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Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

SPATIAL AND ENERGETIC ASPECTS OF ELECTRON ENERGY DEPOSITION
By
Charles Herbert Jackman
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Chairman: A.E.S. Green
Major Department: Physics and Astronomy

The spatial and energetic aspects of the electron energy degradation
into molecular nitrogen gas have been studied by a Monte Carlo method.
Perpendicularly monoenergetic incident electrons with energies from 0.1
through 5.0 KeV were injected into the N2 gas. This Monte Carlo de-
gradation scheme employed previously developed Nz cross sections with new
phenomenological differential elastic and doubly differential ionization
cross sections. Al1l these agree quite well with experimental work and
are consistent with the higher energy theoretical total cross section
fall-off with energy.

Information has been generated concerning the following topics:

1) range values and 3914 A intensity profiles for the Tongitudinal and
radial directions which can be easily compared with experimental work;

2) a sensitivity study characterizing the influence of the input cross
sections on the spatial energy deposition of the electrons; 3) the rate
of energy loss by the electrons as they interact with the Nz gas; and

4) ;pat1a1 yield spectra for incident electron energies in the range
from 0.1 to 5.0 KeV (evaluated between 2 eV and the incident energy)
which are analytically characterized for future work on atmospheric prob-

lems dealing with incident energetic electrons.
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CHAPTER I
INTRODUCTION

Calculating the spatial and energetic aspects of the energy deposi-
tion of intermediate energy electrons (with incident energies from 100
to 5000 eV) in the earth's atmosphere is a difficult, yet intriguing,
problem. These intermediate energy electrons (hereafter called IEEs)
include the highest energy photoelectrons, a Targe bulk of the auroral
electrons, and many secondary electrons produced by solar protons and
cosmic rays.

These electrons Tose most of their energy through ionization events,
electronic excitations, vibrational excitations, and rotational excita-
tions. Elastic collisions reduce the electron energy slightly, but
mainly these interactions influence the direction of motion of the
electron.

The atmosphere is dominated by the presence of molecular nitrogen
up to a height of about 150 kilometers. Even above this altitude (at
least up to 300 km), NE continues to play a substantial role in the
atmospheric processes. For this reason the study of the influence of
impinging electrons on molecular nitrogen is the major tnrust of this
paper.

One aspect of this study is the formulation of a complete cross
section (differential and total) set for IEEs impacting on N2' The very

difficult problem of modeling the interactions of the impinging IEEs in
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the upper atmosphere is then reduced in complexity. Since N2 interacts
with electrons similar to the way that other atmospheric gases interact
with electrons, it follows that differential and total cross section sets
for these gases could be assembled in a 1ike manner.

Another aspect of this work is a sensitivity comparison among several
of the influences on the electron energy deposition. The spatial energy
degradation is vitally linked to the elastic phase function used. Since
there are data available on the elastic differential cross sections of
Nz as well as the energy degradation resulting from electron impact on
N2’ a comparison illustrating the effects of a variation of the elastic
phase function is quite useful. Other influences on the spatial energy
deposition, including ionization and excitation differential cross
sections and the total elastic cross sections, are also considered in
this work.

In order to deal with these spatial and energetic aspects of elec-
tron energy degradation, a Monte Carlo (which may be abbreviated MC)
calculation is used. The MC technique, depending on how it is used, can
be the most accurate energy deposition approach. Use of this MC method
at various incident energies helps in the assemblage of the best cross
section set for N2 and provides the easiest way of comparing some of
the influences on the spatial energy deposition.

The details of this undertaking are discussed in Chapters II through
VIII. A paragraph summary of each chapter is given below.

The second chapter presents a brief review of some of the standard
electron energy deposition methods. The continuous slowing down approxi-
mation, discrete energy bin, Fokker-Planck equation, two-stream equation

of transfer, and the multi-stream equation of transfer are all included
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in section II.A. The MC method which was used in this study along with
three other MC approaches are briefly described in section II.B.

This MC approach requires knowledge of differential and total cross
sections. The third chapter discusses the cross sections that were used
for NZ' Section III.A includes the elastic differential and total cross
sections. The inelastic differential and total cross sections are next
discussed in section III.B. Section III.C, then, considers the total
(inelastic plus elastic) cross section of N2'

In Chapter IV, the MC calculational procedure is considered. A
brief discussion of the approach is given in section IV.A. The computer
programs and machinery used in this work are discussed in section IV.B
with the programs Tisted in appendices A and B. A detailed discussion
of the MC electron energy degradation technique is presented in section
IV.C. Finally, the statistical error resulting from the Monte Carlo
calculation is given in section IV.D.

The MC three-dimensional intensity plots with comparison to experi-

2 E: state is

ment are given in Chapter V. The excitation of the N; B
discussed in section V.A with the concept of range being defined in
section V.B. Previous experimental and theoretical wark on the 3914 E
emission from NZ is considered in section V.C and section V.D presents
some range results and intensity plots in the longitudinal direction
from this MC calculation. Section V.E, then, concludes the chapter with
a comparison between the MC intensity plots in the radial direction and
the experimental data.

The main concern of Chapter VI is a sensitivity study. The effects

of the ionization differential cross section on the intensity distribu-

tions are considered in section VI.A. Section VI.B, then, discusses the
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influence of inelastic differential cross sections on the intensity
distribution. A comparison of different elastic phase functions on the
electron~N2 collision profile (no energy loss) is given in section VI.C.
Next, the influence of different elastic phase functions on the electron
energy deposition is presented in section VI.D. Finally, section VI.E
considers the influence of the total elastic cross section on the
electron energy deposition.

The energy loss plots and yield spectra from the MC calculations
are given in Chapter VII. Section VII.A presents the energy loss plots
and section VII.B includes a discussion of the yield spectra.

Chapter VIII concludes this paper with a summary of this work and
its impact on the spatial and energetic aspects of the electron energy

deposition problem.



CHAPTER II
A SHORT REVIEW OF ENERGY DEPOSITION TECHNIQUES

Several standard energy deposition techniques will be discussed in
this chapter. In the first section, II.A, several general ways for
treating the degradation of the energy of charged particles will be re-
viewed briefly. The second section, II.B, includes a brief sketch of
four Monte Carlo energy deposition schemes: The MC approach applied in

this work and three other MC techniques.

A. Energy Deposition Techniques

Since the turn of the century, researchers have been studying the
energy degradation of rapidly moving particles in a medium. Initial work
in this area was carried out by Roentgen, Becquerel, Thompson, Bragg,
Rutherford, Bohr, and other founders of modern physics.

These pioneers in the energy degradation process were mainly con-
cerned with the medium affecting the particle. In order to solve this
complex energy degradation problem, most of the early workers used a
local energy deposition approximation. Even today many degradation
problems can be solved fairly accurately with this Tocal approximation.

One of the earliest local energy deposition methods is that of the
continuous slowing down approximation (hereafter called CSDA) first
used by Niels Bohr (1913, 1975). Bethe (1930) expanded on this work and
used an approximate theoretical treatment (valid at high energies) to

describe the slowing down of particles in a medium.
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This work of Bethe (1930) required knowledge of the stopping power,
- %E-(the rate at which energy E is lost from the impinging particles

incident along the x axis). This stopping power is given by

>
-E-nsu, o (E) (2.1)
1

-
(see Dalgarno, 1962, p. 624) where the summation S includes integration

over the continuum (thus allowing for energy loss ;hrough jonization),
Hi is the energy loss for the ith state, and “i(E) is the cross section
for excitation to the ith state at energy E. Knowledge of the stopping
power then leads to information about the mean distance traveled by the
particle (referred to as the range). This range R(E) of a particle of

energy E is simply given by

R(E) =

OQ——m

E—QEEI (2.2)
T dx

Atmospheric researchers are more interested in the effects that the
particles have on the medium rather than the medium affecting the par-
ticles. These effects could include both spectral emissions by the con-
stituents and heating of the atmosphere.

Green and Barth (1965) were the first workers to adapt a variation
of the CSDA to the problems in aeronomy. In this approach the total

energy loss function L(E) = -(%J %E—is determined by

E-1:)/2 dog.(E.T
( IJ)/ T O’IJ( )dT (2-3)

L(E) = E Nkck(E) + ; Ion-(E) * g dT

J

where Nk is the threshold for excitation to the kth state, ok(E) is the
cross section for excitation to the kth state at energy E, I. is the
J doy, (E,T)

threshold for ionization and excitation to the jth state, and T
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is the secondary differential ionization cross section for the creation
of a secondary electron of energy, T, from a primary electron of energy
E. The loss function with detailed atomic cross sections (hereafter
called DACSs) was used to make reasonable estimates of the ultraviolet
emissions resulting from an aurora event. In this approach, the excita-
tions Jk(E) of the kth state resulting from an electron of energy E were

simply represented as

E Gk(E') |
Jk(E) = 1£ _L(FY dE (2.4)
k

Green and Dutta (1967) built on this work and used the Born-Bethe
approximations, the Massey-Mohr-Bethe surface, the Bethe sum rule, and
a "distorted" oscillator strength to lay the groundwork for extension
of the DACS approach to other gases. Jusick, Watson, Peterson, and
Green (1967), Stolarski, Dulock, Watson, and Green (1967), and Watson,
Dulock, Stolarski, and Green (1967) applied this approach to helium,
molecular nitrogen, and molecular oxygen, respectively.

Stolarski and Green (1967) used this CSDA to calculate auroral
intensities with these DACSs and Green and Barth (1967) applied this
method to the prablem of photoelectrons exciting the dayglow. Other
atmospheric physicists (namely, Kamiyami, 1967; and Rees, Stewart, and
Walker, 1969) started around this same time and also employed a CSDA type
approach to that problem of energetic electrons depositing their energy
in the atmosphere.

The oldest discrete energy apportionment method is that of Fowler
(1922-23) which is directly related to the Spencer and Fano (1954)

approach (see Inokuti, Douthat, and Rau, 1975). The Fowler equation is
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solved by building on the lower-energy solutions to obtain the higher
energy solutions. The Spencer-Fano method introduces the electron at
the highest energy and solves the equation at successively lower ener-
gies. An approach similar to the Spencer-Fano method was developed by
Peterson (1969) and is called the discrete energy bin (hereafter called
the DEB) method.
. Peterson (1969) pointed out certain differences between the CSDA and
the DEB results. In particular, he noted that the DEB method tends to
predict higher populations of some excited states than does the CSDA.

In the modification of the DEB method by Jura (1971), Dalgarno and
Lejeune (1971), and Cravens, Victor, and Dalgarno (1975), the equilibrium
flux or degradation spectrum f(E,EO) (for incident energy E0 and electron

2 sec”! éV"]) of Spencer and Fano (1954)

energy E and in units of # cm
is obtained directly. Douthat (1975), in an effort to make the degrada-
tion spectra suitable for applications, proposed an approximate method
of "scaling." Unfortunately, this method is quite cumbersome and not
very accurate. This impelled Garvey, Porter, and Green (1977) to seek
an analytic representation of the degradation spectra and, despite its
complex nature, they found an analytic expression to represent this
spectra for HZ'

The concept of the "yield spectra” U(E,EO} was first initiated
through a modified DEB approach given in Green, Jackman, and Garvey

(1977) in an effort to find a quantity with simpler properties than the

degradation spectra. By utilizing the product

U(E,E,) = or(E) f(E,E,)

where cT(E] is the total inelastic cross section for an electron of

energy E, one defines a quantity U(E,EO) which not only has a simpler
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shape than f(E,EO) but also has approximately the same magnitude for

all substances. This yield spectrumcan also be represented analytically.
It effectively embodies the non~-spatial information of the degradation
process.

Jackman, Garvey, and Green (1977a), using this modified DEB,
elaborated on the differences between the DEB method and the CSDA. The
more accurate modified DEB method was found to produce consistently more
jons per energy loss while at the same time producing less excitations
of some of the lTow lying states when compared with the CSDA. The CSDA,
although inexpensive to use, appears to be i11-suited for calculations
requiring an absolute accuracy better than about 20%. Since auroral and
dayglow intensities are rarely measured to better than this accuracy, the
CSDA has been adequate for most purposes of concern in aeronomy. How-
ever, with future improved measurements it should be purposeful to
utilize more accurate deposition techniques.

Several recent spatial electron energy deposition studies have been
concerned with the spatial aspects of auroral electron energy deposition.
Walt, MacDonald, and Francis (1967) employed the Fokker-Planck diffusion
equation to give a detailed description of kilovolt auroral electrons.
The Fokker-Planck equation, as given in the Strickland, Book, Coffey,
and Fedder (1976) paper, is written

stk oy 2 10 - 2l

+ —TE7 2 [L(E)(2,E0n)] (2.5)

-1

where ¢(z,E,u) is the flux (in units of cm’z sec'1 eV sr']), z is the

distance into the medium along the z axis, E is the electron energy,
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and p is the cosine of the pitch angle associated with the direction of
motion of the electron. The symbols n, o, Q, and L are the number den-
sity of the scatterers, the total cross section (both elastic and in-
elastic), the momentum transfer cross section, and the loss function,
respectively.

The momentum transfer cross section, given in terms of the differ-
ential elastic cross section, gg--(—E-l-,is written as

dn

2t w
Q) = [ [ E) (1 _ cose)sinedsds (2.6)
0 0

This Fokker-Planck equation may be thought of as a CSDA approach to
the spatial energy degradation problem. Its solution, therefore, is only
accurate in the higher energy regime.

Banks, Chappell, and Nagy (1974) were able to calculate the emission
as a function of altitude for @ model aurora using the Fokker-Planck
equation for e1ectrons.with energy E > 500 eV along with a two-stream
equation of transfer for electrons with energy E < 500 eV. The two-
stream equation of transfer solves the transport of electrons in terms
of the hemispherical fluxes of two electron streams ¢+(E,z), the electron
flux upward along z, and ¢ (E,z), the electron flux downward along z.

The steady state continuity equations for ¢+ and ¢ can then be written

as

+

de _ _-1 k k kq .t
dz <C0S 0> E "k[ua * I:'e':‘e] ¢

+

Keoke e, .9
é "ePe e¢ % 2<c0s6> i <C0S8> (2.7)

§ =2
<c0osé>

and
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JdyT ] k 4 okKq o
dz <Cc0S6> E nk[ca % pe“e] ¢

k k¥ + 9 £, (2.8)

1
+ —
<C0S 0> E "kpece¢ 2<c0s6>  <C0S6>

where
k - k
o™ -}|: Oai (2.9)
A'(E2) = [ () ] (pK;(E Joy 5 (E+E)8™ (Ex2)
E'>E
#[1 - pgj(E')]c:j(E'+E)¢+(E',Z)} (2.10)
a’(8.2) = In(2) ] (9% (E")ok(E'E)" (E"2)
E>E
+ [0 - pis(E ) Jog; (E'E)e™(E',2)) (2.11)

and z is the distance along a magnetic field line (positive outward);
nk(z) is the kth neutral shecies number density; pg(E) is the electron
backscatter probability for elastic collisions with the kth neutral
species; og(E) is the electron total scattering cross section for the
kth neutral species; q(E,z) is the electron production rate in the
range E to E+dE due to ionization processes (both electron ionization
and photoionization); qi is the electron production in the range E to
E+dE due to cascading from higher-energy electrons undergoing inelastic
collisions; pgj is the electron backscatter probability for collisions
with the kth neutral species resulting in the jth inelastic process; and
k

%aj is the inelastic cross section for the jth excitation of the kth neutral

species.
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This approach combined these two methods of electron energy deposi-
tion in order to find a reasonable solution to the very difficult auroral
energy deposition problem. The Fokker-Planck method is accurate only
at large incident energies; therefore, it should only be used at ener-
gies above 500 eV. The two-stream equation of transfer approach, on the
other hand, is more accurate at energies below 500 eV. This combination
then provided a very reasonable solution to the auroral electron spatial
deposition problem for a reasonable amount of calculation.

The Fokker-Planck equation and the two-stream equation of transfer
may both be derived from the Boltzmann equation or the general equation
of transfer. This general equation of transfer, in one of its simpler

forms, is written as (from Strickland et al., 1976)

w BUZE) o n(2)o(E)a(2,E,m)

+ n(z)o(E) [ R(u',u,E'E)é(2,E" su' )dE" du' (2.12)

(assuming a steady state condition and no external fields) where
'(ul sUsE" )E)

95
R(u',u,E',E) = 2 =TE) (2.13)

with the sum over all processes. The symbols p and u' are the cosines
of the pitch angles 6 and 6' which are associated with the directions n
and n' given in Figure 2.1.

