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3. Spatial Yield Spectra for 
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Spatial yield spectra have been calculated for electron energy degradation into molecular nitrogen gas 
using a Monte Carlo method for 0.1- to 5.0-keV incident electrons. These spectra contain the spatial yield 
information about the electron degradation process and can be employed to calculate a 'yield' for any 
inelastic state at any position in the medium. Because of the spectrum's useful nature and simple 
characteristics, the three-variable spatial yield spectrum U(E, z, Eo) is analytically represented as well. 
This analytic form can then be easily applied to atmospheric and laboratory problems dealing with 
energetic electron degradation. 

1. INTRODUCTION 

The first two papers of this series were concerned with the 
nonspatial aspects of electron impact on atmospheric gases. 
The first paper, by Jackman et al., [1977], updated the cross 
sections of six atmospheric gases (namely, Ns, Os, O, CO, COs, 
and He). The second paper, by Green et al. [1977], then used 
the cross sections for these gases along with the cross sections 
for Ar, Hs, and HsO in a modified discrete energy bin method 
of electron energy degradation. A 'yield spectrum' was in- 
troduced in that paper which is amenable to physical inter- 
pretation, accurate analytic representation, and convenient 
application for the determination of many yields needed in 
aeronomical problems. 

This yield spectrum, while accurate for calculating the total 
yield of any state, does not provide information about the 
spatial distribution of the yield. As experimental probings of 
the atmosphere become more accurate, the need for spatial 
knowledge of the yield becomes more acute. Molecular nitro- 
gen is studied here in an attempt to generalize some of the 
characteristics of the spatial electron energy deposition prob- 
lem. 

Several spatial electron energy deposition approaches exist. 
These include the Fokker-Planck method of Walt et al. [1967], 
the hybrid approach (involving the Fokker-Planck equation 
for electron energies above 500 eV and the two-stream method 
for electron energies below 500 eV) of Banks et al. [ 1974], the 
M•)nte Carlo approach of Berger et al. [1970, 1974], the 
Monte Carlo approach of Cicerone and Bowhill'['1970, 1971], 
and the multiangle equation of transfer solution of Strickland 
et al. [1976]. Mantas [1975] and Jasperse [1976, 1977] also 
use spatial electron energy deposition techniques to solve the 
equation of transfer but concentrate their efforts on photo- 
electrons. 

A Monte Carlo energy deposition technique is applied in 
this study to electrons with incident energies from 0.1 to 5.0 
keV. The incident electrons and their secondaries and tertiaries 

are followed in a collision-by-collision manner down to 30 eV. 
Below 30 eVa multiple elastic scattering distribution is used 
down to the cutoff energy of 2 eV. 

2. CRoss SECTIONS 

a. Elastic Cross Sections 

The elastic collisions cause the most scattering of electrons; 
thus special care must be taken in regard to the elastic differen- 
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tial cross sections. In this study two different forms of the 
differential elastic cross section will be described and then 

contrasted when used in the Monte Carlo approach to electron 
energy deposition. 

The first form, the screened Rutherford cross section, is 
expressed as 

Z2e 4 
Psn(O, E) = (1) 

pSvS(1 - cos 0 + 2r/) s •.(E) 

in phase function form, where Z is the atomic number of the 
substance, e is the electronic charge, p is the momentum of the 
electron, v is the velocity of the electron, 0 is the polar scatter- 
ing angle, 

ZS51'8a' /•s eV s (2) an(E) = ESr/(1 + 
1.70 X 10 -5 Z s/8 

• = •c r(r + 2) (3) 
[Moliere, 1947, 1948], r = E/mc s is the electron energy in units 
of the electron rest energy, and rtc is assumed to be 1.0 (follow- 
ing th• work of Berger et al. [1970]). In the energy regime of 
interest (E _< 5 keV), r << 2, Z = 7, and, consequently, rt • 
16/E. 

This form, Equation (1) (hereafter called SR), while used 
reasonably successfully by Berger et al. [1970, 1974], tends to 
underestimate the sharply forward peaked small-angle scatter- 
ing, overestimate the medium-angle scattering, and under- 
estimate the large-angle scattering. 

Iranov et al. [1977] have recently attempted to describe the 
differential elastic cross sections of Ns, Os, and O using a form 
which includes a sharper forward scattering component along 
with a backward scattering peak. Porter and Jump [1978] then 
pointed out some of the deficiencies in this representation and 
have employed a more convenient form to represent the elastic 
differential cross sections of Ns, Os, O, CO, COs, and He. They 
fitted experimental data fairly well, but only at several separate 
energies for each gas. Thus use of their differential cross sec- 
tion form in a deposition calculation probably would require 
the use of spline functions or other interpolative techniques. 

