Neutral atmospheric influences of the solar proton events in October–November 2003

Charles H. Jackman,1 Matthew T. DeLand,2 Gordon J. Labow,1,2 Eric L. Fleming,1,2 Debra K. Weisenstein,3 Malcolm K. W. Ko,4 Miriam Sinnhuber,5 and James M. Russell6

Received 5 November 2004; revised 6 January 2005; accepted 17 January 2005; published 14 July 2005.

The large solar storms in October–November 2003 caused solar proton events (SPEs) at the Earth and impacted the middle atmospheric polar cap regions. Although occurring near the end of the maximum of solar cycle 23, the fourth largest period of SPEs measured in the past 40 years happened 28–31 October 2003. The highly energetic protons associated with the SPEs produced ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which led to the production of odd hydrogen (HOx) and odd nitrogen (NOy). NOx (NO + NO2) was observed by the UARS HALOE instrument to increase over 20 ppbv throughout the Southern Hemisphere polar lower mesosphere. The NOAA 16 SBUV/2 instrument measured a short-term ozone depletion of 40% in the Southern Hemisphere polar lower mesosphere, probably a result of the HOx increases. SBUV/2 observations showed ozone depletions of 5–8% in the southern polar upper stratosphere lasting days beyond the events, most likely a result of the NOy enhancements. Longer-term Northern Hemisphere polar total ozone decreases of >0.5% were predicted to last for over 8 months past the events with the Goddard Space Flight Center two-dimensional model. Although the production of NOy constituents is the same in both hemispheres, the NOy constituents have a much larger impact in the northern than the southern polar latitudes because of the seasonal differences between the two hemispheres. These observations and model computations illustrate the substantial impact of solar protons on the polar neutral middle atmosphere.

1. Introduction

[2] Large-scale solar explosions can result in huge fluxes of high-energy solar protons at the Earth, especially near solar maximum. A period of time wherein the solar proton flux at the Earth is elevated for a few days is known as a solar proton event (SPE).

[3] Solar protons impact both the northern and southern polar cap regions (>60° geomagnetic latitude) as a result of the charged particles being guided by the Earth’s magnetic field. These protons have energies sufficient to impact the neutral middle atmosphere (stratosphere and mesosphere) and produce ionizations, dissociations, dissociative ionizations, and excitations. These atmospheric interactions result in the production of both HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, HONO, ClONO2, ClNO2, BrONO2) constituents either directly or through a photochemical sequence [e.g., Swider and Keneshea, 1973; Crutzen et al., 1975; Jackman et al., 1980; Solomon et al., 1981; McPeters, 1986; Zadorozhny et al., 1992]. These HOx and NOy enhancements subsequently cause decreases in ozone [e.g., Weeks et al., 1972; Heath et al., 1977; Solomon et al., 1983; Jackman et al., 1990; Krivolutsky et al., 2003; Jackman and McPeters, 2004].

[4] A very active solar period near the end of solar cycle 23 maximum happened in October–November 2003. Several solar explosions resulted in SPEs in late October and early November 2003. An especially vigorous period of high fluxes of energetic protons occurred 28–31 October 2003. Seppälä et al. [2004] have shown significant effects from the October–November 2003 SPEs in the Northern Hemisphere polar winter with GOMOS/Envisat data. We provide further evidence of a large middle atmospheric impact from these SPEs using NOAA 16 SBUV/2 and UARS HALOE measurements of the Southern Hemisphere polar atmosphere. We also show global model simulations to aid in the analysis of these polar impacts.

[5] In this paper we discuss the measured and modeled impacts of the protons ejected by the Sun in October–November 2003 on the Earth’s middle atmosphere.
paper contains six primary sections, including the introduction. The solar proton flux measurements and energy deposition are presented in section 2. The production of odd hydrogen (HOx) and odd nitrogen (NOy) by the solar protons is discussed in section 3. Observations of NOx (NO + NO2) and ozone change as a result of the October–November 2003 SPEs are given in section 4. The GSFC two-dimensional model used to simulate the impact of the disturbed time period and model predictions of the SPEs’ influence are presented in section 5. Finally, conclusions are given in section 6.