The first term on the right hand side of Eq. (2.12) represents the
scattering out of y. The R(p',u,E',E) in the second term is the proba-
bility (EV-](ZﬂSP)—l) that a collision of an electron of energy E' and

direction yu' with some particle will result in an electron of energy E
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> N

> Y

Figure 2.1 The directions denoted by n' and B are the incident and
scattered directions of the electron, respectively.
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and direction u. The integral in Eq. (2.12) is over all possible ener-
gies E' and directions of motion u'.

Strickland et al. (1976) studied the auroral electron scattering
and energy loss with a multiangle equation of transfer. Their approach
is one of the most accurate yet applied to auroral electrons. This multi-
angle method of solution is more realistic than the two-stream approach
and it is computationally more difficult as well.

The methods discussed above are the "state of the art" approaches
(excluding the Monte Carlo methods which are discussed in section II.B)
to the IEEs degrading in the atmosphere. Other approaches used by
Jasperse (1976, 1977) and Mantas (1975) are mainly concerned with photo-
electrons and will not be discussed here.

The Monte Carlo approach can rival any of these electron energy
deposition methods in accuracy when used in the proper manner. This
stochastic technique for solving the deposition problem will be con-

sidered next in section II.B.

B. Monte Carlo Energy Deposition Techniques

Another method of solving the spatial energy deposition problem is
the use of the Monte Carlo approach. The MC technique, which is used
in this paper, is a stochastic method of degrading an energetic electron.
The approach can be one of the most exact methods of electron energy
deposition. Briefly, one electron is taken at a time and allowed to
degrade in energy collision by collision. This deposition attempts to

mimic the randomness of the actual degradation process that occurs in

nature.
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Many MC schemes have been applied in all areas of physics. Some
are more exact and more detailed than others. Since virtually all the
MC methods are run on the computer, the most exact approaches cost the
most computer time and money. The precision of the technique must be
balanced against a finite computer budget.

Three approaches using the MC deposition scheme, that have been
applied to electrons impinging on the atmosphere, are discussed below.
Brinkmann and Trajmar (1970) applied experimental differential electron
impact energy loss data in a MC computation for electrons of 100 eV
energy. Because of the large amount of input cross sections in numerical
form, only electrons of 100 eV incident energy were degraded with this
method.

In the lower electron energy regime (below 25 eV), Cicerone and
Bowhill (1970, 1971) used a MC technique to simulate photoelectron dif-
fusion through the atmosphere. This method, which included both elastic
and inelastic processes, predicted escape fluxes from the atmosphere.

Berger, Seltzer, and Maeda (1970, 1974) (hereafter called BSM)
worked with high energy electrons (with energies from 2 KeV to 2 MeV).
They employed a MC approach that has two variations which are pointed out
below. They treat inelastic collisions in a continuous slowing down
manner. The energy deposited by the electrons along their path is
assumed to be equal to the mean loss given by the loss function, L(E),
from Rohrlich and Carison (1954).

The angular deflection resulting from elastic collisions has been
evaluated by two separate methods in BSM. One approach employed the
multiple scattering distribution of Goudsmit and Saunderson (1940)

applied to the screened Rutherford cross section given in BSM. The
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other approach involved a sampling of each elastic collision. Appli-
cation of the BSM technique to a constant density medium and no
magnetic field gave good aareement with laboratory experiments (Griin,
1957; and Cohn and Caledonia, 1970).

In this study, a MC method was needed that could be applied to IEEs.
The basic equation of transfer is solved with the use of the MC approach.

This eguation can be rewritten as

dU(u,Z,E,EO)
U o AW = —n(z)U(u,z,E,Eo)
Et8kpas 1
+ n(z) I Ipe(u‘sUsElSE)U(UIsst'sEo)dU'dEI
E -1
(2) I 5° et ) )
+n(z Prans (W' su,E' E)U(0' ,2,E' ,E )du'dE*
; 2E+Ii L 10M1 0
Eo
+ ﬂ(Z) z I p -(I.I',].I,E',E)U(‘,U',Z,E',E ]dl-l'dE' (2.]4)
3 wj aj 0

No external fields are included here and a steady state is assumed. The
U(u,z,E,EO) is the "yield spectra" (in eV"] sec’l sr"]) and it is assumed
that there is only one neutral scattering species. In this equation

oT(E) is the total cross section (elastic + inelastic)for the species,

iﬂe‘!ectr‘on
=:2E(1 ~ cosp) === (2.15)
neutral

species

ﬁEElas

is the energy loss during an elastic collision, pe(u',u, E',E) is the
probability during an elastic collision with a neutral specie that an

electron with energy E' and direction y' will result in an electron of
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energy E and direction u, pIONi(“l’"’ E',E) is the probability during an
jonization collision with a neutral species that an incident electron
with energy E' and direction y' will result in a secondary electron of
energy E and direction p, and paj(u',u,E',E) is the probability during
an inelastic collision (excitation or ionization) with a neutral specie
that an incident electron with energy E' and direction p' will result in
the incident electron being scattered into direction u with energy E.

Some techniques from each of the other three MC methods were in-
cluded in this work. Some new approximations and assumptions were made,
however, to enhance the accuracy of the computations as well as simplify
some of the calculations. These assumptions are discussed in detail in
Chapter 1IV.

In this MC work the information is stored in a collision by collision
manner on a magnetic tape. Once all the case histories are generated,
then, the tape is scanned and any correlations of interest may be deter-
mined. The choice of altitude and energy intervals is specified only
during the scanning of the tape. This method allows for greater flexi-
bility in minimizing the statistical uncertainties of the results,
while, at the same time retaining good spatial or energy resolution
(Porter and Green, 1975).

A11 the degradation methods mentioned in this chapter require cross
sections as input. The cross sections used in this MC work are, there-

fore, discussed in the next chapter.



CHAPTER III
ELASTIC AND INELASTIC DIFFERENTIAL AND TOTAL CROSS SECTIONS FOR NZ

In this chapter differential and total cross sections for electron
impact on N2 will be discussed. Section III.A reviews the elastic cross
sections of N2 and discusses three models for representation of these
properties. In section III.B the inelastic cross sections of N2 are
presented with their relationship to theory and experiment. Section
II1.C, then, concludes this chapter with a discussion of the total
(elastic plus inelastic) cross section for NZ' Any energy degradation
technique requires knowledge of these cross sections for a complete

evaluation of the energy loss by electrons in a gas.

A. Elastic Differential and Total Cross Sections for N2

One of the most common differential elastic cross section forms is

the screened Rutherford cross section which can be expressed in the form

do. [, Le 1 K g (0) (3.1)
9@ ":22(1 - cose + 2n)2" Te

vhere Kre](e) is the spin-relativistic correction factor.

The familiar Rutherford cross section (unscreened case) which can be

derived from classical scattering theory is given by
22eq
pzvz(l - cose)2

do
an (3.2)

<18=



=39

where

.26 _
sin” > = 1 - cose

Here, an electron is elastically scattered by a nucleus of charge Z

using the Coulomb potential
2
v(r) = 2 (3.3)

with r being the distance between the two particles.
Treating scattering in a quantum mechanical approach with the use

of the Born approximation and a potential of the form

2
V(r) = Zg— e i (3.4)

where y is a positive but small quantity approaching 0, Eq. (3.2) can
again be derived. The Born approximation, using the potential in Eq.
(3.4), is only valid in certain angle and energy regimes (Mott and
Massey, 1965, pp. 24 and 466). At sufficiently high angles and Tow
energies, the Born approximation fails. The range of validity varies
for different substances and for N2 the Barn approximation is probably
not accurate at all angles for energies less than 100 eV and at large
angles for energies less than 500 eV.

Equation (3.2) does, however, go to infinity when 6 approaches 0°,
This differential cross section also leads to an infinite value in the
total elastic cross section. Both of these results are unreasonable for
elastic scattering of electrons by atoms and molecules. The most popu-
lar way of correcting this unreal behavior is to add a screening param-

eter n. Equation (3.1) portrays this resulting form.
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Equation (3.1) has a maximum at & = 0° and a minimum at & = 180°.
At energies below 200 eV, experimental results indicate a minimum in the
elastic differential cross sections at about 90° with a strong forward
scattering peak at o = 0° and a secondary backward scattering peak at
8 = 180°.

In Figure 3.1 experimental data for energies at E = 30 and 70 eV are
presented. These data are taken from Shyn, Stolarski, and Carignan (1972)
with the small circles denoting 30 eV points and the crosses denoting
the 70 eV data. )

Later on in this section the screened Rutherford cross section and
another analytic model of the differential elastic cross section are
compared with experimental data. Before discussing the differential
cross section in more detail, first, consider the total elastic cross
section.

Several experiments have been performed deriving the total elastic
cross sections for NZ‘ There have also been several theoretical studies
on the N2 elastic total cross sections. Two recent reviews of the data
available on this subject are Kieffer (1971) and Wedde (1976).

A plot of all this data would obscure the analytic total cross
sections specifically considered in this work. Consequently, only data
from Sawada, Ganas, and Green (1974) (theoretical), Shyn, Stolarski, and
Carignan (1972) (experimental), and Herrmann, Jost, and Kessler (1976)
(experimental) are plotted in Figure 3.2. The sets of data overlap to
a degree such that the disagreement in absolute magnitude of the total
cross sections is readily apparent.

In view of this disagreement, no experimental or theoretical data

are assumed to be absolutely correct and some average of this data is
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Figure 3.1 Ny experimental electron impact elastic cross section data
from Shyn, Stolarski, and Carignan (1972). o's denote data
from E = 30 eV and the x's denote data from E = 70 eV.
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desirable. An analytic function representing the total elastic cross
section is most easily used in a computer program. Consider now an
analytic form derived from the differential screened Rutherford cross
section.

Knowledge of the differential cross section implies knowledge of the
total elastic cross section as they are simply related by

2 i
o(E) = | dq Sinededs (3.5)
0

o=

where ¢ is the azimuthal angle. Substituting Eq. (3.1) into Eq. (3.5),
the total elastic cross section, oR(E), resulting from the screened

Rutherford cross section is very simply given as

2 .
_ 1" 51.8 T
aR(E) =2 o § B (3.6)
If E is given in eV then nR(E) is in units of 10719 cmz. The screening
parameter
_ - Ld x 1072 58 st
1= 8q o(t + 2) "

according to the Moliere (1947, 1948) theory. Berger, Seltzer, and
Maeda (1970) assumed that N Was a constant value and decided on ne = 1
as its best value. The t in Eq. (3.7) is the electron energy in units
of the electron rest energy so that t = E/mcz. In the energy regime of
interest (E s 5 KeV), t << 2, and Z = 7. Noting these observations,
Eq. (3.7) can be rewritten as n % %?.

The total cross section from Eq. (3.6) is plotted in Figure 3.2
as the dash-dot line. A noticeable difference is evident between this

model and the experimental values at practically all energies.
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Using the form

W8
F[T - (=
o - B0 @ -
E” U

implemented first by Green and Barth (1965), where q, = 651.3 A2 evz,

the total elastic cross section for Nz was characterized fairly well in
the range from 30 to 1000 eV using the parameters « = 1, 8 = 0.6,
c=0.64, F=0.43, and W = 2.66. The E-0-5% dependence of Eq. (3.8)

at the larger energies is similar to that seen by Wedde and Strand (1974)
for N2. This form does not represent the data as well below 30 eV and,
in fact, is not defined below an energy of 2.66 eV.

Porter and Jump (1978) have used a more complex total elastic cross

section form which is written as

(E) £
alE) = T{
n(n + 1)V 4+ £
F.Ge £ G2
191 209
+ 5 > + 5 5 (3.9)
(E-E)°+65  (E-E5)+6)
Here, n = %
L B B )
and for NZ‘ T=2.5x10" ¢cm F] = 7.33
U=1.95 x 1073 eV E, = 2.47 eV
V=150 eV 6, = 24.3 eV
X = -0.770 Fy = 2.71
6, = 0.544 eV E, = 15.5 eV

In the large energy limit, the total cross section falls off as 1/E,
similar to the screened Rutherford cross section. This form does con-

tain two other terms (the second and third terms) which were introduced
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phenomenalogically to describe the low energy shape and Feshbach reso-
nances.

If either Eq. (3.8) or (3.9) i; used as the total elastic cross
section, the differential elastic cross section must be normalized such
that:

2m

g é P(e,E) sinededs = 1 (3.10)

where P(8,E) is the phase function and the differential cross section can

be written as

g% = o(E) P(8,E) (3.1)

With this in mind consider now three separate phase function forms.
The first phase function form is very similar to the screened Rutherford

cross section and it is written here as

P (8,E) = -1 3.12
M 2+0(2 + a(E))”" - a(E)"'I01 - cose + a(E)]? 312

This is known as model 1. The parameter "a" acts in a similar manner to
the "2n" term in the denominator of the screened Rutherford cross sec-

tion form and is written
a
8k = alllEeV] ‘

The second phase function form (model 2) includes the forward

scattering term of Eq. (3.12) along with a backscattering term and is

given as
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P, (8,E) = -f(E)
M2 2+[(2 + a(E))'I - a(E)"I][I - Cos® + a(E)]2
- (1 :1f(E)) ~ 5 (3.13)
2v[(2 + ¢(E)) " - c(E) ][ + cose + c(E)]
where £
(£/,) ©
F(E) = ]

2
(E/£,) © + £y

and
€2
c(E) = 01 - (¥ ]

Irvine (1965) was one of the first researchers in scattering prob-
lems to use a phase function containing forward and backward scattering
terms. He applied a sum of two Henyey-Greenstein functions to the prob-
Tem of photon scattering by large particles. Porter and Jump (1978)
also have used a sum of two terms (one for forward scatter and one for
backward scatter). They fitted experimental data at several separate
energies with their form. Use of their differential cross section form
in a deposition calculation probably would require the use of spline
functions or other interpolative techniques.

The third phase function (model 3) is now considered. At small
angles the differential cross section shows a near exponential-like fall
off. This behavior has been pointed out by several experimenters (see,
for example, Shyn, Carignan, and Stolarski, 1972; and Herrmann, Jost,

and Kessler, 1976). It was this experimental observation that led to
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model 3 which is written as

£ ()1 - b2(E)3e /B (E)

Figg s = 2n b2(E)[1 + e P(E)q
_ £,(E)
2n[ (2 + a)'] - a'1][] - €0S + a]2
[1 - £,(E) - f,(E)]
- _'| _] 2 (3.]4)
2n[(2 + ¢(E)) " - c(E) "][1 + cose + c(E)]
where ;
(Efty) M
e 12
(/%) 12+ £,
f
() =
tp(E) = f
[(E/£,) < +i4,0
f(E) =1 - f,(E) for E > 200 eV
fo(E) = f(E)[T - ,(E)] for E < 200 eV
b
b(E) = by (755p) 2

€y %3
c(E) = cy1 - (&) 1]

The parameters used for the rest of this study in Eq. (3.14) are

f]] = 100 eV a=0.1
f12 = 0.84 b] = 0.43
f13 =1.92 b2 = -0.29
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fé] =10 eV ¢ = 1.27
f22 = 0,51 Cy = 12 eV
f23 = 0.87 Cy = 0.27

This form is more complex than the other phase function models but
it does describe the experimental differential cross section data the
most realistically. It includes an exponential term for the near ex-
ponential-1ike forward scattering as well as a backward scattering term
for electron energies below 200 eV.

Comparisons of the screened Rutherford and model 3 cross sections
are given in Figures 3.3 and 3.4 at the two energies of 30 eV and 1000 eV.
Both forms are normaiized to the total elastic cross section form of
Eq. (3.9). This modified screened Rutherford cross section vastly under-
estimates the forward scattering from s = 0° to 30°, overestimates the
scattering in the range from 6 = 30° to 120°, and underestimates the
scattering at the larger angles with © = 120° to 180°. Model 3 does a
fairly reasonable job of representing the differential cross section data
at both of these representative energies and the other energies as well.

Although there is not a large amount of energy loss during an
elastic collision, there is some. Using classical considerations (see
Green and Wyatt, 1965), the energy loss is approximately given by Eq.
(2.15). For molecular nitrogen and & = 90°, the energy loss is about

8 x 107°

E.
The MC approach, being a stochastic process, uses the concept of
probability for scattering within a given angle interval. In order to

compare phase functions, the probability for backscatter may be compared.



Figure 3.3 Ny electron impact elastic differential cross sections.