In this paper an energy-dependent representation was de- 
sired which also included the near-exponentiallike fall-off 
(pointed out by Shyn et al. [1972] and Herrmann et al. [1976]) 
at the small angles and the backscattering peak at the large 
angles which is observed for electron energies less than 200 eV. 
The phase function form chosen is normalized to one with an 
integration over the solid angle and is represented as (hereafter 
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TABLE 1. Parameters Used in (4) 

Parameter Value Parameter Value 

fn 100 ½V a 
]':2 0.84 bx 
f•a 1.92 b: 
fa• 10 eV c• 
faa 0.51 ca 
f2a 0.87 Ca 

0.11 
0.43 

-0.29 
1.27 

12 ½V 
0.27 

L(œ) = (œ//11 Y,,/[(œ/fi, Y,, + [,a] 
A'(E) = (E/f:,¾,,/[(E//:,y,, + f:a] 
fa (E) = 1 - fx (E), for E > 200 eV 
fa(E) = fa'(E) [1 - f:(E)], for E < 200 eV 

called EX) 

PEx(O, E) = f,(E)[l - b2(E)]e -ø/•' 
2;rb2(E)[l + e-,•/o½•)] 

/:(E) 
2•r[(2 + a) -t- a-t][1 - cos 0 + a] 2 

[1 - fx(E) - f2(E)] 
2•r[(2 + c(E)) -•- c(E)-q[1 + cos 0 + c(E)] 2 

(4) 
The parameter expressions for (4) are given in Table 1. 

Comparison of these two forms, SR and EX, with the exper- 
imental data is given in Figures la and lb at the two energies 
of 30 eV and 1000 eV. The EX form given by (4) fits the data 
quite well at these two representative energies and at the other 
energies as well. 

Both of these forms are normalized to the same total elastic 

cross section given by 

EX e(E) = t r/(r/+ I)[V 2+x + E 2+x] + 
(E- Et) 2 + G, 2 

F2G22 .} + (E- E2) 2 + G2 2 (5) 
Here, • = U/E, and the other parameter values for N2 are 

presented in Table 2. Porter and ,lump [1978] presented this 
form which falls off as 1/E in the large-energy limit (similar to 
the screened Rutherford cross section given in (2)) and which 
contains two other terms (the second and third terms) that 
describe the low-energy shape and Feshbach resonances. This 
form is presented in Figure 2 as the dashed line. 
b. Inelastic Cross Sections 

The total inelastic cross sections for N, were all taken from 
Jackman et al. [1977] and Porter et al. [1976]. The differential 
inelastic cross sections were dealt with in the following man- 
ner: (1) The scattering of the primary electron in an ionization 
event was described using the form given in Porter et al. 
[1976]; (2) the scattering of the secondary electron in an ioni- 
zation event is described using (6); and (3) the scattering phase 
function for the electron as a result of the inelastic excitation 

event was considered only at incident electron energies below 
100 eV. In this energy regime the inelastic scattering was 
calculated with the use of the elastic phase function. 

First, consider the differential ionization cross sections. 
The triply differential ionization cross section da/dT d•28ec 
d•Prlm (where T is the secondary energy, •28ec is the secondary 
scattering angle, and •Prlm is the primary scattering angle) of 
an electron of incident energy E has only recently been mea- 
sured. There is a connection between the primary electron 
and the secondary electron scattering after an ionization event; 
however, for N, this interaction was measured only at one 
energy, E = 100 eV [see ,lung et al., 1975]. Very few experi- 
mental and theoretical triply differential cross-section data 
exist with which to work, and thus we focus in this paper on 
the doubly differential ionization cross section. 

The primary doubly differential cross section form is taken 
from Porter et al. [1976, Equation (14)], while the secondary 
doubly differential cross section form is given below. The most 
extensive work on these secondary cross sections is that of 
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Fig. 1. Na electron impact elastic differential cross sections. The SR (dashed line) and the EX (solid line) forms are 
compared with the experimental data of Shyn et al. [1972] (crosses) and Herrmann et al. [1976] (circles) at the energies of (a) 
30 eV and (b) 1000 eV. 
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Opal et al. [1972]. These data indicate a preferred angle of 
scattering (usually between 45 ø and 90 ø ) at all incident and 
secondary electron energies; thus a Breit-Wigner form has 
been chosen to represent the data. Here, 

da _ S(E, T)C • (6) 
drd[2 [C • + B(cos 0 - cos Oo)•']Nf 

(7) s(œ, T)= = [(r- ro(œ))' + r'(E)] 
is from Green and Sawada [1972], the parameter expressions 
for both (6) and (7) being given in Appendix 1. Equation (6) is 
defined so that integration over the solid angle is given very 
simply as (7). 