2. Proton Measurements/Energy Deposition

2.1. Solar Proton Flux Measurements

An accessible and useful proton flux data set is provided by the National Oceanic and Atmospheric Administration (NOAA) Space Environment Center (SEC) for the NOAA Geostationary Operational Environmental Satellites (GOES) (see http://sec.noaa.gov/Data/goes.html). Proton fluxes are provided at this site in several energy intervals (>1 MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, and >100 MeV), updated every 5 min. The GOES 11 data are considered most reliable for proton fluxes depositing energy into polar latitudes and were used as the proton flux source for this study. These proton flux measurements are given in Figure 1 for the 26 October through 7 November 2003 time period. The largest proton fluxes of year 2003 were recorded 28–30 October. Protons with energies >100 MeV are fast-moving and arrive in the near Earth environment early in the solar event. These high-energy protons deposit the bulk of their energy in the polar stratosphere. Lower-energy (and slower moving) protons with energies near 1 MeV arrive later, but fluxes at these lower energies can remain elevated for a longer period of time. These lower energy protons, between about 1 and 30 MeV, deposit the bulk of their energy in the mesosphere.

2.2. Energy Deposition

The calculation of the energy deposition of the protons in the atmosphere used a methodology discussed by Vitt and Jackman [1996]. Precipitating protons primarily lose their energy in the creation of ion pairs in the atmosphere. An ion pair is created when a precipitating proton removes an electron (called a secondary electron) from the neutral molecule or atom, leaving behind a positive ion. The protons impart energy onto the secondary electrons and these freed charged particles also cause further ionizations in the atmosphere.

The hourly average ion pair production profiles were computed from the GOES 11 proton fluxes and are presented in Figures 2 and 3. Figure 2 shows the ion pair production rates over the entire 26 October through 7 November 2003 time period, whereas Figure 3 is an enlargement of the very intense period, 28–31 October 2003. Ion pair production rates of greater than 1000 cm⁻² s⁻¹ were computed down to 10 hPa (~32 km)
during this very intense period. Very large ion rates (>10,000 cm\(^{-3}\) s\(^{-1}\)) were computed on 2 days, 28–29 October, throughout the polar cap in the mesosphere. Such large impacts to the polar middle atmosphere are very uncommon, typically only occurring a few times during a particular solar maximum period.

3. Odd Hydrogen (HO\(_x\)) and Odd Nitrogen (NO\(_y\)) Production

3.1. Odd Hydrogen (HO\(_x\)) Production

[9] Along with the ion pairs, the protons and their associated secondary electrons also produce odd hydrogen (HO\(_x\)) and odd nitrogen (NO\(_y\)). The production of HO\(_x\) relies on complicated ion chemistry that takes place after the initial formation of ion pairs [Swider and Keneshea, 1973; Frederick, 1976; Solomon et al., 1981]. Solomon et al. [1981] computed HO\(_x\) production rates as a function of altitude and ion pair production. Some of these computations are given in Table 1 for background ion pair production rates of 10\(^2\), 10\(^3\), and 10\(^4\) cm\(^{-3}\) s\(^{-1}\). Each ion pair typically results in the production of around two HO\(_x\) constituents in the upper stratosphere and lower mesosphere (see Table 1). In the middle and upper mesosphere, an ion pair is computed to produce less than two HO\(_x\) constituents per ion pair.

3.2. Odd Nitrogen (NO\(_y\)) Production

[10] Odd nitrogen is produced when the energetic charged particles collide with and dissociate N\(_2\). Following Porter et al. [1976] we assume that 1.25 N atoms are produced per ion pair. The Porter et al. [1976] study also further divided the proton impact of N atom production between ground state (~45% or ~0.55 per ion pair) and excited state (~55% or ~0.7 per ion pair) nitrogen atoms. Ground state [N(4S)] nitrogen atoms can create other NO\(_y\) constituents, such as NO, through

\[
N(4S) + O_2 \rightarrow NO + O
\]

or can lead to NO\(_y\) destruction through

\[
N(4S) + NO \rightarrow N_2 + O.
\]

Generally, excited states of atomic nitrogen, such as N(2D), result in the production of NO through [e.g., Rusch et al., 1981; Rees, 1989]

\[
N(2D) + O_2 \rightarrow NO + O
\]

and do not cause significant destruction of NO\(_y\). Rusch et al. [1981] showed that there are huge differences in the final results of model computations of NO\(_y\) enhancements from SPEs that depend strongly on the branching ratios of the N atoms produced. We currently do not include any of the excited states of atomic nitrogen (e.g., N(2D), N(2P), and N\(^+\)) as computed constituents in our model. In order to best represent the production of NO\(_y\) constituents by the protons and their associated secondary electrons, we assume that 45% of the N atoms produced per ion pair result in the production of NO (~0.7 per ion pair) and that 55% of the N atoms produced per ion pair result in the production of NO (~0.55 per ion pair).