(a and b) The screened Rutherford (dashed 1ine) and the model 3
(solid 1ine) are compared with the experimental data of
Shyn et al. (1972), x, and Herrman et al. (1976), o, at
ghebﬁnergies of 30 eV (Figure 3.3a) and 1000 eV (Figure
.3b).
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Figure 3.4 Np electron impact elastic differential cross sections

(a and b) between 0° and 20°. The screened Rutherford (dashed
1ine) and the model 3 (solid 1ine) are compared with the
experimental data of Shyn et al. (1972), x (the a&'s
denote extrapolated points), and Herrmann et al. (1976),
0, at the energies of 30 eV (Figure 3.3a) and 1000 eV
(Figure 3.3b).
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This probability, PB(E), is simply calculated with

2n 1:
é 51nadad¢
PB(E) "/j (3.15)
j | £Z sinadeds
00 dn

In Figure 3.5, PB(E) from the screened Rutherford and model 3 are
compared with other theoretical (Wedde and Strand, 1974) and experi-
mental (Shyn et al., 1972) values. Model 3 does have a tendency to
estimate less backscatter than the screened Rutherford at the larger
energies. (The PB(E) curves for model 3 and the screened Rutherford do
tend to converge at 5 KeV however.) The dominant exponential-like for-
ward scattering is the reason behind this behavior. The discontinuity
observed at 200 eV in model 3 values results from the lack of the back-
scatter characteristic above this energy.

The elastic scattering collisions influence mostly the direction of
travel of the electrons. There is some energy loss during an elastic
collision (as pointed out above), but this loss is not important for
electrons with energies above 2 eV col1liding only with N2 particles.

Inelastic collisions, on the other hand, result in a fairly sub-
stantial energy loss with some scattering. Consider now the differential

and total cross sections for these inelastic events.

B. Inelastic Differential and Total Cross Sections for Ny

Inelastic collisions are divided into two types: 1) electron ex-
citation and 2) electron ionization. In the excitation process the

electron is excited to a higher state which may either be an optically
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Backscatter Probability

Figure 3.5 Backscatter probabilities for the screened Rutherford
(dashed 1ine) and the model 3 (solid 1ine) are compared
with Wedde and-Strand (1974), x; and Shyn et al. (1972), o.
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allowed or an optically forbidden transition. This transition for many
molecules leads to a repulsive state which can dissociate the molecule.
In N2’ dissociation of the molecule in this manner is virtually non-
existant because N2 is a very stable homonuclear molecule in which both
the singlet and triplet states are found to be strongly bound. As a
consequence of this, the main process for dissociation is through pre-
dissociation of stable electronic terms by repulsive states that are
themselves strongly optically forbidden in direct excitation.

Porter, Jackman, and Green (1976) (hereafter called PJG) compiled
branching ratios for dissociation of N2 using several experimental and
theoretical papers (see, for example, Winters, 1966; Rapp, Englander-
Golden, and Briglia, 1965; Polak, Slovetskii, and Sokolav, 1972; and
Mumma and Zipf, 1971). 1In PJG the efficiencies for the production of
atomic nitrogen from proton impact were determined.

This study does not include a calculation of the atomic nitrogen
production; however, the PJG branching ratios with the yield spectra,
discussed in section VII.B, can be applied to calculate this atomic
yield. The excitation events, not resulting in the dissociation of the
Ny molecule, are either electronic or vibrational transitions. Cross
sections for these transitions are taken from both PJG and Jackman,
Garvey, and Green (hereafter called JGG) (1977b).

In the ionization event an electron is stripped from the molecule
and given some kinetic energy. The ionization cross section is a sub-
stantial portion of the total inelastic cross section above 50 eV
(compare Figures 3.6 and 5.1) and the total amount of energy loss is
always 2 the lowest ionization threshold (which is 15.58 eV for Nz).

Subsequently, most of the energy loss of the electrons (for energies
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Figure 3.6 Ny electron impact cross sections. The total inelastic,
Eq. (3.16) (solid line), total elastic, Eq. (3.9) (dashed
1ine), total inelastic plus elastic, Eq. (3.16) plus
Eq. (3.9) (dash-dot 1ine), and the experimental inelastic
plus elastic values (Blaauw et al., 1977), x, are pre-
sented here.
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> 50 eV) is from the ionization collisions. These ionization cross
sections were also taken from PJG and JGG. The total inelastic cross
section found by summing these inelastic cross sections was fit with
the function '

. 9 FI1 - (@°1F In(3E + o)
TI WE

(3.16)

This form has the characteristic Born-Bethe 1n E/E fall off behavior at
the large energies. The parameters « = 1, 8 = 4.81, C = 0.36, F = 4.52,
and W = 11 were found with the use of a nonlinear Teast square fitting
program which fit Eq. (3.16) to the sum of all the inelastic cross
sections. From 30 eV up to 5 KeV this form was used for the total
inelastic cross section.

Below 30 eV much structure in the total inelastic cross section is
evident. At these Tow energies, the total inelastic cross section can
be read numerically into the MC program. This total inelastic cross
section is illustrated by the solid 1ine in Figure 3.6.

Consider now the scattering of the two electrons involved in an
electron 1mpacf ionization collision. In reality, only the incident
electron is scattered. The other electron is simply stripped from the
molecule and given kinetic energy in a certain direction of travel.
Experiments are unable to distinguish between the incident electron and
the electron stripped from the molecule. In this paper, the ionization
event is assumed to'cause scattering of both electrons. The scattering
angle of either is then measured with respect to the incident electron's
path.

After the collision event the electron with the higher energy is

designated the primary electron and the electron with the lower energy
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is called the secondary electron. There should be a correlation between
the primary and secondary scattering, but this mutual influence is dif-
ficult to quantify. The impinging electron ionizes a many body par-
ticle, a molecule of nitrogen, thus momentum and energy can be conserved
without a1l the momentum and energy shared by the two resulting elec-
trons. Only recently has work been done on triply differential cross
sections for N2 and this interaction was measured only at one energy

E = 100 eV (see Jung, Schubert, Paul, and Ehrhardt, 1975). More ex-
perimental and theoretical work needs to be done in this area before

any generalization can be made concerning the correlation between the
primary and secondary scattering.

The primary and secondary scattering will thus be treated sepa-
rately in this work. In dealing with the scattering of the primary
electron after an ionization collision, a differential ionization cross
section form based on the Massey-Mohr-Bethe surface of hydrogen, is
used. The form (with ays the Bohr radius, and Re, the Rydberg energy) is

4a§Re

avea = e (- R (3.1%)

where x = (Kao)2 is the momentum transfer, W is the energy loss in the
collision process which is equal to the ionization potential, I, plus
the kinetic energy of the secondary, T, and F(x) is a complex function
given in PJG.

Equation (3.17) is very highly forward peaked for small energy
losses but becomes less forward peaked as the energy loss becomes sig-
nificant when compared with the incident energy, E.

The secondary electron is also scattered in the ionization event.

Probably the most comprehensive work that exists an secondary doubly
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differential cross sections is that of Opal, Beaty, and Peterson (1972).
(More recent data by DuBois and Rudd (1978) agrees with their work.)
This data indicates a preferred angle range in the scattering process
(usually between 45° and 90°) at all primary and secondary energies.

A Breit-Wigner form has been chosen to represent the data. Here,

2
do _ S(E,T)C
aTdn - 2 ? (3.18)
[C™ + B(coss - coseo) ]Nf
where
E 0.91
B(E) = 0.0448 + (?ﬁgﬁﬁ—év)
iT + 183 eV
i %alE)
BO(E) = 0.873 + m
BA(E) =20 eV +0.042 E
GB(E) = 28 eV + 0.066 E
-/B (1 + cose ) /B (1 - cose_)
_ =2qaC -1 0 =] 0
Ne = - {tan L c ] - tan ' [ c ]}
and

S(E,T) = 92 = A(E)I2(E)/L(T - T (£))? + r?(E)] (3.19)

is from Green and Sawada (1972) with

5.30

_ 3
A(E) = oy = Tnly5g<y]

2
- 1000 (eV)
TQ(E) = 4.71 eV - (E + 31.2 eV)
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r(E) = 13.8 eV E/(E + 15.6 eV)

B, = 1x10 10 ep

Equation (3.18) may seem highly complicated; however, integration
over the solid angle is given very simply as Eq. (3.19) which is the
singly differential ionization cross section. The total ionization cross

section is then

"
ocanlE) = r}i‘ldr (3.20)
ION o :
with
s e
Ty=7(E- 1)
so that
o1on(E) = Arttan™ [(T,, - T)/r] + tan“(TD/r)} (3.21)

The fit to Opal, Beaty, and Peterson's (1972) data is given in Figure 3.7
at several primary and secondary energies. The x's represent the ex-
perimental data and the solid 1ine represents the analytic expression,
Eq. (3.18).

Other inelastic processes include the simple excitation events.
The scattering of the incident electron due to the excitation of a par-
ticular state has been studied by Silverman and Lassettre (1965), and
more recently by Cartwright, Chutjian, Trajmar, and Williams (1977) and
Chutjian, Cartwright, and Trajmar (1977).

In order to account for this scattering, the Silverman and Lassettre
(1965) generalized oscillator strength data for the 12.85 eV peak (cor-
responding to the optically allowed b ]“u state) were fit with the use of

a phase function similar to model 1. The very sharply forward scattering
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Figure 3.7 N2 experimental ionization doubly differential cross sections
from Opal, Beaty, and Peterson (1972) are represented by x's.
The solid 1ine (—) denotes the cross section resulting from
the use of Eg. (3.18). The incident electron energy is de-
noted(by)E (eV) and the secondary electron energy is denoted
by T (eV).
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peak indicated in these data was used in a MC calculation. The electron
scattering which results using this inelastic scattering approximation
in a computation was so small as to be virtually undetectable.

Cartwright et al. (1977) and Chutjian et al. (1977) have studied a
more comprehensive 1ist of states and have observed significant electron
scattering (especially due to the optically forbidden states) in the
range from 10 eV to 60 eV. Characterizing this data in some way appears
to be a rather endless task.

Dealing with this type of inelastic scattering is thus still a
problem. Above 100 eV the optically allowed excitations are the most
important; thus it is safe to conclude that the inelastic scattering
events will not affect the energy degradation process. Below 100 eV,
as a first approximation, it is assumed in this work that the inelastic
excitation events scatter as much as the elastic events. This is
probably a reasonable approximation to the very complex inelastic ex-
citation scattering. In section VI.B the effects of this assumption

are discussed.

C. Total Cross Section (Elastic Plus Inelastic)

Elastic and inelastic processes have been considered in sections
III.A and III.B. Another aspect of the cross sections is the total
(elastic plus inelastic) cross section.

Blaauw, de Heer, Wagenaar, and Barends (1977) have recently pub-
lished experimental data on the total cross section values of N,. These
experimental values are compared with the cross section values from this

work in Figure 3.6.
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Throughout the energy range the cross sections used in this study
compare favorably with those of Blaauw et al. (1977). For an easy
reference, the total inelastic and total elastic cross sections are
also given in Figure 3.6 as separate curves.

A1l the major influences on the IEE energy loss and scattering have
been accounfed for in this chapter. The next chapter presents the MC

energy deposition scheme which employs these cross sections.



CHAPTER IV

THE MONTE CARLO METHOD OF ENERGY DEPOSITION BY ELECTRONS
IN MOLECULAR NITROGEN

A Monte Carlo calculation is used here for energy degradation by
energetic electrons in N2. This stochastic process is probably the most
accurate method for obtaining the energy loss of particles in a medium.
The generalizations about electron impact on N2 that are made through the
use of this technique can be applied in other energy deposition approaches
to electrons impinging on the atmosphere. (This is true even though the
magnetic field is neglected in these MC calculations. The three dimen-
sional yield spectrum U(E,z,Eo) [see Chapter VII] is most useful for
applications to the atmosphere and changes in the magnetic field will
not affect the yield spectra greatly below altitudes of about 300 km
where the gas density is fairly high [see Berger, Seltzer, and Maeda,
1970 and 1974].)

Building on the MC work done in this paper, more exact models of
auroral electrons and photoelectrons can be established. In the first
section, IV.A, a brief discussion of the MC calculation outlines the
general procedure involved in the degradation process. The computer
program and machinery used are briefly described in section IV.B. Sec-
tion IV.C relates in detail the various aspects of the calculation.

Finally, section IV.D discusses the statistical error that arises from

the use of the MC calculation.
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A. Brief Discussion of the Monte Carlo Calculation

In Figure 4.1 a short version of the MC calculation is presented.
Briefly, each electron is degraded in a collision by collision manner
down to 30 eV. Below 30 eV the electrons are degraded with the use of
a multiple scattering distribution. This multiple scattering approach
characterizes the resultant coordinates of the electron which goes
through several elastic collisions between each inelastic collision.

The incident electron has an energy Eo' To begin with, the running
total of the electron energy, E, is set equal to Eo' At the position
START, this energy E is checked against a cutoff energy, Ec' If the E
is more than Ec, then, first the distance traveled by the electron to
the collision is calculated.

Second, the type of collision which occurs is determined. If a
collision is elastic then the electron is scattered with the use of a
phase function, the appropriate energy aEE]as is lost, and the electron
goes back up to the START of the degradation process. VWhether a collision is
inelastic it is determined if the collision is an ijoniz~tion event or an
excitation event. In the excitation process, scattering occurs if the
energy E is less than 100 eV, E is reduced by the threshold, W, for
excitation of this state, and the electron goes back up to the éTART of
the degradation process.

Ionization collisions are the most complex occurrences to compute.
The energy loss, W, by the incident electron is equal to the kinetic
energy, T, of the secondary electron produced plus the ionization thresh-
old, I. The primary electron is then scattered and reduced in energy by

W. If the secondary electron has a kinetic energy greater than Ec’ then,



Figure 4.1 Flowchart of the Monte Carlo degradation of an incident
electron of energy Ej.
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it is scattered and sent back to the START to be degraded further. In
the meantime, the primary electron's properties are stored.

If a secondary produces a tertiary electron with a kinetic energy
greater than Ec’ then that tertiary is completely degraded before any
further degradation of the secondary is considered. Like the primary,
the secondary electron's properties are stored in the meantime. No other
generations were included in this study as their contribution would be,
at most, a couple of tenths of a percent of the incident electron's
energy.

After the tertiary is entirely degraded be1ow-Ec, then the secondary
is again sent back to the START to be degraded further. The secondary
is next entirely degraded below Ec, and, finally, the primary is again
sent back to the START to be further degraded. This whole process may

then again repeat itself.

B. Computer Programs and Machinery Used in the
Monte Carlo Calculation

In the previous section a brief discussion was given of the electron
energy degradation process. A brief discussion will be given below about
the MC computer codes and the computing machinery used. The MC computer
program employed in this work evolved from an original MC code written
by R.T. Brinkmann (see applications in Brinkmann and Trajmar, 1970). This
program was revised for use in Heaps and Green (1974), Kutcher and Green
(1976), and Riewe and Green (1978). The author has further modified this
MC technique for energetic electron impact into N2 to be used in the

energy range from 2 eV to 5 KeV.
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This MC technique was applied to several incident electron energies.
The vast majority of the MC program runs used the Amdahl 470/175 computer
at the Northeast Regional Data Center at the University of Florida.

There were, however, several MC runs using the PDP 11/34 of the Aeronomy
group of the University of Florida.

It should be noted here that running the same program on both
machines at the same energy, E0 = 1 KeV, showed a factor of 240 dif-
ference in the execution time. Thus a program that takes four hours on
the PDP 11/34 will take one minute on the Amdahl 470/175. This time
advantage plus the ability to store each collision of the electrons on
magnetic tape does make the Amdahl 470/175 a more desirable "number-
crunching" machine. The PDP 11/34 is only able to produce intensity plots
in the longitudinal direction. This mini-computer is thus mainly useful
in deriving a range (to be described in the next chapter).

Two programs were used in deriving the MC results. The first pro-
gram (listed in Appendix A), the modified version of Brinkmann's code,
degraded the electrons in energy from their initial E0 down to the Ec
and recorded each collision and its properties on the tape. The second
program (listed in Appendix B) coalesces the data from the tape into an
array of ordered output. This output contains information for three

dimensional intensity plots, energy loss plots, and yield spectra.