Two papers, by Cartwright et al. [1977] and Chutjian et ai. 
[1977], have recently been published which present inelastic 
differential cross sections for several low-lying excitation states 
of N•. at a few incident electron energies between 10 eV and 60 
eV. These data suggest that these inelastic collisions cause 
approximately the same amount of scatter as that resulting 
from elastic collisions at electron energies between 10 eV and 
60 eV. Therefore it is assumed in this work that the pitch angle 
distributions are the same for both the inelastic and the elastic 
events at electron energies below 100 eV. 

Above 100 eV the optically allowed excitations are the most 
important inelastic excitation events. Since these excitation 
processes exhibit very highly peaked forward scattering at the 
higher electron energies, it is assumed that inelastic excitations 
will not change the direction of the incident electron whose 
energy is above 100 eV. 

The cross sections for the inelastic states given in Jackman et 
al. [1977] were summed and are presented in Figure 2. Above 
30 eV the cross section was fit with the function (for conve- 
nient use) 

ar,(E) = qoF[1 - (W/E)"] a In ((4EC/W) + e) wœ (8) 
where qo = 651.3 ,•' eV •' and e is the natural logarithm base, 
equal to 2.71828. This form has the characteristic Born-Bethe 
E- • In E fall-off behavior at the large energies. The parameters 
a = 1,/• = 4.81, C = 0.36, F= 4.52, and W= 11 eV were 
found with the use of a nonlinear least square fitting program 
which fit (8) to the sum of all the inelastic cross sections. From 
30 eV up to 5 k eV this form was used for the total inelastic 
cross section. Below 30 eV the total inelastic cross section was 
read in numerically for use in the electron energy deposition 
scheme. 

The total cross section which is a sum of the inelastic and the 
elastic cross sections is given in Figure 2 as the dash-dot line 
and is compared with the experimental data of Blaauw et al. 
[ 1977]. Throughout the energy range the cross sections used in 
this study compare favorably with these experimental values. 

3. MONTE CARLO ELECTRON DEGRADATION TECHNIQUE 

A Monte Carlo calculation is used in this work for energy 
degradation by energetic electrons in N:. This stochastic proc- 
ess can be the most accurate method for obtaining the energy 
loss of particles in a medium if sufficient computer time is 
available. Basically, each electron is degraded in a collision-by- 
collision manner from the incident electron energy down to 2 
eD. 

In this Monte Carlo calculation the electrons were mono- 

energetic, monodirectional, and incident along the z axis in a 
bounded medium (the bounds on the medium were chosen 

TABLE 2. Parameters Used in (5) 

Parameter Value Parameter Value 

•' 2.5 X 10 -6 cm •' Fx 7.33 
U 1.95 X 10 -8 eV Ez 2.47 eV 
V 150 eV G•. 24.3 eV 
X -0.770 F•. 2.71 
Gz 0.544 eV E•. 15.5 eV 

large enough that for most practical purposes it is an infinite 
medium). The sample sizes ranged from 2000 electrons at 
energies 100 and 300 eV to 200 electrons at 5000 eV. 1000 
electrons were used at 1000 eV and 500 electrons were used at 
2000 eV. Through the use of these sample sizes the statistics 
stayed about the same in all the comparisons. 

The cross sections used in these Monte Carlo calculations 
are taken from section 2. The path length between collisions 
was calculated using (3) from Heaps and Green [1974]. 

The scattering event is recorded as either an elastic or an 
inelastic collision. In the elastic collision, the scattering angle 
calculation is the next concern. If the scattering event is in- 
elastic, then the state that is excited must be calculated. 

For the purposes of expediency and reducing the cost of the 
Monte Carlo calculation, the number of states in N•. was 
reduced from thirty-four states down to nine states. Two al- 
lowed states, the b •ru and the b' •Zu +, and the six ionization 
states were kept the same as given in the Jackman et al. [ 1977] 
paper. For the ninth state, all the Rydberg and forbidden 
states were combined. Use of this simplification in the Monte 
Carlo calculation gave no apparent change in the resultant 
yield spectra or intensity plots. 

The polar scattering angle of the electron was then calcu- 
lated after the type of collision had been established. An 
analytic function was used for the SR phase function and the 
secondary electron scattering because (1) and (6) are easily 
inverted to give the polar angle as a function of the random 
number. For the EX phase function the angular range from 0 ø 
to 180 ø was divided into 24 intervals, and the polar scattering 
angle was then calculated by linear interpolation after placing 
the random number in its proper interval. The azimuthal 
scattering angle was assumed to be isotropic for all scattering 

I • • I • • I i $ I i 
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Fig. 2. N•. electron impact cross sections. The total inelastic (solid 
line); total elastic (Equation (5), dashed line); total inelastic plus 
elastic (dash-dot line); and the experimental inelastic plus elastic val- 
ues [Blaauw et al., 1977] (crosses) are presented here. 
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events. M any of the details of calculating the angles of scatter 
are pointed out by Berger et al. [ 1970] and Heaps and Green 
[1974]. 