[11] The SPEs of 28–31 October 2003 were very large and can be compared with other huge SPEs in the past. These 28–31 October 2003 SPEs were computed to have produced 3.4 \times 10\(^{13}\) NO\(_y\) molecules. Only three other SPEs in the past 40 years were larger including the events of 19–27 October 1989 (6.7 \times 10\(^{13}\) NO\(_y\) molecules), 2–10 August 1972 (3.6 \times 10\(^{13}\) NO\(_y\) molecules), and 14–16 July 2000 (3.5 \times 10\(^{13}\) NO\(_y\) molecules) [e.g., see Jackman et al., 2001]. The number reported here for the July 2000 SPE is slightly larger than that reported by Jackman et al. [2001] since GOES 8 proton fluxes are used in this work, whereas GOES 10 proton fluxes were used by Jackman et al. [2001]. The GOES 8 data are considered more reliable than the GOES 10 data for proton fluxes depositing their energy in polar latitudes (T. Onsager, NOAA SEC, private communication, 2003).

4. Observations of Southern Hemisphere Polar Atmospheric Influence

4.1. Ozone

[12] The large ionization rates (see Figures 2 and 3) translate into very significant production of HO\(_x\) and NO\(_y\). Both of these families are capable of catalytically destroying ozone. The NOAA 16 SBUV/2 satellite provides daily ozone data at particular altitudes [Hilsenrath et al., 1995]. These SBUV/2 data can be turned into daily maps using interpolation along the orbital tracks and filling between successive orbits with the Delaunay triangulation method discussed by Stolarski et al. [1997]. The six plots in Figure 4 illustrate ozone amounts at 0.5 hPa (~55 km) from 27 October through 1 November 2003. The 27 October data show ozone before the most intense period of proton fluxes. Proton fluxes start to pick up on 28 October and reach peak levels on 29 October (see Figure 1). Ozone levels are reduced very significantly (20–40%) on this day. The outline of the polar cap (>60\(^\circ\) geomagnetic), where the solar protons are predicted to interact with the atmosphere, is indicated by the thick white oval in all plots. Other days (30 October through 1 November) show varying ozone amounts that are directly linked to the proton flux variations. Figure 4 illustrates the dramatic reduction in the ozone amounts at this level in or near the polar cap during
this period and the relatively rapid ozone recovery after the maximum intensity of the solar event.

Ozone on six pressure levels at geographic latitudes 70°–82°S are indicated in Figure 5. This graph illustrates the ozone variation during the SPEs at 0.5, 1, 2, 4, 7, and 10 hPa from 26 October through 1 November. It is fairly clear that ozone has decreased at the highest two levels (0.5 and 1 hPa) from 28–30 October during the maximum intensity of the solar protons in 2003. The SPE-caused ozone changes at the lower four levels are less obvious since they are concealed by the sinusoidal ozone variations. These ozone fluctuations at 2, 4, 7, and 10 hPa are not caused by 24-hour oscillations; rather they are the result of measurements at different longitudes within the polar cap as a function of time.

4.2. NO$_x$ (NO + NO$_2$)

The Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) measured NO and NO$_2$ during these SPEs at high southern latitudes. HALOE measured NO and NO$_2$ (NO$_x$) from 12–15 October over the 71°–74°S latitude range at sunrise before the SPEs. The average of these measurements is shown in Figure 6. Note that NO$_x$ reaches a maximum of \sim11 ppbv at about 3 hPa and then decreases rapidly to less than 1 ppbv by 0.3 hPa and stays at those reduced levels up to 0.01 hPa. NO$_x$ then increases rapidly to levels over 20 ppbv by 0.004 hPa.

HALOE next viewed these high southern latitudes (62°–75°S) in the period 30 October through 7 November, this time at sunset, during and after the solar event period. Since NO and NO$_2$ are tightly coupled and the quantity NO + NO$_2$ is highly conserved during a 24-hour period in the upper stratosphere and mesosphere, it is possible to compare sunrise NO$_x$ measurements with sunset NO$_x$ measurements and derive the perturbed atmospheric NO$_x$ values for a short period (approximately a week). This was done in constructing Figure 7, which shows the excess NO$_x$ beyond the baseline amounts in Figure 6. A seven-point “boxcar” running average is applied to these HALOE data in this figure.

