

Abstract. We present the first 16 year multi-constituent chemical analyses produced by a full Kalman filter. It is global from the surface to the upper stratosphere. Daily solar irradiance values are used, observed sulfate aerosol areas and radii from UARS HALOE, and constituent observations of O₃, H₂O, CH₄, HNO₃ and HCI from UARS, ATMOS, CRISTA, MkIV, ILAS, Aura, SAGE, SBUV, POAM, Mozaic, Sondes and aircraft. The analyses are available on line at www.CDACentral.info. They are being used for a variety of purposes from NASA Aura validation to understanding of the interactions between the distributions of ozone, water vapor, aerosols, temperature, and relevant trace constituents, notably chlorine and bromine compounds and nitrogen oxides. A particular interest has been under standing the role of halogens in hydrocarbon oxidation in the upper free troposphere.

tial variability in a grid cell) uncertainties. The lower panels show the model uncertainties due to temperature, pressure, illumination and aerosol loading.

Instrument	Time Range
UARS MLS v5 205 GHz	1991-1999
UARS MLS v5 183 GHz	1991-1993
UARS HALOE v19	1991-2005
SPOT-4 POAM3 v4	1998-2005
SPOT-3 POAM2 v6	1993-1996
Ozone sondes	1991-2007
Rawinsondes	1991-2007
SBUV2 v8	1991-2005
SCISAT-1 ACE v2.2	2004-2007
MOZAIC v4.1	1994-2000
MOZAIC v5.3	2001-2006
Aura MLS v1	2004-2007
ADEOS ILAS v6.1	1996-1997
ERBS SAGE 2 v6.2	1991-2005
Instruments used in this study	

THE FIRST MULTI-CONSTITUENT KALMAN FILTER ANALYSIS OF ATMOSPHERIC CHEMISTRY FROM 1991-2007 David Lary UMBC/GEST NASA/GSFC

ane oxidation channels. We find that chlorine plays a persistent role in oxidizing methane in the upper free troposphere.