A collision-by-collision degradation scheme was used down 
to 30 eV. At this energy, the elastic collisions are occurring 
with twice the frequency of the inelastic events, and at energies 
below 30 eV the number of elastic collisions between inelastic 

events may be up to several hundred or a thousand. Keeping 
track of all these elastic collisions would be very costly. We 
thus use a multiple elastic scattering distribution to character- 
ize the electron's coordinates at each inelastic collision. 

Kutcher and Green [1976] studied the radial, longitudinal, 
and polar angle distributions for elastic scattering by H: in the 
energy range from 2 to 50 eV. Rather than repeat such a 
project for N: which would require a substantial amount of 
computer time and money, the possibility of using the H: 
multiple elastic scattering distribution results was considered. 

The differential elastic cross sections for N: and those used 
for H: in the work by Kutcher and Green [1976] are slightly 
different. There is more backscatter observed experimentally 
in N: at all energies. We assume in this paper that the longitu- 
dinal coordinate is the only one affected by this difference. (In 
this work the longitudinal coordinate is that coordinate mea- 
sured parallel to the incident direction of the electron and the 
{adial coordinate is that coordinate measured perpendicular to 
the longitudinal coordinate.) 

For reasons given by Jackman [1978], the longitudinal dis- 
tance z (in units of mean free path lengths (hereafter called 
M FPs)) can be written as 

z= In({[R-'/"-I]/[F(O)-'/"-I]}) (9) 
where R is a random number and the rest of the parameters 
are given in Table 3. 

The expression for p, found by inverting (8) of Kutcher and 
Green [1976], is written 

where 

[-In (1 - R)/15] '/• 

(22 + (s/0.3)m)/(s + 0.3) '.5 

(10) 

211 - exp (-s/4)] 

(11) 

(12) 

and R is a random number. The parameters are found by 
averaging those parameters in Table 1 of Kutcher and Green 
[1976]. 

Above five or six M FPs the polar angle is approximately 
random. At most energies below 30 eV, the number of MFPs 
between inelastic collisions is above five or six. Since the 

TABLE 3. Parameters From Kutcher and Green [1976] for Several 
Energy Intervals Used in (9) 

Energy 
Interval, 

eV H I J D sv sr 

2-5 12. 1.37 1.71 1.75 5.05 8.5 
5-10 9.6 1.32 1.67 2.50 4.25 8.5 

10-20 15.5 1.28 1.67 2.31 6.29 10.3 
20-30 23.5 1.24 1.69 1.98 9.65 13.6 

v(s) = 1 - exp [-(s/sv) D] 
F(O) = K{1 - exp [-(s/st)ø'7*]} 
u(s ) = (H + d )/s • 
The s is the path length to the inelastic collision (defined in (13)). 

Following Jackman [1978], we set K = 0.46. 
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Fig. 3. Intensity plot for electrons of energy 2 keV is presented as a 
function of the longitudinal direction. The crosses represent relative 
experimental values from Barrett and Hays [ 1976], and the histograms 
present the data which result from use of the EX (heavy line) and the 
SR (light line) elastic phase functions in a Monte Carlo calculation. 
The straight solid and the straight dashed lines represent extrapola- 
tions to find the ranges for these two elastic differential cross section 
models. 

distribution found in Kutcher and Green [1976] is not easily 
inverted, a reasonable assumption is that the polar angle is 
oriented randomly. 

The total path length s, used in (9)-(12), is calculated from a 
random number R, the total elastic cross section arE(E), and 
the total inelastic cross section arffE), by using 

avE(E) In (R) (13) s = •(E) 
The ratio avE(E)/avffE) is simply a fairly accurate approxi- 

mation of the number of elastic collisions occurring per in- 
elastic collision. The value -ln (R) is the path length (in units 
of MFPs) traveled by the electron between collisions. Thus 
knowing the number of elastic collisions occurring and the 
path length traveled between collisions allows one to write (13) 
as the expression for the total path length s (in units of MFPs) 
traveled between inelastic collisions. The type of inelastic event 
is then calculated. 

4. SENSITIVITY STUDY 

The influence of the cross sections (both differential and 
total) on the spatial electron energy degradation process is the 
subject of this section. The elastic differential cross section 
affects the spatial aspects of electron degradation the most, 
and thus its effects will de discussed most thoroughly. 

A Monte Carlo spatial energy deposition approach de- 
scribed in section 3 is used to degrade the electrons. In order to 
characterize the influence of the cross sections on the spatial 
energy deposition, the intensity profile of the 3914-,4 emission 
will be used. This emission results from the excitation of the 
N: + B :Z. + state. 

