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Environmental effects of ozone depletion and its interactions with
climate change:

2010 assessment

Introduction

This quadrennial Assessment was prepared by the Environmental Effects Assessment Panel
(EEAP) for the Parties to the Montreal Protocol. The Assessment reports on key findings on
environment and health since the last full Assessment of 2006, paying attention to the
interactions between ozone depletion and climate change. Simultaneous publication of the
Assessment in the scientific literature aims to inform the scientific community how their data,
modeling and interpretations are playing a role in information dissemination to the Parties to the
Montreal Protocol, other policymakers and scientists.

The 2010 Assessment will be published in the journal, Photochemical & Photobiological
Sciences, 10, 2011.
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Abbreviations and Glossary

Abbreviation Complete term

1,25(0OH)2D 1,25-dihydroxyvitamin D

25(OH)D 25-hydroxyvitamin D

AK Actinic keratosis

AO Arctic Oscillation. A large-scale variation in Arctic wind patterns

AOD Aerosol optical depth

APase Alkaline phosphatase

APC Antigen presenting cell

ASL Above sea level

BCC Basal cell carcinoma(s)

Br Bromine (an ozone depleting chemical)

BrO Bromine monoxide

BSWF Biological spectral weighting functions

BWF Biological weighting function

CAS Chemical Abstracts Service

CAT Catalase

CC Cortical cataract(s)

CCM Chemistry-climate model (used to predict future changes in atmospheric
composition)

CDFA Chlorodifluoroacetic acid

CDK Climatic droplet keratopathy

CDOC Coloured dissolved organic carbon

CDOM Coloured (or chromophoric) dissolved organic matter

CFC Chlorofluorocarbon. Ozone depleting substance (e.g., CFCI; radical and
dichlorodifluoromethane or Freon-12 (CCl,F;)), now controlled under the
Montreal Protocol

CH Contact hypersensitivity

CH4 Methane (a greenhouse gas)
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Abbreviation

Complete term

CIE

Cl
CM
Cco
CO;
COS
CPD
Cu
DIC
DMS
DMSP
DNA
DOC
DOM
DON
DSB
DTH
DU

EAE
EDUCE
EESC

ENSO

EP
EPA

Commission Internationale de 1'Eclairage (International Commission on
[Nlumination)

Chlorine (an ozone depleting substance)
Cutaneous melanoma

Carbon monoxide

Carbon dioxide (a greenhouse gas)
carbonyl sulfide

Cyclobutane pyrimidine dimer

Copper (Cu(I) and Cu(Il) being different oxidation states)
Dissolved inorganic carbon
Dimethylsulfide
Dimethylsulfoniopropionate
Deoxyribonucleic acid

Dissolved organic carbon

Dissolved organic matter

Dissolved organic nitrogen

Double strand break

Delayed type hypersensitivity

Dobson unit (used for the measurement of total column ozone (1 DU=2.69 x
10'® molecule cm™)

Experimental allergic encephalitis
European Database for Ultraviolet Radiation Climatology and Evaluation

Equivalent Effective Stratospheric Chlorine. A term used to represent the
total chlorine concentration in the stratosphere from all sources of ozone
depleting substances (including CFCs, HCI, Cl,, CIONO,, etc) and a scaled
contribution from other halocarbons and bromine, taking its ODP into
account

El Nifio Southern Oscillation. A large-scale climate variability in the Pacific
region

Earth Probe (a NASA satellite)

US Environmental Protection Agency
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Abbreviation

Complete term

EV Epidermodysplasia verruciformis

Fe Iron (Fe(I) and Fe(III) being different oxidation states)

FMI Finnish Meteorological Institute

GHG Greenhouse gas

Glul A pathogenesis-related (PR) protein

GST Glutathione-S-transferase

GWP Global warming potential. A measure of the warming effectiveness of a gas
compared with CO,

HALS Hindered Amine Light Stabilizer

HCFC Hydrochlorofluorocarbon. Interim replacements for CFCs with small ozone
depletion potential (e.g., R22: chlorodifluoromethane CHCIF;) to be phased
out

HFC Hydrofluorocarbon. Long-term replacements for CFCs

HFO Hydrofluoro-olefine

Hg Mercury (Hg0aq and Hg(II) being different oxidation states)

HIV Human immunodeficiency virus

HPV Human papillomavirus

HSV Herpes simplex virus

HYS Transcription factor HY'S, which is a key downstream effector of the UVRS
(UV-regulatory protein) pathway

IBD Inflammatory bowel disease

IL Interleukin

Ink4a Murine inhibitor of kinase 4a protein (gene in italics)

IPCC Intergovernmental Panel on Climate Change

IPF Immune protection factor

kda Kilodalton

KNMI Dutch National Institute for Weather, Climate and Seismology (Netherlands)

Le Lipid radical

MAAs Mycosporine-like amino acids

Mb Megabase, equal to 1 million base pairs
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Abbreviation

Complete term

MCIR
MHC
MS
N,O
NAO

NASA
NaTFA
NC
NCAR
NH
NIMBUS-7
NIVR
NMHCs
NMSC
NO
NO;
NOAA
NOEC
NOx

0O;

OCS
ODP

ODS

OMI
OTR

Melanocortin 1 receptor

Major histocompatibility complex

Multiple sclerosis

Nitrous oxide (a greenhouse gas that is also a source of NO,)

North Atlantic Oscillation. A large-scale variation and redistribution of
atmospheric mass in the Atlantic region producing large changes in the
Northern hemisphere dynamics.

