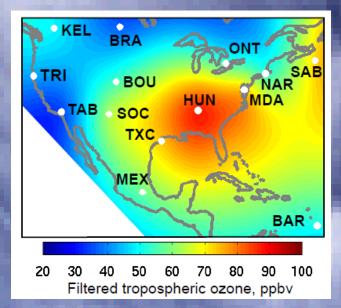
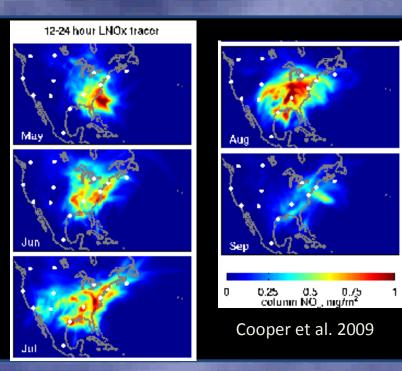
Understanding how the North American Monsoon creates an ozone maximum in the upper troposphere plans and activities (work in progress)

Mary Barth (NCAR/ESSL)


TES collaborators: John Worden, David Noone, John Wong WRF collaborators: Bill Skamarock, Alma Hodzic, Jeff Lee, Gabi Pfister, Christine Wiedinmyer, Louisa Emmons

Motivation

- Recent papers* have documented the existence of an enhancement in upper troposphere (UT) ozone during July and/or August
- These studies have hypothesized that the ozone is a result of thunderstorms and chemistry occurring during the North American monsoon when an UT anti-cyclone traps the air


*Zhang et al. (2003); Li et al. (2005); Cooper et al. (2006, 2007, 2009); Choi et al., 2009

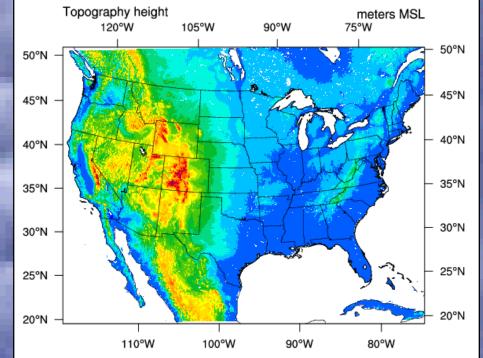
Examples

Observations (interpolated from ozonesondes during August 2006) show UT O_3 enhanced over SE USA. From Cooper et al., 2007.

Flexpart simulations of a lightning-NO_x tracer show that thunderstorms are likely source of enhanced UT O₃. From Cooper et al., 2009.

Previous work

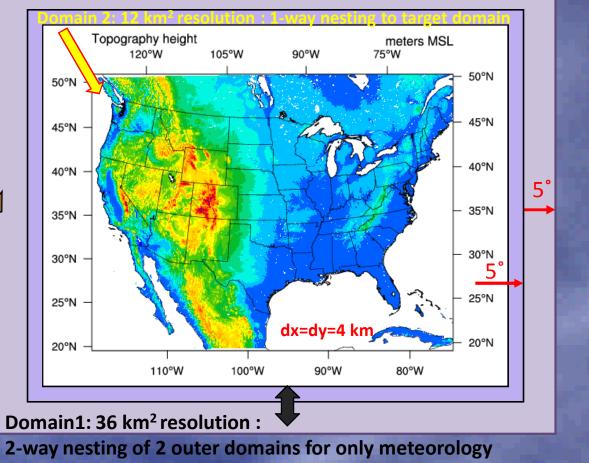
- Zhang et al., 2003; Li et al., 2005; Hudman et al., 2007 results:
 - Widespread UT ozone enhancement over southern US due to convective transport of O₃ and its precursors coincident with lightning-produced NO_x