NO$_x$ values greater than 100 ppbv were produced in the middle to upper mesosphere (0.05 to 0.006 hPa) for 30–31 October. Increases in NO$_x$ greater than 20 ppbv were found in the lower mesosphere throughout the time period (30 October through 7 November). These are clearly huge increases above the baseline values less than 1 ppbv and illustrate the dramatic change in middle atmospheric NO$_x$ due to these SPEs. We next employ our global model in

Figure 4. NOAA 16 SBUV/2 Southern Hemisphere polar ozone in ppmv for 6 days (27 October through 1 November) around the peak proton flux intensity in October–November 2003. The solid white circle indicates the southern polar cap boundary (60°S geomagnetic).

Figure 5. Polar Southern Hemisphere ozone observations from NOAA 16 SBUV/2 measurements for the 0.5, 1, 2, 4, 7, and 10 hPa levels during the 26 October through 1 November 2003 time period. The colored symbols with connected color lines indicate the measurements and the horizontal dashed-dotted lines indicate approximate average background observations. The symbols represent the average ozone abundance for each orbit at the specified pressure levels. Note that the 7 and 10 hPa data have been offset vertically for clarity.
simulations “with” and “without” the SPEs to aid in understanding these significant polar perturbations.

5. Model Predictions

5.1. Model Description

[17] The latest version of the Goddard Space Flight Center (GSFC) two-dimensional (2D) atmospheric model was used to predict the impact of solar protons on the atmosphere. This model was first discussed about 15 years ago [Douglass et al., 1989; Jackman et al., 1990] and has undergone extensive improvements over the years [e.g., Considine et al., 1994; Jackman et al., 1996; Fleming et al., 1999]. The vertical range of the model, equally spaced in log pressure, is from the ground to approximately 90 km (0.0024 hPa) with approximately a 2 km grid spacing. Latitudes range from 85°S to 85°N with a 10° grid spacing.

[18] The transport is derived using the global winds and temperatures from the United Kingdom Meteorological Office (UKMO) data assimilation system for the years 1992–2000 and is described by Fleming et al. [2002]. For this paper we constructed a climatological average of the transport over these years and applied it over the simulated period from 2003 to 2005.

[19] The GSFC 2D chemistry solver has undergone significant upgrades in the past year. The ground boundary conditions for source gases N2O, CH4, CO2, CFC11, CF2Cl2, C2Cl3F3, C2Cl2F4, C2ClIF5, CCl4, CH2CCl3, CHClIF2, C2H3FCI12, C2H2F2Cl, C2HF3Cl2, CBrClIF2, CBrF3, CBr2F2, and C2Br2F4 are taken from World Meteorological Organization (WMO) [2003] for the particular simulated year. The ground boundary conditions for CO are assumed to be 150 ppbv in the Northern Hemisphere and 50 ppbv in the Southern Hemisphere. Water vapor (H2O) is computed as described by Fleming et al. [1995] and HNO3 is transported and computed separately from other NOy species. A diurnal average computation is performed for these 19 source gases and HNO3 without a diurnal cycle computation.

[20] The model computes seven chemical families, which include: (1) O3; (2) O(3P), O(1D), and O2(1D); (3) H, OH, HO2, and H2O2; (4) N, NO, NO2, NO3, N2O5, HO2NO2, and HONO; (5) Cl, ClO, HCl, HOCI, ClONO2, ClO2, OCIO, Cl2O2, Cl2, and CINO2; (6) Br, BrO, HBr, HOBBr, BrONO2, Br3, and BrCl; and (7) CH3O, CH2O2, and CH3OOH. A diurnal cycle is computed for all thirty-five of these constituents within the seven families using the technique developed for the Atmospheric Environmental Research (AER) 2D model [Weisenstein et al., 1991, 2004; Rinsland et al., 2003]. The scheme allows for ten time steps in the day and five time steps in the night of a 24-hour period. The technique also provides a computation at sunrise and sunset, which allows easy comparisons with satellite solar occultation measurements. The seven families, 19 source gases and HNO3 are all transported separately once each 24-hour period. The photochemical gas and heterogeneous reaction rates and photolysis cross sections are updated to the latest Jet Propulsion Laboratory recommendations [Sander et al., 2003] for these computations.

