct Storme
- Dust Retrievals
- Volcanoes : SO 2 and ash and cirrus
- OLR Calculations
- Conclusions

ASL Optical Depth and Bias

- Introduction Dust Flag
- Dust Storms

Dust Retrievals

Volcanoes : SO2 and ash and cirrus

OLR Calculations

Conclusions

Optimum particle diameter \simeq 2 um; optimum height \simeq 1 km

ASL AIRS vs MODIS regression at 600 mb

Introduction Dust Flag

Dust Storms

Dust Retrievals

Volcanoes : SO2 and ash and cirrus

OLR Calculations

Conclusions

AIRS infrared optical depths at 900 cm⁻¹ plotted against MODIS Ch 2 (550 nm) visible optical depths, for dusttop at 600 mb. At 900 mb (1.0 km), $\frac{\tau_{AIRS}}{\tau_{MODIS}} \simeq 0.5$

4SL MODIS image of duststorm on March 3, 2004 over N.W.Africa

- Introduction
- -----
- DustStorm
- Dust Retrievals
- Volcanoes : SO 2 and ash and cirrus
- O L R Calculations
- Conclusions

ASL Retrieved infrared optical depths using AIRS IR data

Introduction

Dust Storms

Dust Retrievals

Volcanoes : SO2 and ash and cirrus

OLR Calculation

Conclusions

Infrared Retrievals from many global duststorms (over ocean)

Dust Storms

Dust **Retrievals**

- (a) Libyan/Egyptian coast (02/28/2005)
- (b) Eastern Mediteranean (10/19/2005)
- (c) China Sea (11/12/2002)
- (d) W. African coast (07/25/2004) All show the "V" shape in 800-1200 cm⁻¹ (silicate absorber)
 - Notch feature between 860 and 880 cm⁻¹ is strongest in *b*, *c*

ASL Mt. Etna Eruption, Oct 2002

Oct 28, 2002; Granule 123; Profile 1502

- Introduction
- Dust Storms
- Dust Retrievals
- Volcanoes : SO 2 and ash and cirrus
- OLR Calculations
- Conclusions

ASL Tracking the Ash and SO2

SO2 and ash and cirrus

OLR Calculation

Conclusions

GRL Paper with Simon Carn, Yvonne Edmonds, Larrabee Strow, Sergio DeSouzaMachado, Scott Hannon and Howard Motteler

ASL Rabaul Volcano, Oct 7, 2006 (seen by OMI)

Introduction Dust Flag

Dust Storms

Dust Retrievals

Volcanoes : SO 2 and ash and cirrus

OLR Calculations

Conclusions

LHS : http://earthobservatory.nasa.gov/Newsroom/NewImages/ RHS : Thanks to Scott Hannon! SO2 multiplier (\times standard SO2 profile)

ASL Tracking the Cirrus and SO2

Introduction Dust Flag Dust Storms Dust Retrievals Volcances :

SO 2 and ash and cirrus

OLR Calculations

Conclusions

Thanks to Scott Hannon!

LHS shows AIRS spectra in the SO2 plume region; notice strong SO2 signal and cirrus contamination

RHS shows BT(820 cm-1) and shows cirrus cloud in vicinity of SO2 plume

ASL Outgoing Longwave Radiation and Dust

Introduction

Ŭ

Dust Retrievals

Volcanoes : SO 2 and ash and cirrus

OLR Calculations

Conclusions

Using the PCLSAM model (Chou at al, AMS Jan 1999 pg 159) can reparameterize optical depth τ with atm gases only to $\tau \rightarrow \tau(atm) + \tau(scatter, E, \omega, g)$ Radiance at the top of a cloudy sky atmosphere

$$R(\nu) = \epsilon_s B(\nu, T_s) \tau_{1 \to N}(\nu, \theta) + \sum_{i=1}^{i=N} B(\nu, T_i) (\tau_{i+1 \to N}(\nu, \theta) - \tau_{i \to N}(\nu, \theta))$$

This is same as clear sky OLR equation, and so can compute estimates of OLR forcing

ASL Outgoing Longwave Radiation and Clouds/Aerosols

Introduction Dust Flag Dust Storms Dust

Volcanoes : SO 2 and ash and cirrus

OLR Calculations

Conclusions

Simulated thermal IR and Far IR changes in TOA radiance, for realistic dust cloud of particle diameters 1,3,5 μ m, with the refractive index (scaled) shown in cyan. 90% of the OLR forcing comes from the region covered by the AIRS thermal IR channels (shown in solid black). Vertical units are in $mWm^{-2}sr^{-1}/cm^{-1}$.

4SL MODIS image of duststorm on March 3, 2004 over N.W.Africa

- Introduction
- Dust Flag
- DustStorms
- Dust Retrievals
- Volcanoes : SO 2 and ash and cirrus
- O L R Calculations
- Conclusions

ASL Dust forcing over land and water

Introduction Dust Flag

Dust Retrievals

Volcanoes : SO 2 and ash and cirrus

OLR Calculations

Conclusions

Introduction Dust Flag

DustStorms

Dust Retrievals

Volcanoes : SO2 and ash and cirrus

OLR Calculations

Conclusions

Ability of hyperspectral IR sounders to detect dust, retrieve optical depths and compute lower bound estimates of OLR forcing

http://earthobservatory.nasa.gov/ http://www-airs.jpl.nasa.gov/ http://asl.umbc.edu/ sergio@umbc.edu