C. Detailed Discussion of the Monte Carlo Electron
Energy Degradation Technique

Now, a more detailed discussion is given for the MC method of
degrading an electron's energy. An electron will start off with an

energy of E0 and coordinates Xor Yo? Zg» 80, and ¢0. The symbols X, Y,
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and z are the Cartesian coordinates of the electron. The polar angle @
is measured with respect to the z-axis and the ¢ denotes the azimuthal
angle measured with respect to the x-axis (see Figure 4.2). In this

approach, the initial coordinates Xos Yo2 Z

o* eo’ and ¢o were all set

equal to zero. The coordinates Xps Yp» Zps Bb’ and ¥ of the electron
before starting on its journey to a collision are, therefore, initially
established as Xp = %o Yp = Yos Zp = Zps By = eo, and o = ¢o'

The MC approach relies on the random number, R, between 0.0 and 1.0
to aid in the deposition calculation. For each collision several R's
are needed and for each R a new property of the collision is gained. In
order to explain this MC approach, an accounting of the random numbers
and their subsequent usefulness is now made. The multiple elastic scat-

tering distribution used below 30 eV and the lowest energy cutoff 2 eV

are also described.

1. First Random Number, Ry

The first random number, RT’ is used to find the path, PT’ traveled
by the electron before it collides with a molecule of NZ‘ Calculation
of PT proceeds in the following manner. The mean free path, A, is
defined as

1
R=m (4.1)

where n is the density of N2 molecules in #/cm3 and uT(E) is the total
(inelastic plus elastic) cross section of N2 in units of cm2 at an energy
E. The densities used at the various initial input energies are given

in Table 4.1.
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Figure 4.2 Schematic representation of the coordinates and directions
of motion of the electron in its travel between collisions

with the Nz molecules.
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Table 4.1 The energy E is presented in the first column with the number
density n, used in the MC calculation, bein? given in the
second column. (8.0 E+ 14 means 8.0 x 1014

E (KeV) n (#/cm3)
0.1 8.0 E+14
0.3 2.0 E+15
1.0 8.2 E+15
2.0 2.8 E+16

5.0 1.2 E¥17
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A11 electrons are forced to be degraded in a 30 cm long cylinder;
thus an increase in the density is required for an increase in the energy.
There are 10 cm allowed in the negative z direction and 20 cm allowed in
the positive z direction. The x and y axes extend to infinity. Some
electrons actually escape from the cylinder, but the energy lost due to
these electrons is only a few tenths of a.per cent of the incident elec-

tron energy. The path length PT is then given as

i~
1

7= ]"(RI) (4.2)

using the relation that
-P/
Ry=e | (4.3)

Figure 4.2 represents a schematic of the electron traveling and
colliding with three Nz molecules. The PT]’ PT2’ and PT3 are the path
lengths traveled by the electron between the initial coordinates and
the first collision, the first and second collisions, and the second and
third collisions, respectively.

The Xys Ygo and z, coordinates at this collision can now be found

from PT’ Xps Yo Zps eb’ and 9 using

%y =ik ® PT siney cos¢, (4.4)
Yo=Y tPq sineb sin¢b (4.5)
2, =2 * PT cosey (4.6)

In Figure 4.2 the coordinates of the first and second collisions are
represented to illustrate how the electron's direction of motion might

change during its collisions with NZ' So far emphasis has been only on
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the Cartesian coordinates. Now, calculate the azimuthal angle 9, and the

polar angle 0, of the electron after a collision.

2. Second and Third Random Numbers, Ry and R3

In actuality the type of collision must be specified before the
scattering can be calculated. It is assumed, however, that the type of
collision is already known (see subsection IV.C.4). The second, R2’ and
third, R3, random numbers are not chosen if the collision is an excita-
tion event and E is greater than 100 eV. They are chosen for all other
collisions.

The R2 is used to calculate the azimuthal scattering angle, ¢', of
the electron from its direction of motion. The premise is that the

azimuthal scattering is isotropic; therefore,
¢' = R2 2m (4.7)

(Note that the ¢' angle is the only angle not represented in Figure 4.2.
Inclusion of ¢' adds too much complication to an already cluttered
figure.)

The third random number, R3, is employed to calculate the polar
scattering angle ' of the electron from its direction of motion. (The
angle @' is represented twice in Figure 4.2: Once as the scattering due
to the first collision and once as the scattering due to the second
collision.)

For elastic collisions, Eq. (3.1), (3.12), (3.13), or (3.14) are
used in determining 6'. In all but one of these phase functions, an
analytic expression can be used to determine 6' from the random number,

R3. These analytic expressions are given below.
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Using the screened Rutherford differential cross section form (see

Eq. (3.1)), it follows that

o' = cos”| [1+2n - gﬂil—i—ﬂl-l (4.8)
]+n"R3

For model 1 (see Eq. (3.12))

1 [ -1

6' = cos % -
Ril(2+a) -a']+a

Tt 1+ a] (4.9)

and for model 2 (see Eq. (3.13))

+ 2
- - - -4

8' = cos A (4.10)
with
- ! (1= f)
A=R,+ -
3 alz+a) -1 2+ol2+ce)y! -
B=-A(a-c)+ f] P ( ; f) ]
[(2+a)” -a"'] [(2+c) -c ]
and
C=-A(1+a)(1+c) + f(1 +¢) .- +a)

[2+a) -a7] [2+c)'-c]

Model 3 (Eq. (3.14)) is not so easy to write in such a convenient
form. The equation for primary scattering after an ionization event
(Eg. (3.17)) is, also, not easily inverted.

For these two differential cross sections, the following approach
is taken. The angular range from 0° to 180° is divided up into angular
intervals. A certain probability for scattering at angles less than the

end of each angle interval is calculated from the differential cross
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section form. The angle 8' is then found through the correct placement
of R3 into an angular segment whose beginning and ending point scattering
probabilities bracket R3.

For this work twenty-four angular segments were chosen. Their end-
points are given in Table 4.2. With twenty-four angular intervals, the
results from the Monte Carlo calculation came out to be the same as with
the use of forty angular intervals. If sixteen or even twenty segments
were used, the MC computation gave results that were 5% to 10% different.

The ¢' and o' are not the scattering angles from the original
coordinate system, but represent the azimuthal and polar scattering of
the scattered electron from the direction of travel of the incident elec-
tron. In order to calculate ¢ and 0,5 the azimuthal and polar angles
representing the motion of the electron after the collision, some spheri-
cal trigonometry must be used. The following relations hold in this

transposition:
L Ty 1
coso, [coseb cosg, sine' coso

- singy sing' sing' + sing, cos¢, cose']fsinea (4.11)

- - 3 ] ] 1
sing, [coseb sing, sine' cos¢

+ cos, sine' sing' + sine, sing cose']/sinea (4.12)
[ = -1

¢} = cos (cos¢a) (4.13)

cos6, = COS6y cosg' - sine, sine’ cos¢’ (4.14)

sing, = J1 - coszea (4.15)
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Table 4.2 Twenty-four angle intervals are given here that were used in
the Monte Carlo calculation. First column 1ists the index of
the segment and the second and third columns give the begin-
ning and end points for each segment with units of radians

(degrees).
Index Beginning End
1 0.00 (0.00) 0.01 (0.57)
2 0.01 (0.57) 0.05 (2.87)
3 0.05 (2.87) 0.11 (6.30)
4 0.11 (6.30) 0.20 (11.46)
5 0.20 (11.46) 0.40 (22.92)
6 0.40 (22.92) 0.60 (34.38)
7 0.60 (34.38) 0.80 (45.84)
8 0.80 (45.84) 0.90 (51.57)
9 0.90 (51.57) 1.00 (57.30)
10 1.00 (57.30) 1.10 (63.03)
11 1.10 (63.03) 1.20 (68.75)
12 1.20 (68.75) 1.30 (74.48)
13 1.30 (74.48) 1.40 (80.21)
14 1.40 (80.21) 1.50 (85.94)
15 1.50 (85.94) 1.60 (91.67)
16 1.60 (91.67) 1.80 (103.13)
17 1.80 (103.13) 2.00 (114.59)
18 2.00 (174.59) 2.20 (126.05)
19 2.20 (126.05) 2.40 (137.51)
20 2.40 (137.51) 2.60 (148.97)
21 2.60 (148.97) 2.80 (160.43)
22 2.80 (160.43) 3.00 (171.89)
23 3.00 (171.89) 3.07 (175.90)
24 3.07 (175.90) 3.14 (180.00)
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and

- -1
6, = cos (cosea) (4.16)

Now the azimuthal angle % and the polar angle ea have been established
for the collision with respect to the fixed coordinate system. These
angles are also represented in Figure 4.2. The two angular coordinates
9 and o of the electron before traveling to the next cdllision are then

set as by = and By = 8,

3. Fourth Random Number, Ry

A fourth random number, Rq, is required if a secondary is produced
and if that secondary has an energy above the cutoff energy, EC. This
R4 is chosen to determine the polar angle, ', of scattering of the
secondary. Again, an analytic formula can be employed to define o'.

This equation was derived from Eq. (3.18) and is written as

~J§I1-*coseo)

[ — '1 C -
8' = cos Eﬁ% tan [Ra{tan 1[

C
vB(1 - coss_ )
- tan”! ( z 2
-1 B(1 - cose, )
+ tan | c )] + cosao] (4.17)

The ¢' for the secondary is found with the use of Eq. (4.7) and 6,
and ¢ result from the use of Eqs. (4.11) through (4.16).

4. Fifth Random Number,_R5

The fifth random number, R5, determines the type of collision that

occurs. Here, the type may be either elastic or inelastic. If the
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type is inelastic then the individual excitation or ionization event is
found as well.

There are cross sections for thirty-four states of Nz employing the
papers of Jackman, Garvey, and Green (1977) and Porter, Jackman, and
Green (1976). Using all these states in the MC calculation would greatly
increase the cost. It was therefore decided to reduce these thirty-four
states to nine states. Two allowed states, the b ]nu and the b’ 123,
and the six ionization states were kept the same as given in the papers.
For the ninth state, all the Rydberg and forbidden states were combined.

Above 200 eV, the forbidden states are contributing only a minuscule
amount to the total cross section. Since the other states have roughly
the same 1n E/E fall-off at high energies, it is assumed that the pro-
babilities for excitation to any of these states will be constant. These
probabilities were simply found from the ratio of the cross section of
the state in question to the total inelastic cross section at the elec-
tron energy of 5 KeV.

In Table 4.3 these states, their probabilities, and thresholds are

presented. The probability, Pe> of the composite state is simply
m
P = z P; (4.18)

where m = the total number of Rydberg and forbidden states and P; is the
probability for excitation of the ith Rydberg or forbidden state. The
average threshold, “c’ for exciting the composite state is found easily

with the following equation

=
it
-
—
o
-l
=

-ty

(4.19)

[2)
te~3 Ii.M 3

-
o
-

-y



Table 4.3 N, inelastic states, their probabilities, p, and thresholds,
W, taken for electron energies above 200 eV are presented

below.

State p W (eV)
Ny b'm 0.092 12.80
Ny b1z 0.042 14.00
N2 Composite 0.233 15.40
Ny xzz; 0.289 15.58
Ny An, 0.127 16.73
Ny 825" 0.066 18.75
Ny nzng 0.044 22.00
Ny ¢%x 0.044 23.60
Ny 40 eV 0.063 40.00
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with ”1 being the threshold of the Rydberg or forbidden
state.

Below 200 eV, the probabilities for excitation to the various
inelastic states are changing quite rapidly. The parameters for the
eight individual states are taken from Jackman et al. (1977b) and
Porter et al. (1976). The composite state's properties are found in
the same manner that they were above. In these lower energy regimes
the probability and energy loss are changing fairly rapidly, thus Table
4.4 illustrates these probabilities and threshold values at several
energies.

With the background on the inelastic cross sections and their
subsequent probabilities, consider now the collision type. The R5
random number determines the type of collision that occurs in the

following manner: If
o7g(E) :
R5 = E;TET_' for all electron energies (4.20)

where cTE(E) is the total elastic cross section, then the collision is

elastic. If

o+(E) P;0--(E) + o.-(E)
E%%ET_ < R5 < 1 TIU Q) TE and E > 200 eV (4.21)
T

where aTI(E) is the total inelastic cross section and P is the proba-

bility for exciting the first inelastic state (in Table 4.2 the first

1

state is the b L thus p1 = 0.092), then the inelastic collision results

in the excitation of the first state.

A relation follows from Eq. (4.21) that holds true for j =2 to 9
such that: If
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Table 4.4 N2 inelastic composite state with its characteristic proba-
bility, p, and average energy loss, W, given for several
energies between 2 and 200 eV.

E (eV) p W (eV)
2 1.000 0.57
3 1.000 1.03
4 1.000 0.922
5 1.000 0.835
6 1.000 0.772
7 1.000 0.728
8 1.000 0.696
9 1.000 7.00
10 1.000 7.21
12 1.000 8.25
14 1.000 8.91
16 0.971 9.12
18 0.866 9.34
20 0.745 9.68
30 0.426 11.70
40 0.344 12.80
50 0.296 13.30
60 0.27 13.70
70 0.255 13.90
100 0.229 14.30
150 0.214 14.60
200 0.234 14.80
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J-1 .
iz'l PiUTI(E)-I-chE(E) 1'21 p_ioTI(E)+gTE(E)
o7(E) kg & o;(E)

and E > 200 eV (4.22)

then the inelastic collision results in the excitation of the jth state.
Thus the R5 random number for an electron of energy E > 200 eV will
determine which type of collision occurred when satisfying Eq. (4.20),
(4.21); or (4:22).

For energies below 200 eV, the following relations must be con-
sidered: If

UTE(E) 01(E) g UTE(E) <
E}TET_ <Rg = OT(E) and E £ 200 eV (4.23)

where U](E) is the cross section for exciting the first inelastic state,
then the inelastic collision results in the excitation of this state.
A relation similar to Eq. (4.22) can now be established for j = 2

to 8 such that: If

3] -

T @ rarg®) L o () ro(®)

= o7 (E) <Rg s = =) and E < 200 eV (4.24)
T T

then the jth inelastic state is excited. If

8
121 UT(E) + UTE(E)
R5 2 UT(E—) and E < 200 eV (4.25)

then the excitation of the composite state is assumed and the energy loss,

wc, in this case is found through a linear interpolation with the use of

the values given in Table 4.3.
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5. Sixth Random Number, RG

The sixth random number, RG’ is computed only if the collision type
is an ionization event. This R6 determines the energy lost by the
primary in creating a secondary of energy, Ts‘ Using the S(E,T) from
Eq. (3.19) the following relationship is established:

TS
[ S(E,T) dT
0

Re = ___EEEETET_- (4.26)

Integrating the numerator in Eq. (4.26) and using Eq. (3.21) to solve
for Ts’ Eq. (4.27) is derived.

T, = r(E)[tan{Retan™ [(Ty - T (E))/1(E)]
+ (Rg - Dtan [T (E)/T(E)1}] + T (E) (4.27)
The energy loss, W, is then found by the relation:
W= Ik + T (4.28)

where Ik is the jonization threshold for the kth ionization state.

6. Multiple Elastic Scattering Distribution Used Below 30 eV

The MC calculation can be used to degrade an electron down to
practically any energy. Even below the Towest threshold for excitation
to any vibrational level, the electron will still Tlose energy via elastic
collisions with molecules of nitrogen as well as other electrons. This
energy loss to other electrons is fairly low unless a substantial frac-

tion of the gas has been ionized (see Cravens, Victor, and Dalgarno,
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1975). 1In this study the fraction of jonization is assumed to be
negligible; therefore, this loss is ignored.

Unless there is a very large amount of money available for computer
time, an electron can not be followed to its thermal energy with any
practicality. This implies that a multiple elastic scattering distri-
bution (hereafter referred to as MESD) must be used below some given
energy. In this work the MESD will be used below 30 eV.

Bethe, Rose, and Smith (1938) used the Fokker-Planck differential
equation, neglecting energy loss, to consider the penetration of elec-
trons through thick plates. This, however, leads to a Gaussian solution
in the small-angle approximation so that the tail of the angular dis-
tribution was omitted. The large-angle multiple scattering has been
studied by Goudsmit and Saunderson (1940) [hereafter referred to as GS]
who used a series of Legendre polynomials to determine the resultant
angle of scattering.

Lewis (1950) studied the integro-differential diffusion equation of
the multiple scattering problem in an infinite, homogeneous medium,
without the usual small-angle approximation. He obtained the GS solu-
tion for the scattering angle and also derived certain moments for the
longitudinal and transverse distributions.

Berger (1963) applied a MESD for condensed case history MC cal-
culations. His application of the MESD is at the energies above 200 eV
and probably is not accurate for electrons with energies less than about
100 eV. Furthermore, Berger's (1963) work contains approximations that

are only good for the sharply forward peaked cross sections of higher

energy electrons.
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In this work a different problem exists. The MC calculation is
used to degrade electrons in a collision by collision manner all the way
down to 30 eV. At this energy, the elastic collisions are occurring
with twice the frequency of the inelastic events, and at energies below
30 eV the number of elastic collisions between inelastic events may be
up to several hundred or thousand. Keeping track of all these elastic
collisions would be very costly.