 The location of maximum O₃ values is anywhere from northern Mexico to Florida

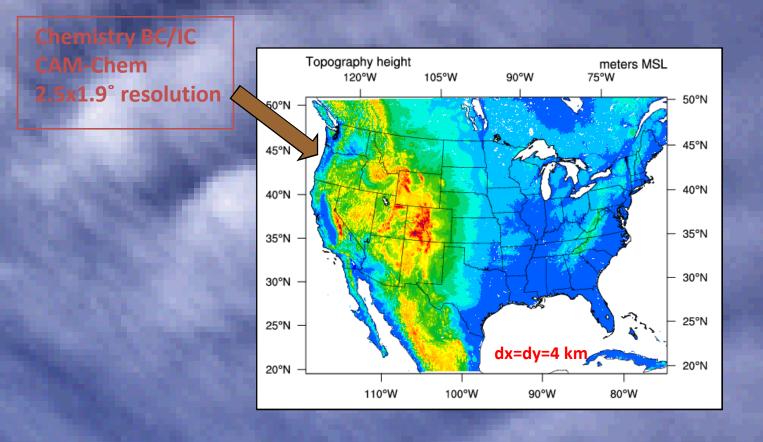
Previous work

- Model studies aimed at examining NOx from lightning and UT chemistry, have been done at coarse resolution
 - Convection is parameterized
 - Convective transport is parameterized
 - Production of NOx from lightning parameterized
- Ability to represent the convection well in these model studies is limited

Our work


- Use the Weather Research and Forecasting (WRF) model coupled with chemistry (WRF-Chem) to simulate a 2 month period over the US and northern Mexico
- Horizontal resolution is 4 km
 - Convective systems are resolved, therefore convective transport is explicit
- Parameterization of NO_x
 production from lightning is
 based on maximum updraft
 speed

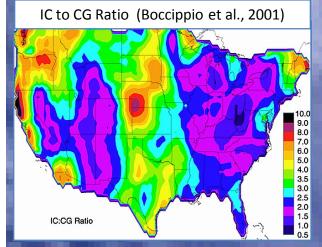
Model Configuration – Meteorology

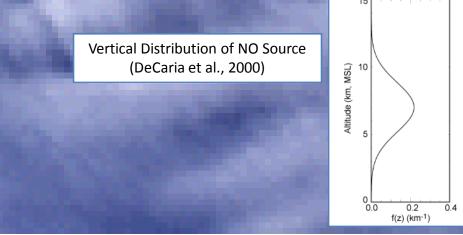

- NCEP Global Analyses on 1x1° grid are input and boundary conditions for 2 outer domains
- 2 outer domains used to bring coarse resolution analysis to target domain

Meteorology BC/IC NCEP analysis 1x1° resolution

Model Configuration – Chemistry

CAM-Chem 6-hourly model output


- Simulation dates: July 10 September 10, 2006
 - $-\Delta t = 20 s$; output every 3 hours
 - 1200 x 900 x 51 grid points; p_top = 10 mb
- Physics
 - Single moment cloud physics (Lin et al. 1983)
 - No convective parameterization
 - Mellor-Yamada-Janjic PBL parameterization
 - NOAH land surface model
 - Rapid Radiative Transfer Model for long wave radiation
 - Dudhia scheme for short wave radiation
- Dynamics
 - Runge-Kutta time integration method
 - Positive definite advection for water, scalars, and chemistry species

