1. Overview and Objectives

- Trichlorofluoromethane (CFC-11) is a man-made, long-lived ozone depleting substance (ODS) and greenhouse gas (GHG).
- CFC-11 production and consumption have been controlled under the Montreal Protocol; atmospheric concentrations peaked in ~1994 and have declined up to the present.
- However, recent studies show that CFC-11 emissions have increased since 2012 (Montzka et al., 2018; Rigby et al., 2019).
- Here we use the NASA Goddard Earth Observing System 3-D chemistry-climate model (GEOSCCM) to investigate the stratospheric ozone, temperature, and circulation responses to future CFC-11 emissions to year 2100.

2. GEOSCCM and simulations

- Uses the Global Modeling Initiative (GMI) detailed troposphere-stratosphere chemical mechanism.
- Performed well in process-oriented model intercomparisons (SPARC, CCMA, CCMVal-2, CCM).
- Simulations:
 1. **Baseline scenario**:
 - WMO (2014) A1 for ozone depleting substances; future CFC-11 emissions decay at 6.4%/yr from present day (Fig. 1, blue).
 - IPCC RCP6.0 (medium) scenario for CO₂, CH₄, and N₂O.
 2. **High CFC-11 scenario**:
 - Constant 72.5 Gg/yr CFC-11 emissions to year 2100.

3. EESC and Ozone Responses

- High CFC-11 scenario vs. baseline:
 - The surface CFC-11 decline slows significantly, 125 ppt increase by 2100 (Fig. 1, middle).
 - EESC increases 15% (0.35 ppt) by 2100 (Fig. 1, bottom).
 - Global total ozone decreases 2.8 DU (0.9%) by 2040 (Fig. 1, bottom).
 - Antarctic spring total ozone decreases 19 DU (5.6%) in the late 2100s; will not return to 1980 levels before 2100 (Fig. 2, bottom).
 - Significant ozone loss in the Antarctic lower stratosphere (~7%), and global upper stratosphere (~2 ~ 4%).
 - Ozone hole deepens by 12% in October; additional ozone depletion of 2-3% throughout the year poleward of 65°S.
 - Arctic changes in the lower stratosphere and total column are mostly not statistically significant.

4. Temperature and Zonal Wind Responses

- **High CFC-11**:
 - Deeper ozone hole reduces spring solar UV heating → colder lower stratosphere (Fig. 4, middle; Fig. 5, top).
 - Via thermal wind balance, stronger stratospheric circulation jet during October → mid-December (Fig. 5, bottom; Fig. 6).
 - The change in the jet shifts planetary wave activity and the variability in lower stratospheric polar temperatures to be later in spring (Fig. 4, bottom, standard deviation).
 - A shift in polar temperature range: maximum temps are colder in August; minimum temps are colder in February (Fig. 6).
 - The change in the jet also increases the day polar stratosphere, causing enhanced descent and warming above the ozone hole (Fig. 5, top) (see also Kiehl et al., 1988; Stolarski et al., 2006).

5. Age of Air Response

- CFC-11 increases lead to small changes in stratospheric age of air; at most ~0.3 years younger in the Southern Hemisphere lower stratosphere, but statistically significant.

6. Conclusions

- High future CFC-11 emissions vs. baseline:
 - Decline in CFC-11 is significantly slowed; surface concentrations increase from 60 → 185 ppt by 2100.
 - Stratospheric EESC increases by 15% by 2100.
 - Global and Antarctic spring total ozone decrease by 0.9% and 5.6%, respectively, by the late 2100s.
 - The deeper ozone hole reduces solar UV heating in spring, causing a colder lower polar stratosphere, a stronger stratospheric jet, and modification of planetary wave propagation.
 - Changes in stratospheric age of air are small (~0.1 years); only small regions are statistically significant.

References

- Kiehl, J.T., et al. (1988). Response of a climate model to increasing
- Stolarski, R.S., et al. (2006). An ozone response to global climate model experiments with
 increasing concentrations of chlorofluorocarbons. Journal of Geophysical Research,
- Rigby, M., et al. (2019). Increase in CFC-11 emissions from eastern China based on