Kutcher and Green (1976) [hereafter referred to as KG] studied the
radial, longitudinal, and polar angle distributions for elastic scatter-
ing by H2 in the energy range from 2 to 50 eV. An approach similar to
KG's could be applied to N2' Since such a project would require a
substantial amount of time and computer money, the possibility of adapt-
ing the KG results was first considered.

With this in mind, consider the differences between N, and H,.
First of all, there are some dissimilarities between the differential
cross sections. There is more backscatter observed experimentally in
N2 at all energies. Secondly, the total inelastic and elastic cross
sections are different. The second difference is no real problem because
the MESDs are given in terms of the mean free path lengths (hereafter
referred to as MFPs). The first dissimilarity does pose a minor problem
which is solved in a simplistic way below.

Above 5 or 6 MFPs the polar angle is approximately random. At most
energies below 30 eV, the number of MFPs between inelastic collisions
is above 5 or 6. Since the distribution found in KG is not easily in-
verted, a reasonable assumption is that the polar angle is oriented

randomly.
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Knowledge of the radial distribution is not crucial for our pur-
poses. The most interesting radial distribution output from this MC
calculation is that of the 3914 A emission. Electrons below 30 eV make
little contribution to this profile because the cross section for ex-
citation to this N; Bzz: state is fairly low (see Figure 5.1). Thus
knowledge of the radial distribution of these electrons multiply scat-
tered is not extremely important.

An approximation, however, is employed in most MC computations to
calculate a fairly reasonable radial distance. The average radial
distance, as observed from the calculations in KG, for most energies and

at the Tonger path lengths is approximately one-sixth of the total path

lengths, thus

Pave = s5/6 (4.29)

The most important spatial displacement is the longitudinal dis-
tance z. In order to calculate z, the total path Tength s must be known.
This Tength s is calculated from the random number, R1, the total elastic
cross section, oTE(E), and the total inelastic cross section, cTI(E],
by using

o (E)
i IE
§ 5 = W]n (R.I) (4.30)

The ratio aTE(E)/cTI(E) is simply a fairly accurate approximation
of the number of elastic collisions occurring per inelastic collision.
The value —ln(R]) [see Eq. (4.2)] is the path length (in units of MFPs)
traveled by the electron between collisions. Thus knowing the number
of elastic collisions occurring and the path length traveled between

collisions allows one to write Eq. (4.30) as the expression for the
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total path length s (in units of MFPs) traveled between inelastic
collisions.

In 'KG an equation which can be easily inverted to calculate the
z distance (in units of MFPs) from some random number, RZ’ and path

length s, is written

{[Rg” v -1]
z=1n [F(D)-llv =1 (4.31)
-u
where
v(is) =1 - exp[-(s/s“]D]
F(0) = k{1 - expl-(s/s.)°" ]}
and

u(s) = (H + SI)/sJ

where K = 0.425.

Since there is more backscatter during N2 elastic collisions
(because of its differential backscatter contribution), it seems reason-
able that the parameters for Eq. (4.31), which are useful for NZ’ are
different than those derived in KG. One approach to this dilemma might
be to correlate the elastic differential cross section (hereafter called
EDCS) from N2 at some energy E' with the EDCS from H2 at some energy E.
This would work if the H2 EDCSs showed more backscatter than the N2
EDCSs; however, the opposite is observed experimentally. Thus the N2
EDCSs from some E' (around 6-7 eV) values correlate with the H2 EDCSs
at E values less than 2 eV (where the Kutcher and Green, 1976, MESD is

not defined).
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Another straightforward and simplistic approach is to do the
following. Calculate the approximate backscatter at three energies,
the two endpoints and the middle (2 eV, 15 eV, and 30 eV), from the KG
H, EDCS form and the experimental data on N, EDCSs (given in Sawada,
Ganas, and Green, 1974). At these energies the backscatter with the KG
Hy EDCS form is less than that of the Nz EDCS by the following values:
2 eV~ 5%, 15 eV ~ 10%, and 30 eV ~ 10%. An average of these three
values is about 8%. Since the major influences of the backscatter in
Eq. (4.31) is the value of K, this parameter is the only one that is
changed from the KG formulation. It is, therefore, increased by ~8% so
that in these MC calculations K = 0.46. The other parameters in Eq.
(4.31) are listed in Table 4.5.

Actually it appears that the value of K makes Tittle difference in
the MC computational results. Two MC calculations at an incident elec-
tron energy of 100 eV with K = 0.46 and with K = 0.425 were undertaken
(a1l other parameters and inputs were the same). The yield spectra
(described in Chapters II and VII) changes substantially only at fairly
large Tongitudinal distances (where the distances are about 1.5 times
the range). At these large distances there are relatively few electrons
anyway, thus there is 1ittle effect on the major aspects of the spatial
electron energy deposition process.

The Cartesian coordinates X3 ¥ao and z, are found from the coor-
dinates Xps Ypo and Zp in the following manner. After z is calculated
in units of MFPs with the use of Eq. (4.31), it can then be written in
units of cm or km by multiplying by the MFP, X (calculated from Eq.
(4.1)), thus z_ = z, + ZA.
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Table 4.5 Parameters from Kutcher and Green (1976) for several energy
intervals used in Egq. (4.28).

Energy

Interval
(eV) H I J D s, Sp
2-5 12. 1.37 1.71 1.75 5.05 8.5
5-10 9.6 1.32 1.67 2.50 4.25 8.5
10-20 15.5 1.28 1.67 2.31 6.29 10.3

20-30 235 1.24 1.69 1.98 9.65 13.6
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As established earlier, the polar angle ea and azimuthal angle ¢a'
representing the motion of the electron after the collision, can be

chosen in a random way from the two random numbers, R3 and R4, using

aa = HR3

2nR

A 4 (4.32)

A reasonable approximation of X and y, can then be made using

Eqs. (4.29) and (4.32) such that

= +
Xa = % 7 Pave A COERy
and
= + 1
Ya = Vb ¥ Paye X STNé,

In the MESD the fifth random number, R5, is used to determine the
inelastic collision type. A method similar to that illustrated in sub-
section IV.C.4 is employed, the only difference is the fact that the

collision is only inelastic.

7. Value of the Cutoff Energy, 2 eV

The EC used in this work has been set at 2 eV because the lowest
threshold for excitation to an inelastic state is 1.85 eV. With this
cutoff energy the yield spectra can be defined down to 2 eV at all
longitudinal distances. Subsequently, a reasonable calculation of the

excitation to any N2 state may be made.
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D. Statistical Error in the Monte Carlo Calculation

The statistical error inherent in the MC computation can be derived
by considering the following. Since the MC calculation is a probabilis-
tic method of degrading an electron in energy, the multinomial distribu-
tion can be used to find the statistical standard deviation for each bin
considered. This discussion of the statistical error employed the work
of Eadie, Dryard, James, Roos, and Sadoulet (1971).

The probability of getting an excitation of a certain state j in bin
k is pjk' The pjk is normalized such that

m o n

k£1 jZI Pig * 1 (4.33)

In this MC study the multinomial distribution is an array of histograms
containing N events distributed in n states and m bins with rjk events
in state j and bin k. The rjk values are normalized such that

m

n
Y r. =N (4.34)
k=1 j=1 Ik

Thus, the rjk observations can be considered somewhat conditional
on the fixed observational value of N. The variance of the calculation

is represented as
V(rjk) = Npyy (1 - pjk) (4.35)

In this work the m x n variables rjk can all be correlated. For the
specific example of electron deposition represented in Figure 5.2,
ij << 1. This is true because there are total almost 5 x 105 col-

lisions (i.e., N=5 x 105) to consider in this degradation scheme and
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at maximum rjk % 4000, Using this information, Eq. (4.35) can then be

approximated by
V(rjk) ~v N Pik ™ sk (4.36)

and the statistical standard deviation of the number of NZ 32£: events

in a bin becomes
Ujk Ly Vrjk (4.37)

Equation (4.37) holds true for the specific example represented in
Figure 5.2 and it also holds true for all the intensity plots, energy
loss plots, and yield spectra that were studied in this work. Thus,
in order to obtain the approximate standard deviation for any MC generated
number, the square root of this value is its standard deviation. The
error bars found in the rest of this paper are determined in this
manner.

Now that the MC calculational technique has been outlined, this
method will be used in the next three chapters to deal with the spatial

and energetic aspects of electron energy degradation.



CHAPTER V
MONTE CARLO INTENSITY PLOTS AND COMPARISON WITH EXPERIMENT

Incident electrons with energies between 0.1 and 5.0 KeV are de-
graded in N2 using the MC method described in Chapter IV with the cross
sections given in Chapter III. The intensity plots of the 3914 A
emission are described in this chapter.

Emission intensity plots of the 3914 A radiation from the NZ Bzz:
state are used in describing the range (found by extrapolating the linear
portion of the longitudinal 3914 R intensity plot to the abscissa) for
incident electrons. Section V.A describes the excitation of the
N; Bzz: state. In section V.B the range of the electrons is defined
more completely. Previous experimental and theoretical work on the
3914 R emission of N; is given in section V.C. The range results from
the MC calculation are then discussed in section V.D. Finally, section
V.E describes the intensity plots resulting when plotted as functions of
the radial direction.

A. Excitationof the NE B 22; State

The main concern of this chapter will be the intensity plots showing
the emission of the 0-0 first negative band (B zz: state) of N; at 3914 A.
Experimentally (see Rapp and Englander-Golden, 1965; McConkey, Woalsey,
and Burns, 1967; and Borst and Zipf, 1969), it has been shown that the

number of photons at 3914 R produced for each ionization of N, is

<
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independent of the energy of the exciting electron for energies from
30 eV at least up to 3 KeV.
In Figure 5.1 the N2 total ionization cross section and cross sec-

tion for ionization and excitation to the B 2

z: state of N; are presented.
The curves are approximately parallel thus even if the absolute values
for the two cross sections are slightly in error, the shapes of the in-
tensity plots that result from this MC calculation should be fairly
accurate.

The total jonization curve lies nicely in the middle of an array of
experiments (namely, Opal, Beaty, and Peterson, 1972; Tate and Smith,
1932; Rapp and Englander-Golden, 1965; and Schram, de Heer, Wiel, and
Kistenaker, 1965) but the B 22: cross section values may be high when
compared to experiments (see Holland, 1967; and McConkey, Woolsey, and
Burns, 1967).

2

The threshold for excitation to this B z: state is 18.75 eV, thus

any electron above that energy can excite and ionize a ground state N2

molecule up to this level. The cross section for excitation and ioniza-

2

tion to the B EZ state is not Targe when compared with the total in-

elastic cross section. In fact, the probability for exciting this state
is only 0.066 for electron energies above 200 eV. The accuracy of the
MC calculation is dependent on the number of excitations in each bin

(see section IV.D). In order to enhance the precision of the MC results,

2.+ 2

excitations of the X zg and A L states of N; are added to the B 223

excitations. The ijonization cross sections for these two states are

22+

found to be proportional to the B J state for electron energies above

30 eV.
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Figure 5.1 Total loss function L(E) from No, denoted by the solid line;
total ionization cross Eections for Ny, denoted by the dash-
dot line; and the N} B 4zf} cross section, denoted by the
dashed line, are given as functions of energy, E.
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Previous workers (Barrett and Hays, 1976; Cohn and Caledonia, 1970;
and Grin, 1957) have used the 3914 E emission as a measure of the energy
deposited. In these works it is assumed that since the 3914 R radiation
is proportional to the number of ionizations in a given volume and if
the number of ionizations is proportional to the energy deposited in
that volume, then the 3914 R intensity is proportional to the energy
deposited in that volume. These experimenters, therefore, measured the
3914 R radiation at several energies, extrapolated their intensity plots
to find a range (to be described in section V.B), and derived an empiri-
cal expression for the range that could be used to find the energy loss
function.

This idea of using the 3914 R emission to derive the energy loss
scheme is useful for energies above 2 KeV. 1In Figure 5.1, compare the

loss function, L(E), used in this work and the N; B 2

E: state cross
section.

The two curves are not parallel below 2 KeV. This implies that the
energy loss function can not be derived directly from the range results
at incident energies below 2 KeV. The energy loss plots from this MC

study are given in section VII.A and more will be discussed in that

section about them.

B. Range of Electrons

The concept of the mean range must be defined next. For each
monoenergetic primary electron impinging into a gas, a range can be
calculated. In general (at least above 100 eV), the higher the electron

energy the further the electron will penetrate into the medium. If an

+

electron is incident along the z-axis, the excitations of the N2

Pt
B L,
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state can be graphed in an intensity plot with the z-axis as the
abscissa.

In Figure 5.2, the intensity plot from 5000 incident 1 KeV electrons
is graphed (the model used in this MC calculation should only be taken
as an illustrative example) in histogram form. Bins along the z-axis
are taken to be 0.5 cm in width for these incident electrons. The linear
portion of the curve may be extrapolated, as illustrated by the dashed
line, to define a mean range of the beam.

A1l the intensity plots are normalized in this paper so that the
beam starts out at z = 0 cm along the z-axis. The intensity in Figure
5.2 seen at negative values of z is brought about by backscattered
electrons. The error bars given near the peak of the histogram are
found simply from a method described in section IV.D.

From Figure 5.2, the range is seen to be 16 cm for these 1 KeV

electrons. Range values, Rg, in units of gm/cm2 are written
R =R »p (5.1)

where Rc is the range incm, p = n MNZ (in gm/cm3), n is the number

density of N2 molecules (in #/cma), and My 1is the weight (in gms) of an
2

"2 molecule. In this case, n = 8.2 x 10]5

4.651 x 10723

gm{cmz.

molecules of Nz/cm3, My, =
2

gm/N, molecule, and R = 16 cm; therefore, Rg = 6.06 x 1070

C. Previous Experimental and Theoretical Work on the
3914 A Emission of Np

Griin (1957) measured for air the total Tuminosity of the 3914 R

radiation in planes perpendicular to the axis of the electron beam with
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an initial energy of 5 to 54 KeV. Cohn and Caledonia (1970) measured
intensity profiles of electron beams with incident energies from 2 to

5 KeV impacting into N2' Barrett and Hays (1976) then extended the
incident electron range down to 300 eV by measuring the radiation pro-
files of 3914 A resulting from electron beams with energies from 0.3 to
5.0 KeV impinging on N2.

Spencer (1959) used the Spencer and Fano (1954) method of spatial
energy deposition and found good agreement between his energy loss plots
and the 3914 R intensity plots of Griin (1957). The Berger, Seltzer, and
Maeda (1974) [BSM] MC calculation provided energy loss plots down to
2 KeV. These plots are also in fairly good agreement with the experi-
ments mentioned above.

Comparisons will be made in this paper between the available experi-
mental electron energy loss data and the MC calculations done here.
Since this MC calculation follows the incident electrons, as well as its
secondaries and tertiaries down to 2 eV, this MC computation is one of
the most detailed ever employed for electron impact energy degradation.
It is, therefore, of interest to compare the results from this study
with experimental results for incident electrons with energies from

300 eV up to 5 KeV.

D. Range Results and Longitudinal Intensity Plots
from the Monte Carlo Calculation

Range data at several incident electron energies are calculated
with the use of the screened Rutherford and the model 3 differential
elastic cross sections. The screened Rutherford model is used because

it is the most widely used form for elastic scattering in theoretical
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studies and, also, because BSM were quite successful in using this form
down to incident energies of 2 KeV. Model 3 was used because of its
very close agreement with experimental differential cross section data
in the range from 30 eV up to 1 KeV.

Table 5.1 presents the range data (for perpendicularly incident
electrons) from three different experiments, the theoretical calculation
by BSM, and two sets of theoretical computations from this study. The
values in parentheses from BH (Barrett and Hays, 1976), CC (Cohn and
Caledonia, 1970), and G (Griin, 1957) are simply calculated from the
empirical formulae given in these works.

For the rest of this chapter, the results of this work will be com-
pared with those of BH. This is the most recent experimental study and
is probably the most reliable experimental work. Theyalso use the same
incident electron energy regime as that employed in this work. In
Table 5.1 it is apparent that the BH values have the largest ranges of
the experimental studies.

The two separate MC calculations in this study seem to bracket the
BH results at all energies. The model 3 ranges are consistently larger
than those of BH. These results are 10% higher at 5 KeV and about 19%
higher at 0.3 KeV. The screened Rutherford ranges, on the other hand,
are about 9% lower at 5 KeV and about 10% lower at 0.3 KeV.