5.2. Model Simulations

[21] The GSFC 2D model was used in two primary simulations, “base” and “perturbed,” for the years 2003–2005. The base simulation includes no SPEs, whereas the perturbed simulation includes all SPEs in the period 26 October through 7 November 2003.

[22] The starting conditions for both the base and perturbed simulations were provided by a time dependent “spin-up” simulation from January 1980 through September 2003, which included the appropriate source gas boundary conditions from WMO [2003]. The base simulation continued this time dependent computation over the years October 2003 through December 2005.

[23] The perturbed simulation started from the end of the spin-up simulation and also included the HOx and NOy production by the October–November 2003 SPEs in the northern and southern polar regions. The HOx produc-

Figure 6. HALOE NOx (NO + NO2) average of sunrise measurements taken in the polar Southern Hemisphere (71°–74°S) from 12 to 15 October 2003. Used as baseline to compute October–November 2003 SPEs influence.

Figure 7. Polar Southern Hemisphere NOx (NO + NO2) change from ambient atmosphere amounts caused by October–November 2003 SPEs from HALOE sunset measurements taken 30 October through 7 November between 62° and 75°S subtracted from the baseline values given in Figure 6. Contour levels are 2, 5, 10, 20, 50, and 100 ppbv.
5.3. NOx changes maximized above 100 ppbv on 30 October near 0.01–0.02 hPa, just after the huge enhanced proton fluxes during the peak of this solar active period. NOx increases >50 ppbv in the lower mesosphere (0.2–0.4 hPa) continued through about Nov. 5.

[25] The modeled NOx changes are fairly similar to the HALOE measurements. For example, both the model and measurements show (1) the largest NOx enhancements above 0.1 hPa; (2) the NOx endurance is longest below 0.1 hPa; and (3) the enhancements are quantitatively similar throughout most of the pressure domain and over most of the time period.

[26] There are some differences between the modeled NOx changes and the HALOE measurements. For example, it does appear that the NOx above 0.1 hPa is reduced more rapidly in the observations than simulated. This difference may be related to the fact that the model results are all taken at 75°S, whereas the measurements are a combination of measurements from 75°S (30 October) down to 62°S (7 November).

5.3.2. OH

[26] Among the largest computed atmospheric changes due to the Oct.–Nov. 2003 SPEs are those of OH. The OH computed changes are shown in Figure 9a in the Southern polar cap region. We show model computations for 85°S, deep within the polar cap to insure that the full impact of the solar protons is computed. Increases of OH greater than 100% were calculated for days 28–30 October and 3–4 November in the mesosphere. Enhancements of OH greater than 10% only extended to the stratosphere on 3 days, 28–30 October. These OH increases are largest during the SPEs and the OH enhancements persisted only for a few hours after the SPEs (see Figure 2). HOx constituents are very reactive with each other and thus have a relatively short lifetime [e.g., Solomon et al., 1981].

5.3.3. Ozone

[31] The produced HOx constituents drive practically all the ozone depletion in the mesosphere and the upper stratosphere during the SPEs. Several HOx catalytic destruction cycles are important in the mesosphere and stratosphere. For example, the catalytic cycle

\[
\text{H} + \text{O}_3 \rightarrow \text{OH} + \text{O}_2
\]

(4)

\[
\text{OH} + \text{O} \rightarrow \text{H} + \text{O}_2
\]

(5)

Net

\[
\text{O}_3 + \text{O} \rightarrow 2 \text{O}_2
\]

is important in the middle and upper mesosphere and the catalytic cycle

\[
\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2
\]

(6)

\[
\text{HO}_2 + \text{O} \rightarrow \text{OH} + \text{O}_2
\]

(7)

Net

\[
\text{O}_3 + \text{O} \rightarrow 2 \text{O}_2
\]

is important in the lower mesosphere and upper stratosphere.
Substantial ozone decreases are computed in the mesosphere and shown in Figure 9b. Decreases greater than 70% are calculated on 29 October between 0.2 and 0.007 hPa. Short-lived ozone depletions >30% are calculated for the mesosphere in two periods, 28–31 October and 3–4 November, roughly corresponding to the altitude range and periods of enhanced OH levels >50%.

More continuous computed ozone decreases (>5%) in the lower mesosphere and upper stratosphere are apparent over the 28 October through 7 November period. These longer-term ozone depletions are caused by the NOx enhancements from the SPEs for that region of the atmosphere (see Figures 7 and 8). The slight oscillation in the computed ozone change values is caused by the 24-hour variation in solar zenith angle at 85°S. The SPE-caused ozone depletion has a fairly strong solar zenith angle dependence.