The 3914-A emission is observed in aurorae and has been 
used by some experimenters [namely, Griin, 1957; Cohn and 
Caledonia, 1970; Barrett and Hays, 1976] to calculate a range 
for the electrons. This range is found by extrapolating the 
linear portion of the 3914-A intensity plot to the z axis. An 
illustration of finding the ranges for two intensity plots from a 
Monte Carlo calculation is given in Figure 3. 

The EX phase function is used as the elastic scattering phase 
function in all of the degradation calculations that follow, 
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unless otherwise specified. Before comparing the EX and the 
SR phase functions, first consider the influence of the inelastic 
differential cross sections. 

The primary doubly differential cross section is substantially 
forward peaked [see Porter et al., 1976]. Therefore, for com- 
parison, it is assumed that no scattering of the primary elec- 
tron was incurred during the ionization event. There was virtu- 
ally no observed difference in the two 3914-,4 intensity plots 
that resulted; thus the primary scattering in an ionization event 
is insignificant. 

It is of interest to determine if the secondary doubly differ- 
ential cross section affects the spatial energy deposition proc- 
ess. To do this, a comparison was made in a Monte Carlo 
calculation using, first, (6) and, second, an isotropic secondary 
scattering function. Again, no difference was discernable in the 
two resulting 3914-• intensity plots,• 

A comparison was next made concerning the significance of 
the ad hoc inelastic excitation scattering assumed. If no scat- 
tering was allowed below 100 eV due to the inelastic excitation 
events, then the range was increased by about 7% for incident 
electrons of 0.3 and 0.1 keV. The incident electrons with 

energy 1.0 keV and above were not affected by this change. 
The two elastic phase functions, EX and S R, were next 

compared at several incident electron energies between 0.1 and 
5.0 keV. The ranges (given in grams per square centimeter) are 
presented in Table 4 from several sources including three 
experimental papers and one other theoretical calculation. The 
Barrett and Hays [1976] work is the most recent and may be 
the most accurate. The range of electron energies used was also 
about the same as that used in this work; thus we compare our 
Monte Carlo calculations with Barrett and Hays [ 1976]. 

The EX and SR range results bracket the range values from 
Barrett and Hays [ 1976] at the incident energies of 0.3, 1.0, 2.0, 
and 5.0 keV. If the experimental work is correct, then we can 
draw the conclusion that the SR phase function exhibits too 
much scatter while the EX phase function exhibits too little 
scatter. 

A comparison of the two elastic phase functions with the 
experimental work of Barrett and Hays [1976] is given in 
Figure 3. This is a longitudinal intensity plot for an incident 
electron energy of 2 keV. 

The intensity profiles can also be calculated in directions 
perpendicular to the z axis. These radial intensity profiles are 
calculated with the use of the EX phase function and are 
compared with both experimental and theoretical work in 
Figure 4. Both the p and the z values given in this figure are in 
units of fractions of the total range. The results from this work 
appear to agree better with the Barrett and Hays [1976] data 
than does the Berger et al. [1974] work. The Berger et al. 
[ 1974] data do agree better with the Cohn and Caledonia [ 1970] 
and with the Griin [1957] data. The difference in the results 
from this calculation and those of Berger et al. [ 1974] could be 
due to several reasons (three of which are mentioned here): ( 1 ) 
The Monte Carlo techniques are not the same; (2) the cross 
sections are not the same; and (3) the energy cutoffs are not the 
same. (In this work the primary, secondaries, and tertiaries are 
followed down to 2 eV, and in the work by Berger et al. [ 1974] 
the primary and secondaries are followed down to 200 eV.) 

5. SPATIAL YIELD SPECTRA 

The work of Green et al. [1977] concentrated on the two- 
variable or nonspatial yield spectrum U(E, Eo). The advan- 
tages of working with the yield spectrum were pointed out in 
that paper. One of the nice properties of U(E, Eo) is its simple 

TABLE 4. Range Data (in 10 -6 gm/cm 2) at Several Energies E 
(in keV) 

E, keV EX SR BH CC G BSM 

0.1 0.37 0.34 (0.53) (0.07) (0.08) ... 
0.3 1.25 0.95 1.06 (0.51) (0.56) '.' 
1.0 6.45 5.57 5.72 (4.17) (4.57) '.' 
2.0 18.6 16.8 17.7 14.0 (15.4) 15.2 
5.0 91.5 75.9 83.0 69.7 76.4 71.9 

The second column EX, third column SR, fourth column BH 
[Barrett and Hays, 1976], fifth column CC [Cohn and Caledonia, 1970], 
sixth column G [Griin, 1957], and seventh column BSM [Berger et al., 
1974] range values are presented. Numbers in parenthesis are those 
calculated from formulae given in those papers and thus were not 
actually measured by the experimenters. 

nature. It was hoped that the spatial yield spectra U(E, z, Eo) 
and U(E, t•, z, Eo) hold the same simple properties. 