If it can be assumed that the BH results are indeed the most re-
liable data, then the following conclusion can be made: The screened
Rutherford phase function scatters the electron too much while the
model 3 phase function provides too little scattering. This conclusion
is made assuming that the total cross sections described in Chapter III

are fairly accurate.
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Table 5.1 Range data (in ]0'6 gm/cmz) at several energies, E (in KeV),
are given below. The second column M3 (model 3), third
column SR (screened Rutherford), fourth column BH (Barrett
and Hays, 1976), fifth column CC (Cohn and Caledonia, 1970),
sixth column G (Griin, 1957), and seventh column BSM (Berger,
Seltzer, and Maeda, 1974) range values are presented.

E (KeV) M3 SR BH cC G BSM
0.1 0.37 0.34 (0.53) (0.07) (0.08) -
0.3 1.25 0.95 1.06 (0.51) (0.56) --
1.0 6.45 5.57 5.72 (4.17) (4.57) -
2.0 18.6 16.8 17.7 14.0 (15.4) 15.2
5.0 91.5 75.9 83.0 69.7 76.4 71.9
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In this work model 3 is the result of a careful investigation of the
detailed molecular nitrogen cross sections. Therefore no attempt will
be made here to change the cross sections compiled in Chapter III. Model
3 will be used in most of the MC calculations in the rest of this
chapter and also in Chapter VII (BSM have, however, chosen Nes used in
the screened Rutherford cross section, to be a constant value whose value
was selected so as to obtain the best agreement between their MC calcula-
tion and the experimental results of G and CC).

In Table 5.1 the importance of the elastic phase functions is clearly
illustrated. Up to a 25% change in the range is observed when com-
paring the screened Rutherford with the model 3 phase functions. More
elaboration on the effects of various phase functions on the energy
deposition process will be given in Chapter VI.

Figures 5.3 and 5.4 give intensity plots for the 3914 A radiation
resulting from 2 KeV and 0.3 KeV incident electrons, respectively. The
experimental work of BH and the calculations using model 3 and the
screened Rutherford are presented in these figures. The shapes appear
to be somewhat similar; however, the BH results at both energies pre-

dict a range that is between the two theoretical calculations.

E. Intensity Plots in the Radial Direction

Most attention, so far in this study, has been concentrated on the
intensity plots in the longitudinal direction. There is experimental
data available on the intensity of the 3914 R radiation as a function
of o (the axis perpendicular to z). Experimentally, G, CC, and BH all

present data of this type.
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This study uses the experimental data of BH as a comparison with
the results of this study. The next three graphs, Figures 5.5, 5.6,
and 5.7, portray sample results for incident electrons with energies
5.0, 1.0, and 0.3 KeV, respectively. The z and p values given in these
three figures are in units of fractions of the total range.

Fairly good agreement between the MC calculation (using model 3
cross sections) and the experimental work of BH and Barrett (1975) is
observed at all three incident energies. The largest differences be-
tween the two sets of data are noted at 0.3 and 1.0 KeV.

For the 1.0 KeV case, the MC calculation tends to predict more in-
tensity at the lower values of p for z values of 0.3 and 0.4. A similar
result is apparent for the z values of 0.36, 0.48, and 0.60 for an
energy of 0.3 KeV. At a z value of 0.12, however, the experimental data
tend to predict more intensity at all values of op.

Two conclusions can be drawn from these comparisons, if it is
assumed that the experimental data of BH and Barrett (1975) are correct.

22+

First, the cross section for excitation to the N' B y ey be under-

2
estimated in the energy regime between 0.3 and 1.0 KeV. Raising this
cross section in this energy regime could bring about an increase in the
intensity observed early in the electron's degradation process with a
subsequent decrease in intensity later in the electron's degradation
process. Second, more scattering from the elastic collisions would
help to reduce the total intensity at low p values and raise it at the
higher p values. The screened Rutherford differential cross section has
more scattering than model 3. Use of this set of cross sections in the

MC calculation did result in a Tittle better agreement at 1.0 KeV, but

only about the same type of agreement at 0.3 KeV.



‘WSE 40 YuOM [BIL33J03Y3 3l
2310uUdp S,0 3Y3 pue Hg JO ejlep |eJuswLJadxd Iyl Iousp S,X
3yl ‘¢ Lopow Hursn s3nsaA ay3 sajedtpul weabolsty sul|
pLIOS @Yyl °d 1O sSuoL3ldun} Se SaN|PA Z OM] 3 pajuasaud aJe
A3 0°G ABJA3u3d JUSPLOUL YFLM SUOJAI3(D 404 s3old A3Lsudjul G°G aunbLy



-94-

0.7

40

X

adl

0.5

e

. v
o X
B ] L |

°

]
N © <
o

— o )
(*9x3 .01) Ajsudjul v pl6e

0.6

0.0 0.2

0.6

0.4

0.2

0.0



*(G/61) 13944eg JO ERED Eu:wE?maxu 9yl L{j0udp S,X |YL ‘£ Lepou
BuiLsn s3|nsad ay} sajedtputl wesbolsiy suL| pLLOS 8yl *d 40 SUOLOUNS SB SBN|BA
Z Jnoj e pojuasadd aJde AsY 0° [ ABASUD JUSPLOUL YJLM SUOUIIS|D 404 sqold AJLSUllUl 9°G aJnbLd

-95-

d

201000 20 I'n0o0 20 I'000 20 1I'000
- 1 B == 0
7 1] ©
X —
um" Xl_.V
X A o
X X
x e
A kKl =
X \ 73
X <
X X X i
) _
+ : i =
(@]
i =
- b v
v 0=2 ¢0=2 2 0=2 1'0=2Z
L L | TR P



-96-

*HY 40 ejep |ejudwlJaadx3 3yl ajoudp s,X
3yl ¢ (9pow Bulsn s3|nsa4 3yj s93edLpul wesbojsiy Sul| pLIOS Byl "d JO suoljduny se

SSN[BA Z 4n04 3e pajuadsaad ade A3Y £°0 ABJSus JuspLOuUl YJLM SUOJ3I3[3 404 sjold A3Lsusjul /g 34nbLy

d
80 0 0'0 80 v'0 00 80 v'0 00 80 0 00
1 1 | | I A

x

]
M

]
oV}
(*2ox3 z0|) Kyisuaju] yvieg

|
<




<97

At 5.0 KeV a comparison is made between the theoretical calculations
from this work and those of BSM. The results from this work appear to
agree much better with the BH data than does the BSM work. In BSM,
they follow only the primary and secondaries down to 200 eV. Since
this work follows the primary, secondaries, and tertiaries down to 2 eV,
it seems straightforward that the agreement should be better in this

work.




CHAPTER VI
SENSITIVITY STUDY OF THE SPATIAL ELECTRON ENERGY DEGRADATION

In section V.D the ranges from two separate models of the elastic
differential cross section have been compared. A sensitivity study of
the influence of other differential cross sections on the electron energy
deposition is the subject of this chapter. The effects of the ionization
differential cross sections on the intensity distribution are considered
in section VI.A. Section VI.B then discusses the influence of the in-
elastic differential cross sections on the intensity distribution.

In sections VI.C and VI.D, several different elastic phase func-
tions are compared. (The elastic collisions cause more scattering than
the inelastic collisions at any electron energy.) Section VI.C includes
a calculation with no energy loss, while section VI.D discusses the
influence of several variations of the model 1 phase function on the
electron energy deposition.

As illustrated in sections VI.A through VI.D, the scattering phase
functions are quite important in determining the electron energy
deposition intensity or collision profiles. The total elastic cross
sections are also of some significance in determining the intensity

profiles and will be discussed in section VI.E.

-98-
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A. Effects of Ionization Differential Cross Sections on
the Intensity Distributions

The primary and secondary differential ionization forms represented
in Eqs. (3.18) and (3.19) are convenient for calculating the scatter of
the electrons during an ionization event. Here, the influence of these
forms on the intensity plots will be considered.

Other MC calculations have computed the scattering of the electrons
during an ionization event. Brinkmann and Trajmar (1970) calculated the
primary scattering angle from experimental energy Toss differential
cross section data. They then employed an empirical simplification of
the coincidence data obtained by Ehrhardt, Schulz, Tekaat, and Willmann
(1969), in which half of the secondary electrons were presumed to
scatter at four times the primary scattering angle and the other half at
7 radians plus four times the primary scattering angle.

In another MC approach, Berger, Seltzer, and Maeda (1970, 1974)
used the Moller cross section for the scattering of secondary electrons
as a result of an ionization collision. The angular deflection 6 is

given such that

il 4e
sing = T(] e ZE) ¥t +8 (5.])

where e is the energy transfer in units of E, and t is the kinetic energy
in units of the rest mass.

At the maximum incident energy of 5000 eV used in this work,
t ~ 0.01. Using this value of t for primary scattering, in which ¢ < 0.5,
all scatterings are betﬁeen 0° and 45°. The secondary scattering turns

out to be between 45° and 90°, since 0.5 < ¢ < 1.0. This means that
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most deflections of the primary electron are at small angles while most
deflections of the secondary electrons are clustered near 90°.

Strickland, Book, Coffey, and Fedder (1976) used a variety of dif-
ferent secondary doubly differential ionization cross sections. Their
solutions to the equation of transfer show 1ittle dependence on the
functional form being used. Thus it is valid to ask if different primary
or secondary ionization differential cross sections will have any in-
fluence on the intensity plots resulting from a MC calculation.

The primary electron is scattered the least. Therefore, for com-
parison, it is assumed that no scattering of the primary electron was
incurred during the ionization event. The results of this comparison,
using the 3914 ﬁ intensity plots for incident electron energies of 2000
and 300 eV, were not too surprising: There was virtually no observed
difference in the two intensity plots. This simply means that the
scattering of the primary during an ionization event is minuscule com-
pared to the much larger scatterings inherent in the elastic collisions.
For most of the calculations following this comparison, it was assumed
that no scattering of the primary electron occurred in an ionization
event. This resulted in a factor of eight savings in the computer time
and cost.

In Figure 6.1, the effect of the primaries and secondaries on the
total 3914 R radiation is clearly seen at the incident energy of 1 KeV.
The major contribution of the secondaries is early in the history of the
incident electron, when it has sufficient energy to create high energy
secondaries capable of producing the 3914 R emission. Also, the con-
tribution by the primaries is a more sharply peaked curve than that of

the secondaries. The backscatter contribution from the secondaries is
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seen to be fairly high. Secondaries are at lower energies; therefore,
more of them are backscattered.

In considering the secondaries, it is of interest to discover any
difference in the intensity plots that may be due to the use of a dif-
ferent secondary scattering distribution. Consequently, a comparison
was made between Eq. (3.18) and an isotropic secondary scattering func-
tion. The difference in the two resulting intensity plots was so small
that they were the same within their standard deviation error bars.
This result, although surprising at first glance, did not seem as sur-
prising under careful inspection.

Consideration of Table 5.1 gives the answer. A 5 KeV electron has
a range of 91.5 x 10'6 gm/cm2 while a 0.3 KeV electron has a range of
1.25 X 10h6 ngsz. Most of the secondaries contributing to the 3914 R
emission that are produced by an incident electron of energy 5 KeV have
energies of only a few hundred eV or less. These electrons do not travel
far, relative to the total range of the incident particle. Therefore
their characteristic 3914 A intensity profiles do not alter the total
3914 R profile noticeably.

A 0.3 KeV electron traveling in N2 at a density of 2 x 10]5 mole-
cu'les/cm3 (which corresponds to a height in the atmosphere of roughly
70 km) has range of about 12 cm. At 150 km (where the density is about
5% 10]0 m01ecules/cm3) this same electron will have a range of about
5 km. The secondary doubly differential ionization cross sections may
thus have an influence on the energy deposition in applications to the
upper atmosphere. As mentioned earlier, however, Strickland et al.

(1976) do not observe such an effect. Inclusion of Eq. (3.19) only
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increases the MC computation by 2-3%. Therefore it was left in all the

calculations.

B. Influence of Inelastic Differential Cross Sections
on the Intensity Distributions

Model 3 includes scattering from inelastic excitation collisions.
Because of the very highly forward peaked nature of most optically
allowed excitations, inelastic excitation scattering is only used below
100 eV and then only in an ad hoc manner. Below 100 eV, scattering due
to inelastic excitation collisions is assumed to be the same as that due
to elastic collisions (see section III.B).

The main purpose of this section is to determine whether this ad hoc
excitation collision scattering makes a significant difference in the
spatial energy deposition. When a MC calculation is run assuming
no excitation scattering at any energy, no difference is detectable in
the 3914 R intensity plots at energies above 300 eV.

For electrons of energies 300 and 100 eV, a difference is detected.

The range (in units of 1076

gm/cmz) changes from 1.25 to 1.34 for an
electron energy of 300 eV and from 0.365 to 0.391 for an electron energy
of 100 eV. This means that the extra scattering due to the inelastic

excitation events reduces the range by about 7% at these two energies.

C. Comparison of Different Elastic Phase Functions on the
Electron-Ny Collision Profile

The large influence of the phase functions on the spatial energy
deposition has been pointed out in section V.D and will be further dis-

cussed in section VI.D. These phase functions all have some type of
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energy dependence. Another way to approach a sensitivity study of the
elastic phase functions is the following: 1) Fix the number of collisions
allowed in the MC calculations at some set number, say 25000; 2) allow
only elastic collisions; and 3) assume that there can be no energy loss
during a collision (the electron energy remains fixed at 300 eV).

Employing all the above assumptions, the scattering problem is very
similar to the photon scattering process. The aspects of this section
may, therefore, be of interest both to researchers in photon scattering
as well as electron scattering.

One of the simplest ways to represent elastic scattering phase func-
tions is with model 1 [Eq. (3.12): PM3(6,E) =« {1 - cose + a(E)}"z]. This
scattering form, as noted earlier, is very similar to the screened
Rutherford cross section. Figure 6.2 illustrates five trial phase func-
tions, designated as Al through A5, whose properties are indicated in
Table 6.1.

These five phase function trials were then run in a MC computation
using the three restrictions given above. The collision plots for three
of these trials are given in Figure 6.3. The input number density in all

cases was 4 x 1015

mo'lecu]es/cm3 and electrons entered the N, gas until
the total number of collisions was 25000.

From Figure 6.3 several observations can be made. Generally, the
number of backscatter collisions decreased as the forward peaking of the
differential cross section increased. The number of collisions occurring
close to the origin of the perpendicularly incident electrons also
decreased, while the number of collisions at distances forward from

the origin increased.



-106-

LD g v ot i o o e e e i s

|(j4 T (% (I O (N O O O O OO A

O 30 60 90 120 150 180
8 (Degrees)

Figure 6.2 Differential cross section graph for model 1 trials:
A1, A2, A3, A4, and A5. '
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Table 6.1 Model 1 parameter values (column labeled "a") and phase func-
tion properties for various trials. The phase function fall-
off (column labeled PFFO) is indicated in the number of
orders of magnitude difference between the differential
cross section at 0° and its value at 180°. The average
angle of scattering (column labeled AAS) is found using

Eq. (6.3).

Trial a PFFO AAS
Al 0.9 1.0 64.5°
A2 0.4 1.5 h2.2°
A3 0.095 2.5 31.6°
A4 0.02 4.0 16.3°

AS 0.0065 5.0 9.7
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repr?sen§ the MC data while the o's represent the fit using
Eq. (6.2).
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The shape of the collision profile at positive longitudinal dis-
tances appears to have a distribution which is dependent on the "a"
parameter. This functional form for the distribution of collisions D(z)

can be represented simply as

D(z) = L (6.2)
a(z -2z )" +8
0
where
_ _a_
a = -0.148 ln(?ﬁﬁ)
g = -0.09 Tn(—2—)
3.2 x 10

and

z, = 0.056/a

The o's in Figure 6.3 represent a visual fit tothesedata. Equation
(6.2) does a reasonable job of indicating the gross features of the
collision profile. The features illustrated with this form are the
height of the peak, the width of the distribution, and the location of
the peak.

The location of the peak is observed to be inversely proportional
to the value of the screening parameter a. The values of a« and B are
directly proportional to the natural logarithm of the screening para-
meter a, thereby causing the peak of the collision profile to decrease
in value as "a" decreases.

Model 2 [Eq. (3.13): Pyy(0,E) = (-f/(1 - cose +a)?) -

((1 - £)/{1 + cose + c}z)] can also be used in a MC computation of a
similar nature. Figure 6.4 indicates the differential cross sections
(trials B1, B2, and B3) used in this comparison and Table 6.2 lists the

properties of these trials.
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Figure 6.4 Differential cross section graph for model 2 (which contains
a forward and a backward scattering contribution) trials:
B1, B2, and B3.
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Table 6.2 Model 2 parameter values (columns "a," "c,” and "f") and
phase function properties for various trials. The PFFO
and AAS columns are described in Table 6.1.

