MERRA-2 GMI is a simulation for the atmospheric composition community, driven by MERRA-2 winds, temperature, and pressure and coupled to the Global Modeling Initiative's (GMI) stratosphere-troposphere chemical mechanism run at ~50 km horizontal resolution and output onto the native MERRA-2 grid (0.625o lon x 0.5o lat). It is part of a joint collaboration between the Atmospheric Chemistry and Dynamics Laboratory (ACDL) and the Goddard Modeling and Data Assimilation Office (GMAO) at NASA Goddard Space Flight Center. A suite of tracers has been included to evaluate and quantify both tropospheric and stratospheric transport. The simulation is interactively coupled to the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module and includes similar emissions to what was used for MERRA-2, although MERRA-2 GMI does not constrain the total optical depth to observations like in MERRA-2. Specialized output collections include satellite overpass and high temporal resolution (e.g. 1-hrly and 3-hrly), to facilitate comparisons with observations. Currently the products generated span 1980-2018 and periodic continuation will be done as emission datasets become available.
Discover - direct path /discover/nobackup/projects/gmao/merra2_gmi/pub/
OPeNDAP - MERRA-2 GMI OPeNDAP
HTTPS - MERRA-2 GMI HTTPS
File Specification -
MERRA2_GMI_fs.pdf
Emissions/Boundary Conditions - see Strode et al., 2019
GEOS-5 AGCM
Global Modeling Initiative (GMI) chemical mechanism
Goddard Chemistry Aerosol
Radiation and Transport (GOCART) Aerosol module
Tracer Suite
NASA Scientific Visualization Studio
Total Column Ozone Southern Hemisphere July-Oct. 2002
Strode S.A., J.R. Ziemke, L.D. Oman, L.N. Lamsal, M.A. Olsen, J. Liu, 2019: Global changes in the diurnal cycle of surface ozone, Atmospheric Environment, 199, 323-333, https://doi.org/10.1016/j.atmosenv.2018.11.028. Link
Frith, S.M., P.K. Bhartia, L.D. Oman, N.A. Kramarova, R.D. McPeters, and G.J. Labow: 2020, Model based Climatology of Diurnal Variability in Stratospheric Ozone as a Data Analysis Tool, Atmos. Meas. Tech., 13, 2733-2749, https://doi.org/10.5194/amt-13-2733-2020. Link
Orbe, C., K, Wargan, S. Pawson, and L.D. Oman, 2020: Mechanisms Linked to Recent Ozone Decreases in the Northern Hemisphere Lower Stratosphere, J. Geophys. Res. Atmos., 125, e2019JD03163, https://doi.org/10.1029/2019JD031631. Link
Li L., M. Franklin, M. Girguis, et al. Spatiotemporal Imputation of MAIAC AOD Using Deep Learning with Downscaling. Remote Sensing of Environment. 2020 Feb;237. DOI: 10.1016/j.rse.2019.111584. Link
Wang J.S., T. Oda, S. R Kawa, S. A. Strode, D. F. Baker, L. E. Ott, and S. Pawson, The impacts of fossil fuel emission uncertainties and accounting for 3-D chemical CO2 production on inverse natural carbon flux estimates from satellite and in situ data, Environment Research Letters, 2020 in press. Link
Liu, J., J.M. Rodriguez, L.D. Oman, A. R. Douglass, M. A. Olsen, and L. Hu, 2020: Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere, Atmos. Chem. Phys., 20, 6417-6433, https://doi.org/10.5194/acp-20-6417-2020. Link
Nicely, J. M., B.N. Duncan, T.F. Hanisco, G.M. Wolfe, R.J. Salawitch, M. Deushi, A.S.
Haslerud, P. Jöckel, B. Josse, D.E. Kinnison, A. Klekociuk, M.E. Manyin, V. Marécal, O. Morgenstern, L.T. Murray, G. Myhre, L. D. Oman, G. Pitari, A. Pozzer, I. Quaglia, L.E. Revell, E. Rozanov, A. Stenke, K. Stone, S. Strahan, S. Tilmes, H. Tost, D.M. Westervelt, and G. Zeng, 2020: A machine learning examination of hydroxyl radical differences among model simulations for CCMI 1, Atmos. Chem. Phys., 20, 1341-1361, https://doi.org/10.5194/acp-20-1341-2020. Link
Dacic, N., J. T. Sullivan, K. E. Knowland, G. M. Wolfe, L. D. Oman, T. A. Berkoff, and G. P. Gronoff, 2020: Evaluation of NASA's high resolution global composition simulations: Understanding pollution event in the Chesapeake Bay during the summer 2017 OWLETS campaign, Atmospheric Environment, doi: https://doi.org/10.1016/j.atmosenv.2019.117133 Link
Kerr, G. H., D.W. Waugh, S.A. Sarah, S.D. Steenrod, L.D. Oman, and S.E. Strahan, 2019: Disentangling the Drivers of the Summertime Ozone Temperature Relationship over the United States. J. Geophys. Res. Atmos., 124. https://doi.org/10.1029/2019JD030572 Link
Ziemke, J. R., L.D. Oman, S. A. Strode, A.R. Douglass, M.A. Olsen, R.D. McPeters, P.K. Bhartia, L. Froidevaux, G.J. Labow, J.C. Witte, A.M. Thompson, D. P. Haffner, N.A. Kramarova, S. M. Frith, L.-K. Huang, G.R. Jaross, C.J. Seftor, M.T. Deland, and S.L. Taylor, 2019: Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation, Atmos. Chem. Phys., 19, 3257-3269, https://doi.org/10.5194/acp-19-3257-2019. Link
Wolfe, G. M., et al., 2019: Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations, P. Natl. Acad. Sci. USA, 116, 11171-11180, https://doi.org/10.1073/pnas.1821661116. Link
Wargan, K., C. Orbe, S. Pawson, J. R. Ziemke, L. D. Oman, M. A. Olsen, et al., 2018: Recent decline in extratropical lower stratospheric ozone attributed to circulation changes. Geophys. Res. Lett., 45, 5166-5176. https:// doi.org/10.1029/2018GL077406 Link
Orbe, C., L. D. Oman, S. E. Strahan, D. W. Waugh, S. Pawson, L. L. Takacs, and A. M. Molod, 2017: Large-Scale Atmospheric Transport in GEOS Replay Simulations. J. Adv. Model. Earth Syst., 9, 2545-2560. Link