The three-variable spatial yield spectrum is given by (in 
units of [eV/(gm/cm•')] - x) 

N(E,z) (14) U(E, z, Eo) = AE Az 
Here, N(E, z) is the total number of electrons that existed in 
the spatial interval Az centered at z and, also, in the energy 
interval AE centered at E after the incident electron and all its 

secondaries and tertiaries had been completely degraded in 
energy. This number N(E, z) does not include the electrons in 
the rectangle that were elastically scattered. (There is no real 
interest here in the elastic events, and below 30 eV no elastic 
events are recorded anyway.) 

The three-variable yield spectrum for an incident energy of 1 
keV is presented in Figure 5 at three longitudinal distances. 
This U(E, z, Eo), although more complex than the nonspatial 
U(E, Eo), has some nice general characteristics that continue 
throughout the entire incident range (from 0.1 keV up to 5.0 
keV). It is therefore reasonable to continue the philosophy of 
analytic representation pursued in Green et al. [1977]. The 
analytic properties of U(E, z, Eo) will permit researchers to 
infer important spatially derived properties of N: with a degree 
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Fig. 4. Intensity plots for electrons with incident energy 5.0 keV 
are presented at two z values as functions of p. The solid line histo- 
gram indicates the results using EX. The crosses denote the experimen- 
tal data of Barrett and Hays [ 1976], and the circles denote the theoreti- 
cal work of Berger et al. [1970]. 
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Fig. 5. Three-variable spatial yield spectrum for an incident energy 
of I keV given at three longitudinal distances (in fractions of the 
range): z = 0.0739, represented by crosses; z = 0.429, circles; and z = 
0.96 l, triangles. 

of accuracy useful in many atmospheric and laboratory appli- 
cations. 

It should be noted that at the small longitudinal distances a 
fairly large 'source' term persists at energies E = E0. In the 
interval from about 4 eV to about 10 eV there is a noticeable 

I O 7 

• 10 4 

• IO s 

10 2 

Fig. 6. Three-variable spatial yield spectrum U(E, z, Eo) is plotted 
as a function of ER. The Monte Carlo calculations are represented by 
symbols for each z (in fractions of the range) and Eo (in keV): circles, 
z = 0.126, Eo = 0.1; triangles, z = 0.316, Eo = 0.3; crosses, z = 0.606, 
Eo = 1.0; inverted triangles, z = 0.928, Eo = 2.0; and squares, z = 
1.052, Eo = 5.0.• The analytic fit using (15) is represented by the solid 
line with the souse term contribution represented by a cross within a 
circle. 

dip (see Figure 5) in the yield spectra. In this range (see Figure 
2), the total inelastic cross section also shows a very large dip. 
As a result of this small inelastic cross section between the 

energies of 4 and 10 eV, many of these low-energy electrons 
will travel out of the altitude region of interest before inter- 
acting inelastically with N:. 

For the purposes of many applications it is useful to repre- 
sent the yield spectra by 

U'(E, z, Eo) = z, Eo)O(Eo - E - Eo) 

- b(Eo - E)D(z, Eo ) (15) 

(following the notation of Green et al. [1977]), where 0 is the 
H eaviside function with Eo the minimum threshold of the 
states considered, and 6(E0 - E) is the Dirac delta function 
which allows for the contribution of the source itself. The 

Ua(E, z, Eo) is represented approximately by 

U,,'(E, z, Eo) = A(z, Eo) + B•(z, Eo)[E•] • 
q- Cx(z, Eo)[Et•] c= (16) 

where ER = E/Eo and the remaining parameters are defined in 
Appendix 2. 

The yield of any state is then found from 

Z+(AZ/2) JXz, Eo) = U'(E, z, Eo)pXE)dE dz (17) 
•'z--(Az/2) 

where the upper limit of integration E,• is given in Appendix 2 
and p•(E) is the probability for excitation of the N• molecule to 
thejth state with a loss of excitation energy W; by an incident 
electron of energy E. As the electrons penetrate further and 
further into the medium, they lose more and more of the high- 
energy particles. The energy E• is thus a cutoff energy which 
must be invoked. 