It is not possible to compare our modeled ozone changes with the HALOE measurements. The base HALOE ozone measurements before the SPEs (see, also, section 4.2) were taken at sunrise in the southern polar region, whereas the perturbed measurements were taken at sunset in approximately the same geographic region. Since mesospheric ozone changes dramatically over a 24-hour period, a comparison of these sunrise and sunset measurements would lead to an inaccurate quantitative ozone change. We are, however, able to compare to NOAA-16 SBUV/2 ozone measurements (see Figure 5).

In order to effectively compare our modeled ozone changes to these SBUV/2 measurements, we compute a “smoothed” 13-point running boxcar average of those data for the four pressure levels 2, 4, 7, and 10 hPa. The smoothing is applied to reduce the periodic oscillations discussed at the end of section 4.1 for easier interpretation of longer-term ozone changes. These SBUV/2 ozone data (smoothed for 2, 4, 7, and 10 hPa; and nonsmoothed for 0.5 and 1 hPa) are presented in Figure 10. Large ozone decreases are evident at the higher altitudes with 10, 30, and 40% maximum decreases on 29 October at 2, 1, and 0.5 hPa, respectively.

Longer-term SBUV/2 ozone depletion between 5 and 8% are observed at levels 2, 4, and 7 hPa. The model calculated ozone depletions are given in Figure 10 and represented via the solid black line at each pressure level. The computed ozone at each pressure level is slightly different from the measured values, thus for ease of comparison the percentage modeled ozone deviations from the horizontal reference values (represented by the light dash-dot lines) are shown. These reference values are: 1.73 ppmv (0.5 hPa), 3.0 ppmv (1 hPa), 4.8 ppmv (2 hPa), 6.24 ppmv (4 hPa), 6.3 ppmv (7 hPa), and 5.7 ppmv (10 hPa).
The modeled ozone change represents fairly well the SBUV/2 maximum decreases at the highest levels (0.5 and 1 hPa), however, at lower levels the model does less well. The model appears to predict a larger (smaller) ozone decrease as a result of the SPEs at 1 and 2 hPa (4 and 7 hPa) for the last three days of the plot (30 October through 1 November).

The "apparent" measured ozone change at 10 hPa is noteworthy as no ozone decrease has been observed during a SPE at this low an altitude. Our model (solid black line) predicts no ozone change as a result of the Oct.–Nov. 2003 SPEs at this pressure level. Another stratospheric ozone phenomenon is also ongoing at this time of the year, the "Antarctic ozone hole." Further investigation into the apparent measured ozone changes has revealed that these decreases are caused by ozone depletions at pressures higher than 10 hPa being dynamically driven upward to cause a fluctuation in ozone at this higher altitude.

5.4. Long-Term Computed Constituent Changes Due to SPEs

5.4.1. NOy

The enhancements of NO and NO2 from SPEs elevate the amount of other NOy constituents over the course of a few days. The NOy family can have a lifetime of months to years, if it is transported to the middle and lower stratosphere [e.g., Jackman et al., 2000; Randall et al., 2001]. The percentage change of NOy in the Polar Regions, 50°–90°S and 50°–90°N, is computed for 2\(\frac{1}{4}\) years and shown in Figures 11 and 12. NOy enhancements >10% persist for only about five months in the middle atmosphere in the Southern polar region. The sunlight is intense during this period in the Southern Hemisphere (SH) and odd nitrogen is rapidly lost via

\[
\text{NO} + \text{hv}(< 191 \text{ nm}) \rightarrow \text{N} + \text{O} \quad (8)
\]

followed by

\[
\text{N} + \text{NO} \rightarrow \text{N}_2 + \text{O} \quad (9)
\]

The winds are also generally upward in the late spring/summer seasons, thus NOy constituents are transported upward to the higher altitudes, where the loss process is greater.

This two-step loss process represented by reactions (8) and (9) goes much slower in the Northern Hemisphere (NH) at this time of year (late fall/winter) due to the lower amount of sunlight. NOy enhancements >10% endure for nearly 9 months in the middle atmosphere with the strongest persistence in the middle stratosphere. Computed NOy enhancements >2% even persist for over 2 years past the SPEs in the low to middle stratosphere.