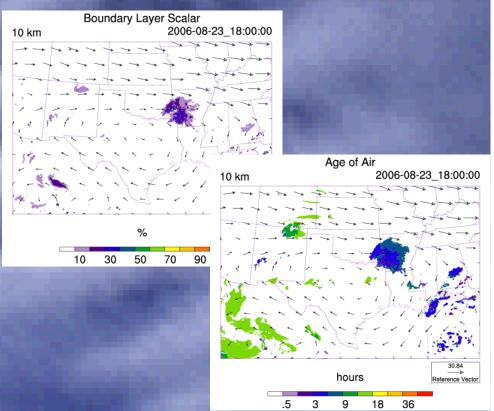

Chemistry

- RACM (Stockwell et al., 1997) gas-phase chemistry
- MADE/SORGAM aerosols modal approach
- Emissions:
 - Anthropogenic emissions: US EPA NEI-05 + Mexico NEI
 - Biogenic emissions: MEGAN online calculation based on T, PAR
 - Wildfire emissions: MODIS locations (Wiedinmyer et al., 2006); Plume-rise of fires: Freitas et al. (2005) methodology
 - Aircraft emissions: 1999, 1x1° annual average (Baughcum, Boeing)
- Photolysis rates: fast-TUV (Tie et al., 2003)
- Wet deposition (Easter et al., 2004)
- Dry deposition (Wesely, 1989)
- Aerosols feed back to radiation heating in meteorology

Lightning-NO_x parameterization

- Lightning flashes predicted by maximum updraft speed (Price and Rind, 1992) within a tile of the domain
- Intracloud to cloud-to-ground flash ratio based on climatology (Boccippio et al., 2001)
- Location of NO_x source is within 20 dBZ region, following DeCaria et al. (2000) vertical distribution
- NO_x produced: 330 moles NO per flash (both IC and CG flashes)

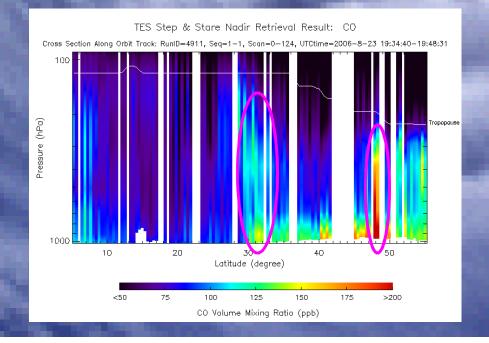
CG flashes

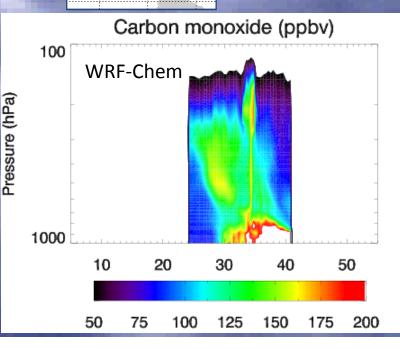

IC flashes

0.2

f(z) (km-1)

10


- Scalars 6 tracers are included
 - Tracers from the horizontal boundary (tracer = 1 at boundary)
 - Tracers from the boundary layer (tracer = 1 from sfc to PBL top)
 - Tracers from the stratosphere (tracer = 1 from z(T_{min}) to 10 mb)
 - Two types of tracers:
 - Passive tracer
 - Decaying tracer with time scale of 1 day
 - \rightarrow Age of air



Evaluation of Results

- Satellite data: TES, and hopefully others
- Field campaign: TEXAQS 2006 data
- monitoring sites: AIRNOW, IMPROVE, etc

Example of data that can be compared: TES data on 23 August 2006

Science Questions to Address with respect to enhanced O₃ in UT

- 1. How soon after the NA monsoon sets up does the upper troposphere ozone substantially increase?
- 2. What is the lifetime of ozone in the UT anti-cyclone?
- 3. How quickly does the ozone decrease after the anticyclone dissipate?
- 4. How much do ozone sources and sinks depend on photolysis rates versus replenishment of ozone precursors via convective transport in order to maintain high UT ozone mixing ratios?
- 5. What role do non-methane hydrocarbons play in ozone formation in the UT?

Conclusions

- Simulation is just beginning production run
 - Running on bluefire: IBM Power 575
 - Expect simulation will take 2-3 months to run
- Welcome feed back
 - Mary Barth <u>barthm@ucar.edu</u> for UT ozone studies
 - Alma Hodzic <u>alma@ucar.edu</u> for air quality studies
- Welcome those interested in analyzing model results