Equation (15) represents the yield spectra data fairly well in 

TABLE 5. Comparison Between the Yield of the 3914-/[ Emission 
((0.5 cm) -•) From the MC Calculation (Column MC) and With the 
Use of (15) in (17) (Column A,F) for Several Incident Energies Eo 

and Longitudinal Distances z (in Fractions of the Range) 

Eo, keV z MC AF 

0.1 0.01 280 287 
0.1 0.2 240 272 
0.1 0.5 155 168 
0.1 0.8 70.0 82.3 
0.1 1.0 35.2 49.7 
0.3 0.01 452 406 
0.3 0.2 626 523 
0.3 0.5 490 429 
0.3 0.8 174 177 
0.3 1.0 74.2 73.2 
1.0 0.01 550 556 
1.0 0.2 740 797 
1.0 0.4' 860 908 
1.0 0.7 500 456 
1.0 1.0 100 91.9 
2.0 0.01 600 578 
2.0 0.2 780 841 
2.0 0.4' 1050 995 
2.0 0.7 600 517 
2.0 1.0 130 85.5 
5.0 0.01 1330 1323 
5.0 0.2 1760 1927 
5.0 0..4 2100 2337 
5.0 0.7 1380 1214 
5.0 1.0 200 160 
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this regime of incident electron energies. The fit can bc sccn in 
Figure 6 for five incident energies at five longitudinal {,alues. 

A comparison is given in Table 5 between the yield using 
(17) and the yield using the Monte Carlo calculation for sev- 
eral incident energies and longitudinal values for the yi'•ld of 
the 3914-,4 emission. The two calculations are in fair agree- 
ment throughout the entire range considered. It should be 

Fig. 7. Four-variable spatial yield spectra for an incident electron energy of 1 keV given at four longitudinal distances: 
(a) z = 0.061, (b) z = 0.305, (c) z = 0.549, and (d) z = 0.793. At each longitudinal cut the yield spectrum is given at four 
radial distances: open circles represent p = 0.061; filled circles, p = 0.305; squares, p = 0.549; and triangles, p = 0.793. 

noted, however, that (15) is not accurate at lo=ngitudinal values 
in the backscatter direction. 

One check on the three-variable analytic yield spectrum 
U'(E, z, Eo) is to compare the U;(E, Eo) found from 

Uz(E, Eo) = U'(E, z, Eo) dz (18) 
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with the U(E, Eo) calculated by Green et al. [1977]. The two 
functions are amazingly close except for a slight deviation at 
the higher values of Eo(Eo > 0.5 keV) and E(E > 0.8E0). The 
U•(E, Eo) is lower than the U(E, Eo) from Green et al. [1977] in 
those energy regions. One would expect the UffE, Eo) to be 
slightly less than the U(E, Eo), since the backscattered particles 
are not included in the UAE, Eo). Since the U•(E, Eo) exhibits 
the behavior described above, the U'(E, z, Eo) therefore 
slightly overestimates the lower-energy (E < 0.5E0) yield 
spectra. 

Consider now the use of an analytic spatial yield spectrum 
with an incident electron energy flux of ½(E0) (in units of el/ 
cm • s eV). A yield Jj[z, ½(E0)] (in units of excitations/cm 8 s) of 
thejth state with a threshold Wj can be calculated using 

Jj[z, ½(E0)] = ck(Eo)U'(E, z, Eo) 

ß p(z)pXE) dE dEo 

where p(z) is the density (in grams per cubic centimeter) of the 
Ns gas at altitude z. 

The four-variable spatial yield spectrum U(E, p, z, Eo) can 
be calculated from the Monte Carlo deposition program in a 
manner similar to the way that the U(E, z, Eo) was calculated. 
Here (in units of particles/eV (gm/cm•)8), 

N(E, p, z) 
U(E, p, z, E0) = •r[(p + (Ap/2))' -- (p -- (Ap/2))']AE Az 

(20) 

where N(E, p, z) is the total number of inelastic collisions that 
existed in the cylindrically symmetric ring-shaped volume with 
length Az and thickness Ap centered on (p, z) and, also, in the 
energy interval AE centered at E. This N(E, p, z) includes 
inelastic collisions of the incident electrons and all its second- 

aries and teriaries after they have been completely degraded in 
energy. 

The four-variable spatial yield spectrum is presented in Fig- 
ures 7 a-d for an incident electron energy of 1 keV. It is given 
at four radial distances at each longitudinal cut (all in units of 
fractions of the range). The U(E, p, z, Eo) from other incident 
electron energies are not presented here but show a similar 
type of behavior. 

The shape of U(E, p, z, Eo) is observed to be quite similar to 
U(E, z, Eo) (see Figures 5 and 6) and, indeed, even to U(E, Eo) 
[see Green et al., 1977, Figure le]. The lower energy power fall- 
off is crE-•.s in all three yield spectra. All three spectra also 
exhibit a constant component in the middle energies with the 
source term feature at the incident energy (ER = 1.0). 

The four-variable and three-variable spatial yield spectra 
illustrate a tendency to increase at higher values of energy (ER 
• 0.9-1.0) and at the lower values of z and p. This feature is 
not as prominent in the nonspatial yield spectrum U(E, Eo), 
which is calculated by integrating over the spatial component 
of the spatial yield spectra. In the integration process the 
higher-energy spectra increase is averaged out by the equally 
important higher-energy spectra decrease exhibited at the 
higher values of z and p. 