In summary, although the production of NOy constituents is the same in both hemispheres, the NOy constituents have a much larger impact in the northern polar latitudes than the southern polar latitudes. This is caused by the seasonal differences between the two hemispheres at
produced NOy with the chlorine and bromine loss cycles years 2004–2005 below about 30 hPa. These increases NOy survives in this hemisphere. Ozone decreases >2% predicted in the northern polar region simply because more transported (see Figures 11 and 12). More ozone loss is greater than 0.5%. These changes were computed by The gray highlighted areas indicate total ozone decreases >0.5% for about three months in the winter/early spring of the Northern polar region. These maximum total ozone changes are not predicted to occur during the the time the event occurred, i.e., fall/winter in NH, spring/summer in SH (see Figures 11 and 12).

5.4.2. Ozone

5.4.2.1. Profile Ozone

[42] Associated ozone decreases follow the enhanced NOy amounts. Ozone is reduced by the NOy constituents through the following primary catalytic destruction cycle:

\[
\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \tag{10}
\]

\[
\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2 \tag{11}
\]

Net \[
\frac{\text{O}_3 + \text{O} \rightarrow \text{O}_2 + \text{O}_2}{100}
\]

This NOy-caused catalytic destruction process acts on ozone over a period of time leading to ozone loss at lower altitudes (middle to lower stratosphere), essentially wherever NOy is transported (see Figures 11 and 12). More ozone loss is predicted in the northern polar region simply because more NOy survives in this hemisphere. Ozone decreases >2% persist for 13 months past the SPEs in the middle stratosphere.

[43] SPE-produced ozone increases are computed for years 2004–2005 below about 30 hPa. These increases are caused by the interference of the long-lived SPE-produced NOy with the chlorine and bromine loss cycles for ozone destruction. This characteristic has been noticed before in other studies of very large SPEs [e.g., Jackman et al., 2000].

5.4.2.2. Total Ozone

[44] The impact of the Oct.–Nov. 2003 SPEs on total ozone is shown in Figure 13. Total ozone is reduced by a maximum of about 1% for about three months in the winter/early spring of the Northern polar region. These maximum total ozone changes are not predicted to occur during the SPEs; rather the transport of the enhanced NOy to lower altitudes (and higher ambient ozone amounts) allows more substantial total ozone impact. Total ozone reductions >0.5% are predicted to persist for over 8 months in the Northern polar latitudes. Total ozone depletions in the Southern Hemisphere are predicted to be much less with levels never exceeding 0.5%.

6. Conclusions

[45] The impact of the large solar storms in October–November 2003 with their accompanying solar protons on the Earth’s middle atmospheric polar cap regions was measured and modeled. There were several periods of intense proton fluxes entering the atmosphere with the most intense occurring 28–31 October 2003, the fourth largest period of SPEs in the past 40 years. HOx constituents were predicted to increase substantially over the 26 October through 7 November period with computed enhancements of >100% in mesospheric OH for a few days. NOy constituents were measured and predicted to increase as well. The NOx (NO + NO2) amount was observed to increase by over 20 ppbv throughout the Southern polar mesosphere with the UARS HALOE instrument; similar increases were computed by the GSFC 2D model.

[46] The computed HOx enhancements caused middle to upper mesospheric ozone depletions of >70% during the most intense period of solar protons (29 October). The NOAA 16 SBUV/2 instrument measured a short-term ozone depletion of 40% and 30% at 0.5 hPa (lower mesosphere) and 1 hPa (upper stratosphere), respectively, and were probably a result of the HOx increases. SBUV/2 observations showed ozone depletions of 5–8% in the polar upper stratosphere lasting days beyond the events, most likely a result of the NOy enhancements. Longer-term Northern Hemisphere polar total ozone decreases of >0.5% were predicted to last for over eight months past the events with the GSFC 2D model. Clearly, the October–November 2003 SPEs were responsible for a substantial perturbation to the polar neutral middle atmosphere.

Acknowledgments. We thank NASA Headquarters Atmospheric Chemistry Modeling and Analysis Program for support during the time that this manuscript was written. We also thank the NOAA GOES team for providing the solar proton flux data over the Internet. The SBUV/2 data were obtained from NOAA/NESDIS with support from the NOAA Climate and Global Change Atmospheric Chemistry Element. We thank two anonymous reviewers for valuable comments and criticisms that led to an improved manuscript.

References