Trial a C f PFFO AAS
B1 0.1 0.3 0.8 1.0 52.3°
B2 0.033 0.38 0.92 2.0 29.0°

B3 0.012 0.46 0.97 3.0 16.3°
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The results of these MC calculations are illustrated in Figure 6.5.
There is no sharp discontinuity at the origin. The peak of the dis-
tribution moves along the z-axis as the forward scattering increases.
The reason for this continuity in the collision distribution arises from
the backscatter peak.

The average scattering angle is given by

2

8 —;

Sije 6 P(e) sinededs (6.3)

O3
O

where P(8) is the phase function. The average scattering angle is nearly
the same in trials A2 and Bl1; A3 and B2; and A4 and B3 (compare Tables
6.1 and 6.2). This means that the shape of the backward scattering part
of the phase function is also very important in determining the spatial

energy deposition of an electron.

D. Influence of Different Elastic Phase Functions on
the Intensity Profiles

A sensitivity study involving several different, but constant,
phase functions was the subject of section VI.C. The elastic scattering
phase function of electrons changes with energy. Generalizing the influ-
ence of the energy dependent phase function is the subject of this
section.

Section V.D includes a comparison of the screened Rutherford and
the model 3 phase functions and their influence on the range values.
It was learned that in the electron energy regime of interest, 2 eV to
5000 eV, the screened Rutherford causes more scattering than the model 3
phase function. The screened Rutherford range values, therefore, tend

to be lower than the model 3 range values (see Table 5.1).



-113-

O6f

04r

0.2F

0.0 — ——t—+
0.8} ]
0.6} -

04 7

B2
0.2F =

Collisions (10%)

0.0 i —— i}
0.8F -
o6} L
0.4} . .

B3
0.2F -

0.0 ] I ! ] ! L
-l2 -8 -4 0 4 8 12 16 20

Z (cm)

Figure 6.5 Collision plots for MC trials B1, B2, and B3. The histograms
represent the MC data.
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The screened Rutherford and model 3 phase functions have somewhat
different forms. Thus it is difficult to compare them in ways other
than the way they were compared in section V.D.

A more convenient phase function form to use for comparison is that
of model 1. Model 1 depends on the one screening parameter, a, which
can be written as a function of the energy such that a(E) = a1(E/1 eV)az.
When ay = 32 and Ay =iwly this form simulates the screened Rutherford
phase function and a(E) in this case is represented in Figure 6.6 by the
solid 1ine (trial C1).

Four other representations of the parameter a(E) are given in
Figure 6.6. These five trials represent attempts to characterize the
influence of this screening parameter on the energy deposition process.
A1l five trials (C1, C2, C3, C4, and C5) used 1000 perpendicularly in-
cident electrons with energies of 1 KeV and the trials and their para-
meters are given in Table. 6.3.

Trials C2 and C3 were attempts to detect the influence of the
starting screening parameter a(1000 eV) on the energy deposition. For
trial C2 a(1000 eV) [from Table 6.3] is a factor of ten lower than
a(1000 eV) for trial C1. For trial C3 a(1000 eV) [from Table 6.3] is a
factor of ten higher than the a(1000 eV) for trial Cl1. However, for
trials C1, C2, and C3 the a(30 eV) values are the same.

The range and fraction of incident energy backscattered obtained
from trials C1, C2, and C3 (and also trials C4 and C5) are given in
Table 6.4. The range from trial Cl is 38% lower than the range from
trial C2 and 38% higher than the range from trial C3. The symmetry of

these results is remarkable and probably fortuitous.
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Figure 6.6 Five trials (C1, C2, C3, C4, and C5) of a(E) for use in
model 1.
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Table 6.3 Parameters aj, aE, a(1000 eV), and a(30 eV) for trials Cl,
c2, C3, C4, and C5.

Trial 2 a, a(1000 eV) a(30 eV)
Cl 32 -1.0 0.032 1.07
c2 303 -1.66 0.0032 1.07
C3 3.44 -0.344 0.32 1.07
C4 3.2 -1.0 0.0032 0.107

C5 320 -1.0 0.32 10.7
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Table 6.4 Range, Rq (in 10-6 gm/cmz), and fraction of energy back-
scattereg, Fg, are given for trials C1, C2, C3, C4, and CS5.

Trial Rg FB
C1 5.57 0.078
c2 7.70 0.012
C3 3.43 0.236
c4 8.16 0.009

C5 3.32 0.211
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Using only these three trials it is found that essentially

- 1
Rg(FC) ~ Rgo(].o + m?c—)-) (6.4)

where Rg(Fc) is the range of the electrons using the screening parameter
a(1000 ev) = Fs a0(1000 eV). The Fe is some factor (in the case of trial

c2, Fc = 0.1) and Rgo is the range of the electron using the screening
parameter a0(1000 eV). Again (see Eqs. (6.2) and (6.4)) there appears
to be a logarithmic type dependence on the screening parameter. In sec-
tion VII.C shapes of the collision profiles were found to be proportional
to In(a). Here, the range appears to be approximately proportional to
In(a) for the three cases studied.

Next, use two more new trials, C4 and C5. The energy dependence
of "a" in C1, C4, and C5 is the same and is illustrated in Figure 6.6.
As seen from Table 6.4, the screening parameter for the incident energy
has the most influence on the spatial energy deposition. The energy
dependence of "a" influences the energy deposition such that if the
parameter, a, is lower throughout the entire energy regime for a given
trial than the "a" used in another trial (for example, C4 compared with
C2), then the electrons will penetrate further during the course of that
trial (the C4 range is greater than the C2 range).

The radial distribution of the 3914 R intensity profile is another
quantity of interest. Figure 6.7 illustrates this radial distribution
for trials Cl1, €2, and C3 at three set distances into the medium. The
sharpest forward peaked phase function (hereafter the last four words can
be called FPPF) trial, C2, has an intensity distribution clustered close

to the z-axis throughout the x regime. The least FPPF trial, C3, has
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its intensity distribution spread out the most from the z-axis throughout
the z regime.

In Figure 6.8, a cut is taken through each intensity profile at the
distance z = 0.3 (units are fraction of range). This type of distribu-
tion continues for all the longitudinal distances throughout the range.
The 3914 R intensity profile of the sharpest FPPF, C2, again hugs the
z-axis, whereas the profile of the least FPPF, C3, again shows the

greatest spread from the z-axis.

E. Effects of the Total Elastic Cross Section on the Electron
Energy Degradation

As illustrated in the previous sections of this chapter, the spatial
electron energy degradation is governed mainly by the elastic differen-
tial cross section. Consider the effects of the total elastic cross
section on the electron energy degradation.

The total elastic cross section given by Eq. (3.9) is used in
practically all the MC calculations of this study. This analytic form
agrees quite well with experiment.

Berger, Seltzer, and Maeda (1970, 1974) used the integrated Ruther-
ford cross section for their total elastic cross section. This cross
section is somewhat different from the experimental data and is plotted
in Figure 3.2.

If a MC calculgtion is made with this Tower elastic cross section,
it is expected that the 1 KeV electrons will penetrate further into the
medium. Figure 6.9 illustrates the results of this calculation where

the screened Rutherford phase function was used.
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The range is observed to be 6.98 x 10'6 gm/cm2 as compared with
5.57 x 10”6 gm/cm2 using the cross sections given by Eq. (3.9) (here-
after called MSR). The shape of the intensity profile of the 3914 A
emission is also different. The maximum of the profile is less peaked
than that given by MSR.

Banks, Chappell, and Nagy (1974) used cross section values which are
shown in Figure 3.2. These cross section points are somewhat different
than the cross sections from MSR in the range from 100 to 500 eV. This
indicates that electrons degraded with these cross sections have a range
less than that of MSR.

This section completes the sensitivity study. The next chapter
discusses the MC calculation, the important yield spectra, and the general

energy 10sS scheme.



CHAPTER VII
MONTE CARLO ENERGY LOSS PLOTS AND YIELD SPECTRA

In this chapter two other very important energy degradation outputs
are discussed. The rate of energy loss as the electron impinges into
the medium is a very important quantity. This concept, the fraction of
energy backscattered, and the correlation between the range and the loss
function are discussed in section VII.A.

The most important output from the MC calculation is the spatial
yield spectrum. In section VII.B, this yield spectrum is calculated at
several energies and at several positions in the gas. Both the three
variable spatial yield spectrum U(E,z,Eo) and the four variable spatial
yield spectrum U(E,p,Z,EO) are considered in this section. Because the
yield or number of excitations to any N2 state is calculated quite easily
from the spatial yield spectrum, an attempt is made to represent it

analytically.

A. Energy Loss of Electrons in Np

The rate of energy loss by electrons in a medium is a useful quan-
tity. For higher energy electrons (above 2 KeV), the degradation of
these electrons could be accomplished with the use of the loss function,
L(E), and the continuous slowing down approximation (discussed in

Chapter II).

-125-
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This is one important reason why the range values of the electrons
are under investigation. Assuming a continuous slowing down of the

electron, the range R(Eo) for an electron of incident energy E0 may be

defined as

0
& dE
R(Eo) = é 3t/ dx (7.1)
0

(employing Eq. (2.2)). Since nL(E) = - g% (as noted in Chapter II), then

E
_1 0 e
R(EO) -ﬁé T(EY (7.2)

In the Born-Bethe approximation L(E) is proportional to 1n E/E.
At the higher energies, 1n E/E can approximately be written as E"?5

(see Green and Peterson, 1968). Using this approximation in Eq. (7.2),

the range is

e 1.75
R(E) = CE, (7.3)

where C is a constant.

Griin (1957) and Cohn and Caledonia (1970) have shown that such an
expression is correct for electron energies from 2 to 54 KeV. Barrett
and Hays (1976), on the other hand, extended this energy range down to
0.3 KeV and derived a slightly more complicated empirical formula for
the electron energies from 0.3 to 5 KeV.

Much of the significance of the range is built on the idea that all
the energy of the electrons is lost between z = 0.0 and z = 1.0 where
z = the fraction of the range traveled. Such an approximation is quite

good above 2 KeV; however, at energies below 1 KeV this is not such a

good approximation.
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In Figure 7.1 an energy remaining plot is given for three separate
calculations with 1 KeV incident electrons. At z = 0.0, which is the
point of incidence for the 1 KeV electrons, all calculations assume that
no energy has been lost. Thus the amount of "energy Teft" is simply
1 KeV.

Stolarski (1968) integrated the universal energy loss curve derived
from Griin's (1957) data to obtain the mean energy. Barrett and Hays
(1976) used their empirical range formula to calculate the mean range
and, subsequently, the energy remaining in the incident electron at
various distances into the medium. In the MC calculation of this study
only the energy lost for positive z values was employed to find the
energy remaining.

The Stolarski (1968) values are closest to the MC calculation values.
The major differences between Stolarski's results and this MC computa-
tion are due to three factors: First, some energy is lost by backscatter
electrons to negative z values; second, some energy is lost by electrons
which penetrate to z values greater than 1.0 (straggling electrons); and
third, the universal energy loss curve may not be as accurate as a MC
computation.

Graphing the energy loss data in Figure 7.1 is really not very
informative. Figure 7.2 illustrates a more lucid way of representing
the energy loss data. In Figure 7.2, the fraction of the primary energy
lost is plotted as a function of z for four energies (0.1, 0.3, 1.0, and
5.0 KeV). As the incident electron's energy is reduced, the relative
backscatter is increased. The most backscatter (21%) and the most energy

lost in straggling (6%) is observed for the 0.1 KeV electrons.
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Figure 7.1 Energy remaining plot for electrons with energies incident
at 1 KeV. The A's give the calculation of Barrett and Hays
(1976), the o's give the values from Stolarski (1968), and
the solid line gives the average energy left at various z
values from this MC work.
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The fraction of energy backscattered is also of interest. The
backscattering of electrons fram the jonosphere has been observed in
rocket experiments by McDiarmid, Rose, and Budzinski (1961) and in the
Injun 111 satellite experiments of 0'Brien (1964). Berger, Seltzer, and
Maeda (1974) [BSM] have calculated backscattering coefficients for mono-
energetic electrons incident orn a semi-infinite air medium at energies
from 10* KeV down to 2 Kev.

One quantity calculated by BSM is RE, the energy albedo (computed by
summing the energy backscattered). Since the incident energy range used
in this work overlaps the incident energy range used by BSM from 2 to 5
KeV, a comparison of the RE'S from both calculations is of interest.

Table 7.1 presents the results from the model 3 (hereafter called
M3) and the screened Rutherford (hereafter called SR) phase functions
and the work of BSM. The M3 energy albedos are lower than those energy
albedos resulting from the SR and the BSM calculations (at Teast where
there are values available) down to the energy of 0.1 KeV. At this
energy the M3 phase function reveals a fairly substantial backscatter
with approximately one-fifth of the incident energy lost in backscatter.

Although 1ittle consideration is given to the backscattered elec-
trons in this study, there is much information that can be derived from
studying these backscattered particles in detail. This detailed spatial

MC technique would be an appropriate method of studying these back-

scattered particles.

B. Spatial Yield Spectra for Electrons Impinging on Ny

The yield spectrum for an electron energy degradation process con-

tains all the information necessary for computing excitations from that



-131-

Table 7.1 Energy albedos presented at five energies E, with the use of
the model 3 (column labeled M3) and the screened Rutherford
(column Tabeled SR) phase functions and the work of BSM.

E, (KeV) M3 SR BSM
0.1 0.210 0.188 £s
0.3 0.072 0.105 -
1.0 0.051 0.078 -
2.0 0.041 0.068 0.062

5.0 0.039 0.045 0.052
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calculation. Green, Jackman, and Garvey (1977) [hereafter called GJG]
have discussed the use of the yield spectrum U(E,Eo), which was de-
scribed in Chapter II of this work. This yield spectrum can be used
to calculate the yield of any state by means of the equation

E
0

JJ(EO) = é. U(E,Eo)pj(E)dE (7.4)
J

where pJ(E) = GJ(E)/UTI (E) 1is the probability for excitation of the
Jjth state with excitation energy wj.

In these MC calculations information about the yield spectrum can
be attained at any longitudinal and radial distance. The three variable
yield spectrum U(E,Z,Eo), which is a function of the longitudinal dis-
tance z, as well as the incident electron energy E0 and the energy E, is
considered in subsection VII.B.1. The four variable yield spectrum
U(E,p,z,Eo), which is also a function of the radial distance p, is then

considered in subsection VII.B.2.

1. Three Variable Spatial Yield Spectra

The three variable spatial yield spectrum U(E,z,EO) is found in the
following manner. A MC calculation takes place for a certain incident
energy E0 which places all the collisions with their characteristics
on a magnetic tape. The longitudinal- or z-axis is divided up into
several equal intervals of Az e gm/cm2 each and the energy regime from
2 eV up to the incident energy Eo is divided up into several intervals
of AE; . eV each (not all intervals being equivalent in energy).

If the spatial yield spectrum U(EE,ZE,EO) for a certain energy

value EE and longitudinal distance zE is desired, then the two-dimensional
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rectangle with longitudinal endpoint coordinates Ze - azlnt/2 and

zp + azInt/Z and energy width endpoint coordinates EE - aEIntIZ and

EE + AEIntIZ is established. If the longitudinal distance to any in-

elastic collision (elastic collisions are excluded because of the real
lack of interest in their spatial properties and also because they are
not well defined at electron energies below 30 eV), Z.s is between

zp - AzIntIQ and zp + &zlntla and the energy of the electron before the
collision, Ebc’ is between EE - aEIntIZ and EE + aEIntIZ then the number
of electrons in that rectangle, N(EE,ZE), is incremented by one. This

process continues until all the collisions are accounted for.

The spatial yield spectrum [in #{eU/(gm/cmz)] is then written as

N(E

z.)
_ N(Eg,zg
e22p0Ey) =

Int

U(E (7.5)

AZrnt

(This spatial yield spectrum is also normalized to one electron.) This
process then continues for each two-dimensional rectangle across the entire
plane of interest. As an example, the U(E,z,EO) for three longitudinal
distances is given in Figure 7.3 for the incident energy of 1 KeV.