6. CONCLUSIONS 

A Monte Carlo method of energy degradation has been used 
in this work to spatially deposit the energy of incident elec- 
trons with energies from 0.1 to 5.0 keV. This stochastic degra- 
dation method deposited energy in a collision-by-collision 
process down to 30 eV, and a multiple elastic scattering distri- 

bution was used from 30 eV down to the cutoff energy of 2 eV. 
Recently published primary and new secondary differential 
ionization cross section forms have been used. The scattering 
of the primary is in inelastic collisions minuscule when com- 
pared to the elastic event scattering, and the form for second- 
ary scattering has no effect on the final degradation process 
(seen also in the work by $trickland et al. [1976]). 

Two forms were used for elastic scattering: (1) the screened 
Rutherford form and (2) a form which contains an exponential 
fall-off at the low angles and backscatter at energies less than 
200 eV. Electrons degraded with the use of the second form 
exhibited the further penetration at all incident energies used. 
The longitudinal 3914-,4 intensity plots that resulted from the 
two forms bracketed the experimental results of Barrett and 
Hays [1976]. The radial 3914-,4 intensity plots calculated with 
the use of the second form were fairly close to these experimen- 
tal results (when p and z were normalized to the unit of 

(19) fraction of the range). 
Because of this reasonable agreement, a solution to the 

equation of transfer can be given in terms of the three-variable 
(U(E, z, Eo)) and four-variable (U(E, p, z, Eo)) spatial yield 
spectra. These spectra exhibit fairly simple characteristics 
which, if analytically represented, could be applied conve- 
niently to the calculation of a yield at any position in the 
medium. The U(E, z, Eo) was, in fact, analytically represented 
with the use of (15), and work is now being carried out on the 
U(E, p, z, Eo) to define and characterize its major attributes. 

APPENDIX 1' ANALYTIC EXPRESSIONS 

USED iN (6) AND (7) 

E B(E) = 0.0448 + (729--•-•-•-) ø'91 
36.6 eV 

C(T) = T + 183 eV 

oa(E) , Oo(E, T) = 0.873 + . 
T + OdE) 

OA(E) = 20 eV + 0.042E 

OdE) = 28 eV + 0.066E 

-2•rC{t[-B•/•(l+cosOo) 1 Nr(E, T)- B•/: an -• C 

_tan-11B1/i(1-cosOo)l} C 

5.30 [ A(E) = ao-•- In . 1.74 eV 

To(E) = 4.71 eV - 
1000 (eV) 2 

E + 31.2 eV 

F(E) = 13.8 eV E/(E + 15.6 eV) 

a0 = 1 X 10 -ls cm •' 

APPENDIX 2' PARAMETER EXPRESSIONS AND VALUES 

FOR USE IN (15) 

a•(Eo) I ß 
A(z, E0) = [z• - a2(E0)]: + aa(Eo) 
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B•(z, Eo) = 
b•(z, Eo) 

- &,(œo)]' + 

G(z, œo) = (z, œo) e•,dc.. + I 

dx(Eo) 
D(z, Eo) = e•,•/a ' + I 

ax(Eo) = anco ax, 

adEo) = aa• + aa_._• 

bn(z, Eo) = 
b•n•oO., Ii + (1 - •ø) 1 bn3 

[½xp [{zs- fx (Eo)}/f, (Eo)] q- 1] 

cn(z, Eo) = cm •oC-,/[½xp [{zn - fx(Eo)}/f,(Eo)] + 1] 

d•(Eo) = dn I•o 

fx(Eo)- fx, (1 + -•o 
f2(Eo) = f21 •0 r,2 

Rg(Eo) = rx + r2 •o •a (range of an electron of primary' 
energy Eo) 

Eu I --- 
Eo 

[e{%-glCeo)}/g2 + 1] 

Eo (in eV) 
•o = 1000eV 

2 

Rg(Eo) 

TABLE AI. Parameter Expressions and Values for Use in (15) 

Parameter Value Parameter Value 

axx 587 dxx 0.6 x 10 • 
ax2 - 1.63 dx2 - 1.68 
a21 0.4 d2 0.2 
a22 0.075 fll 0.9 
aal 0.1 f•2 0.044 
•aa2 0.019 f21 0.104 
bin 81 f22 -0.39 
bl•2 - 1.8 gn 0.85 
blla 8.0 gl2 0.07 
bm 0.4 g2 0.2 
b122 0.05 rl 2.27 X 10 -• gm/cm 2 
b•a 0.2 r2 6.22 X 10 -ø gm/cm 2 
B2 - 1.52 ra 1.67 
Cnl 1.30 X 10 4 
cn2 - 1.5 
c•2 0.15 
C2 10 
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