This U(E,z,Eo) [as observed in Figure 7.3], although more complex
than the U(E,EO) of GJG, has some nice general characteristics that con-
tinue throughout the entire incident energy range (from 0.1 KeV up to
5 KeV). It is, therefore, reasonable to continue the philosophy of
analytic representation (see Green and Barth, 1965; Green and Dutta,
1967; Stnlarski and Green, 1967; and GJG). The analytic properties of
U(E,z,Eo) will permit researchers to infer important spatially derived
properties of N2 with a degree of accuracy which should suffice for many

atmospheric applications.
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Figure 7.3 Three variable spatial yield spectrum for an incident energy
of 1 KeV given at three Tongitudinal distances (in fractions
of the range): 2z = 0.0739 represented by x, z = 0.429
represented by o, and z = 0.96]1 represented by A.
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It should be noted that at the small longitudinal distances a
fairly large "source" term persists at energies E = Eo‘ In the inter-
val from about 4 eV to about 10 eV there is a noticeable dip in the yield
spectra. In this range (see Figure 3.6), the total inelastic cross
sections show a very large dip, thus many of the electrons in this range
do not interact inelastically with the N2 gas in the region of interest.

For the purposes of many applications it is useful to represent the

yield spectra by
U(E,z,Eo) = Ua(E’z’Eo) G(ED— E- Ee) + G(EO-E) D(z,EOJ (7.6)

(following the notation of GJG), where & is the Heaviside function with
Ego the minimum threshold of the states considered, and G(ED- E) is the
Dirac delta function which allows for the contribution of the source

itself. The Ua(E,z,EO) is represented approximately by

B, Cy
Ua(E’z’Eo) = A(Z,EO) ¥ Bl(z’Eo)[ER] + C](Z,EO)[ER] (7.7)
and
A a;(E,)
7 =
o [ZR = az[Eol]z * a3(E0)
B..lz.E. )
B1(z,E°) @ = _1l (EO)]Z —
R 120 13
CTI(Z’EQ)
C (Z,E ) S AL L 0
1 /
) ezR %12 .
d,(E.)
R =g —

e + 1
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d
" 22

ag(Ey) = ay + ¢

b,1(2,E)) = fexpl{zy - FTE)V/TR(ENT + 1]

b
i P12z
byo(Ey) = byoq (1 -

%

c
112
c11(z,E0] = ¢ % / [exp[{zR - fl(Eo)}/fZ(Eo)] +1]

d12

dl(Eo) = d]'I‘So

f
- 12
fE) = fq(1 + £9)
0
f
- 22
fz(Eo) N f21 &

r
Rg(EO) = B % ro 503 = Range of an electron of primary energy EO

where the parameters and their values are all given in Table 7.2. Also,

£ ™ EOIIOOO, ER = E/Eo, and Zp = z/Rg(Eo).
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Table 7.2 Parameters and their values are given below which are to be
used in Eq. (7.7) for the molecular nitrogen spatial yield

spectrum.
Parameter Value Parameter Value
a, 587 4 0.6 x 10°
3, -1.63 d:s -1.68
3, 0.4 d, 0.2
3y, 0.075 f1 0.9
33] 0.1 sz 0.044
ag 0.019 fon 0.104
by 81 oy -0.39
b'I]Z -1.8 911 0.85
bns 8.0 glz 0.07
by 21 0.4 95 0.2
by o 0.05 rT 2.27 x 1077 gwen?
by 4 0.2 ry 6.22 x 10°° gm/cm2
B, -1.52 Py 1.67
11 1.30 x 10°
912 15
P 0.15

, 10
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The yield of any state is then found from

bz
ui
J.(z,Eo) = [ U(E,z,Eo)dEdz (7.8)
J sz W
-T J
where
- EO
fui T T (E) ¥/
[e'“R ~ 915 9 + 1
and
g
11
E}:-—.....-...._.._
91( 0 9]2
(3% )

0

The upper limit of integration in Eq. (7.8) is not E0 but is Eui'

As the electrons penetrate further and further into the medium, they lose
more and more of the high energy particles. The energy Eui is thus a
cutoff energy which must be invoked.

Equation (7.6) represents the yield spectra data fairly well in
this regime of incident electron energies. The fit can be seen in
Figure 7.4 for five incident energies at five longitudinal values.

A comparison is given in Table 7.3 between the yield using Eq. (7.8)
and the yield using the MC calculation for several incident energies and
longitudinal values for the yield of the 3914 R emission. The two cal-
culations are in fair agreement throughout the entire range considered.
It should be noted, however, that Eq. (7.8) is not accurate at longi-
tudinal values in the backscatter direction.

Maeda and Aikin (1968) attempted to apply an analytic degradation
spectrum to probiems of the atmosphere. They calculated the number of

oxygen atoms resulting from the dissociation of 02 from auroral events.



Figure 7.4 The three variable spatial yield spectrum U(E,z,Eq) is
plotted as function of Eg. The MC calculations are repre-
sented by symbols for each z (in fractions of the range)
and Eg (in KeV): o0, z = 0.126, E5 = 0.1; A, z = 0.316,

Ep = 0.3; x, z = 0.606, Eg = 1.0; v, z = 0.928, Eg = 2.0;
and o, z = 1.052, Ey = 5.0. The analytic fit using Eq. (7.6)
is represented by the sclid line with the source term con-
tribution represented by a.



UIE, ZE,) [ #/eV/(gm /cmz)]

107
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Table 7.3 Comparison between the yield of the 3914 R emission [#/(.5 cm)]

from the MC calculation [column labeled MC] and with the use
of Eq. (7.6) in Eq. (7.8) [column labeled AF] for several in-
cident energies [column labeled Eq (in KeV)] and longitudinal
distances [column labeled z (in fractions of the range)].

U‘l(ﬂ(ﬂ(ﬂmNNNNN—'—‘—‘—‘—‘DQQDDQD‘ODO
. . R . . 8 . s ® s P

. . s e o A . s . .
0O O O O O O O O O O O O O O O W W W W W = — — od |0

Z MC AF
0.01 280 287
0.2 240 272
0.5 155 168
0.8 70.0 82.3
1.0 35.2 49.7
0.01 452 406
0.2 626 523
0.5 490 429
0.8 174 177
1.0 74.2 13.2
0.01 550 556
0.2 740 797
0.4 860 908
0.7 500 456
1.0 100 91.9
0.01 600 578
0.2 780 841
0.4 1050 995
0.7 600 517
1. 130 85.5
0.01 1300 1323
0.2 1760 1927
0.4 2100 2337
0.7 1380 1214
1.0 200 160
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This yield of 0 atoms was then used to predict the variation of polar
mesospheric oxygen and ozone during auroral events.

Shemansky, Donahue, and Zipf (1972), however, showed that Maeda's
spectra are deficient in low-energy degraded primary electrons. This
conclusion was also supported by BSM.

The spatial yield spectrum calculated with the use of this MC approach
should be quite accurate statistically from 2 eV up to the incident
energy Eo‘ There may be some errors inherent in the assumptions and
approximations used in these MC calculations however. The analytic
spatial yield spectrum given by Eq. (7.6) does represent fairly well the
actual spatial yield spectrum. Thus the analytic spatial yield spectrum
can be applied to some of the problems in aeronomy involving impinging
electrons into the atmosphere.

Consider now the use of Eq. (7.6) with an incident electron energy
flux of ¢(E0) [in units of #/cmzfsec/ev]. A yield Jj[z,¢(E0)] in units

of #/CmSISQC can be calculated using

Jj[z,d:(Eo)] = z “?1 ¢(E,JU(E,z,E )p(2)dEdE (7.9)
J J

where p(z) is the density (in gm/cm3) of the air at altitude z. Equation
(7.9) is not applied by the author to any given flux ¢(E0) in this work.
Future studies can make use of Eq. (7.9) in applications to aurorae and
their effects on the atmosphere.

The spatial yield spectrum for Nz can be used fairly accurately for
problems dealing with the atmosphere in spite of the fact that the
atmosphere is not entirely molecular nitrogen. In Green, Jackman, and

Garvey (1977) the two variable yield spectrum U(E,EO) was observed to be
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quite similar in all the gases considered. Thus it is expected that
the spatial yield spectrum U(E,z,EO) will also be similar for electron

energy degradation into the other atmospheric gases.

2. Four Variable Spatial Yield Spectra

The last subsection (VII.B.1) was only concerned with the spatial
yield spectra in the longitudinal direction. This subsection deals with
the four variable spatial yield spectra U(E,p,z,Eo) which is also a
function of the radial direction p.

The MC calculation appropriately accounts for the coordinate p down
to the energy of 30 eV, below which the multiple elastic scattering dis-
tribution is used. In subsection IV.C.6 an approximation was made which
assumed that p was about one-sixth of the total path length. A better
approximation would be to simply assume that the p distribution for N2
is similar to that of H2'

With this assumption and inverting Eq. (8) from Kutcher and Green

(1976), the expression for p is

o =[-In (1 - R)/61V/Y (7.10)
h
where (22 + (555)1/2)
4% %
(s +0.3)
v =21 - exp(- 3)]

and R = a random number. The parameters are found by averaging those
parameters in Table I of Kutcher and Green (1976).
Use of Eq. (7.10) in the MC computations resulted in the spatial yield

spectra fU(E,p,z,EO) which is fairly accurate down to 2 eV.
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The U(E,p,z,Eo) was computed in a manner similar to the way that
U(E,z,E;) was computed. In subsection VII.B.1 a rectangle ﬁEInt by AZyos
was taken as the area of interest. Here, a volume AZy oy by AEInt by ﬂPArea

is used. The aP is in units of area [(gm/cm2)2] and is defined as

Area

Ap Ap
- Int,2 Int,\2
Prvaa = Bllpitire) = (p = s=me=)T |

where p is the mid-point of the area of interest and ApInt is the radial

interval of interest.

If the spatial yield spectrum U(EE, PEs zE,ED) at a certain energy
value EE’ longitudinal distance Zes and radial distance PE for an elec-
tron of incident energy E0 is desired, then the volume with energy width

endpoint coordinates Ep - (AEIntIZ) and Ep + (AEIntIZ), longitudinal

endpoint coordinates z. - (aAz, ,/2) and zZp + (Az,. ./2), and radial end-

E Int Int
point coordinates op - (Aplntfz) and pp * (aplnt/2) is established. If

the longitudinal distance, z. is between zp - (Azlnt/Z) and zp + (az, . /2)

Int
the radial distance, Pes is between pp - (aplnt/Z) and pp t (AplntIZ),
and the energy before the co11ision,'Ehc, is between E; - (AE; ./2) and
Ep + (aEIntjz), for an inelastic collision; then the number of electrons
in that volume, N(EE,pE,zE) is incremented by one.
2)3

The spatial yield spectrum [in #/eV/(gm/cm™)~] is then written as

ﬂEInt aPArea ﬂzInt

U(EE’DE’ZE’EO) = (?-TI)

This process then continues for each small volume across the entire volume

of interest. Again, it should be recognized that this yield spectrum is

normalized to one electron.
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The four variable spatial yield spectrum is presented in Figure 7.5
(a, b, c, and d) for an incident electron energy of 1 KeV. It is given
at four radial distances at each longitudinal cut (all in units of
fractions of the range). The U(E,p,z,Eo) from other incident electron
energies are not presented here but show a similar type of behavior.

The shape of U(E,p,z,EO) is observed to be quite similar to U(E,z,ED)
[see Figure 7.3] and, indeed even to U(E,Eo) [see Green, Jackman, and
Garvey, 1977, Figure le]. The lower energy power fall-off is aER'1‘52
in all three yield spectra. All three spectra also exhibit a constant
component in the middle energies with the source term feature at the
incident energy (ER = 1.0).

The four variable and three variable spatial yield spectra illustrate
an increasing tendency at higher values of energy (ER % 0.9+ 1.0) and
at the lower values of z and p. This feature is not as prominent in the
non-spatial yield spectrum U(E,EO), which is calculated by 1integrating
over the spatial component of the spatial yield spectra. In the inte-
gration process the higher energy spectra increase is averaged out by
the equally important higher energy spectra decrease exhibited at the
higher values of z and p.

Knowledge of U(E,p,z,Eo) implies more detailed information about
the entire spatial degradation process. Once the U(E,p,z,Eo) is known
then the number of excitations Jj(p]+2,z) of the jth state can be found.
This Jj(p]ﬁe,z) is a result of an incident electron flux ¢(E°) and is the
number of excitations at altitude z in the ring between °1 and Py Thus

E

0
[ HEIUER.2.E Do (2) ke, (7.12)
J J

[=-]

35(0142:2) = 705 - 03)

=



Figure 7.5
(a, b, c, and d)

Four variable spatial yield spectra for an incident
electron energy of 1 KeV given at four Tongitudinal
distances: z = 0.061 (Figure 7.5a), z = 0.305
(Figure 7.5b), z = 0.549 (Figure 7.5c), and

z = 0.793 (Figure 7.5d). At each longitudinal cut
the yield spectrum is given at four radial dis-
tances: p = 0.061, o; p = 0.305, e; p = 0.549, m;
and p = 0.793, a.
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No analytic expression has been derived for U(E,p,Z,Eo); however, it
does have systematics that tend to point toward some type of representa-
tion which would be useful for atmospheric scientists.

This concludes the discussion about the results from the MC
calculation. The most important output from the MC computations is the
spatial yield spectra because many of the other results given in

Chapters V, VI, and VII can be derived easily from this spatial quantity.



CHAPTER VIII
CONCLUSIONS

There are several different theoretical approaches now being em-
ployed to study the auroral electron energy deposition problem. Re-
searchers using these methods have concentrated for the most part on the
details of the computation and on the input atmospheric parameters.

One of the concerns of this work was the cross sections, both dif-
ferential and total, and their impact on the spatial and energetic
aspects of the electron energy deposition. This research has shown that
the input cross sections have a very large influence on the resulting
electron energy deposition.

Perpendicularly incident electrons with energies from 0.1 through
5.0 KeV were degraded in molecular nitrogen using a Monte Carlo spatial
energy deposition technique. This degradation method followed each elec-
tron, its secondaries, and its tertiaries in a collision by collision
manner down to 30 eV. Below 30 eV, a multiple elastic scattering dis-
tribution was used to describe the energy deposition process down to the
cutoff energy of 2 eV.

This Monte Carlo calculation employed new phenomenological differen-
tial elastic and doubly differential ionization cross sections which agree
quite well with experimental data. Other cross sections previously

developed for N2 were also used in these computations.

-152-
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To the author's knowledge, this was the first theoretical calculation
resulting in three dimensional intensity profiles for incident electron
energies below 2 KeV which could easily be compared to experimental work.
The N; Bzz: intensity profiles and range values for incident energies
from 0.3 to 5.0 KeV showed reasonable agreement with experimental electron
enerqgy degradation work in both the longitudinal and the radial direction.

A sensitivity study was included in this work which characterized
the influence of 1) the differential ionization cross sections, 2) the
differential inelastic cross sections, 3) the different shaped elastic
phase functions, and 4) the total elastic cross sections on the energy
deposition process. In particular, it was shown that: 1) Differential
jonization cross sections have very little influence on the degradation
process; 2) inelastic scattering appeared to be somewhat important for
incident electrons with energies below 0.3 KeV; 3) the shape of the
electron collision profiles and the range from the 3914 A intensity
profiles were functions of the screening parameter of the model 1 elastic
scattering phase function; and 4) the total elastic cross section had a
significant influence on the electron's spatial degradation process.

The resultant energy loss plots are used to help determine the
energy albedo of the incident electrons and also the rate at which energy
is Tost in the medium. The spatial yield spectrum is easily employed to
find the excitation profiles for any Nz state at any position in the
medium. For this reason the three variable spatial yield spectrum
U(E,z,Eo) is analytically characterized. The four variable spatial
yield spectrum U(E,p,z,Eo) is even more complex than U(E,z,EO); never-

theless the systematics of this quantity are described qualitatively.
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This work compiled a reasonably comprehensive and realistic cross
section set for N2 in the energy range from 2 to 5000 eV. The influence
of various differential and total cross sections on the spatial and
energetic aspects of the electron energy deposition problem was also
characterized. Finally, this study presented a spatial yield spectrum
along with an analysis and analytic fit of some of its most important

properties.



APPENDIX A
MONTE CARLO PROGRAM

The Monte Carlo program which is a modified version of a program
used in Brinkmann and Trajmar (1970) is listed in this appendix. This
program (written in Fortran IV) degrades electrons in the range from 2
to 5000 eV in a spatial manner. Each collision with its characteristics

are placed on a magnetic tape.
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APPENDIX B
GETDAT PROGRAM

The Getdat program is listed in this appendix. This program was
written entirely by the author. This program (written in Fortran IV)
collects the collision data from the magnetic tape and coalesces and

systematizes it.
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