National Aeronautic and Space Administration (USA).
Sodium trifluoroacetate

Nuclear cataract(s)

National Centre for Atmospheric Research, USA
Northern Hemisphere

A NASA satellite

Netherlands Agency for Aerospace Programmes
Non-methane hydrocarbons

Non-melanoma skin cancer

Nitric oxide (an ozone depleting gas)

Nitrogen dioxide (an ozone depleting gas)

National Oceanic and Atmospheric Administration, USA
No observed effect concentration

Nitrogen oxides

Ozone

Carbonyl sulfide

Ozone depletion potential. The ratio of the impact on ozone of a chemical

compared to the impact of a similar mass of CFC-11. Thus, the ODP of CFC-

11 is defined to be 1.0

Ozone depleting substance(s) (e.g., CFCs)

Hydroxyl radical (and important atmospheric cleaning agent)
Ozone Monitoring Instrument (on board the Aura satellite)

Organ transplant recipients
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Abbreviation

Complete term

P
PAH
PAM
PAR
PAUR II
pCO,
PEC
PER
Pg
PHRI1
PNEC
POC
POM
PR
PSC
PSC

PSI
PSII
Ptc
PTCH
QBO

RA

Radiative
Forcing

Phosphorous

Polycyclic Aromatic Hydrocarbon(s)

Pulse amplitude modulated (fluorescence)
Photosynthetically Active Radiation, 400-700 nm waveband
Photochemical Activity and solar Ultraviolet Radiation campaign 2
Partial pressure of carbon dioxide

Predicted environmental concentration

Photoenzymatic repair

Peta gram (lxlO12 grams)

The gene encoding CPD photolyase

Predicted no effect concentration

Particulate organic carbon

Particulate organic matter

Pathogenesis-related proteins

Posterior subcapsular cataract(s)

Polar stratospheric cloud (ice crystals which form at high altitudes in Polar
regions when the temperature is below a critical threshold)

Photosystem I
Photosystem II
Murine patch protein (gene in italics)
Human patch protein (gene in italics)

Quasi biennial oscillation (a shift in wind patterns - especially over the
tropics - with a period of approximately 2.2 years)

Rheumatoid arthritis

A measure of the influence a factor (e.g., GHGs, ice albedo, tropospheric
aerosols, etc.) has in altering the balance of incoming solar and outgoing
infrared irradiance (Wm™) in the troposphere. It is an index of the importance
of the factor as a potential climate change mechanism. Radiative forcing is
approximately proportional to temperature changes at Earth’s surface, so a
positive radiative forcing is associated with heating in the troposphere.

Radiation amplification factor (a measure of sensitivity to ozone change)
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Abbreviation

Complete term

ROS
RT
SAGE
SCC
SH
SOD
SZA

TFA

Thl

Th2

TOMS

Treg cell
Troposphere
UCA

UNEP

uv

UV-A

UV-B

UV-C

UVEry

UVI

UVRS8

Reactive oxygen species (-OH for example)

Radiative transfer

Stratospheric Aerosol and Gas Experiment, a satellite-based instrument
Squamous cell carcinoma

Southern hemisphere

Superoxide dismutase

Solar zenith angle is the angle of the sun away from the vertical; at noon, it
represents the highest point that the sun reaches.

Trifluoroacetic acid

T-helper 1

T-helper 2

Total Ozone Mapping Spectrometer, a satellite-based instrument
T-regulatory cell

Lowest part of the earth's atmosphere (0-16 km)

Urocanic acid

United Nations Environment Programme

Ultraviolet. Wavelengths from 100 nm to 400 nm. Ozone and other
atmospheric gases progressively absorb more and more of the radiation at
wavelengths less than 320 nm. Only those greater than 290 nm are
transmitted to the Earth's surface

Electromagnetic radiation of wavelengths in the 315 to 400 nm range
(weakly absorbed by ozone)

Electromagnetic radiation of wavelengths in the 280 to 315 nm range
(strongly absorbed by ozone)

Electromagnetic radiation of wavelengths in the 100 to 280 nm range (solar
UV-C is not transmitted to Earth’s surface)

Erythemally-weighted UV irradiance, where the irradiance is weighted by the
erythemal action spectrum

UV index. A measure of erythemally-weighted UV for providing information
to the public. UVI values greater than 10 are considered “extreme” by the
WHO. If UV-Ery is specified in units of Wm™, then UVI = 40 x UV-Ery)

UV-regulatory protein
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Abbreviation Complete term

VDR Vitamin D receptor

VOC Volatile organic compound (s)
WMO World Meteorological Organization
WOUDC World Ozone and UV Data Centre
XP Xeroderma pigmentosum
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Environmental Effects of Ozone Depletion: 2010 Assessment
Interactions of Ozone Depletion and Climate Change

Executive Summary

Ozone Depletion and Climate Change

There are strong interactions between ozone depletion and changes in climate induced
by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate
change affects ozone. The successful implementation of the Montreal Protocol has had a
marked effect on climate change. Calculations show that the phase-out of
chlorofluorocarbons (CFCs) reduced Earth’s warming effect (i.e., radiative forcing) far more
than the measures taken under the Kyoto protocol for the reduction of GHGs. The amount of
stratospheric ozone can be affected by the increases in the concentration of GHGs, which
lead to decreased temperatures in the stratosphere and accelerated circulation patterns,
which tend to decrease total ozone in the tropics and increase total ozone at mid and high
latitudes. Changes in circulation induced by changes in ozone can also affect patterns of
surface wind and rainfall.

The Montreal Protocol is working, but it will take several decades for ozone to return
to 1980 levels. The concentrations of ozone depleting substances have been decreasing after
reaching a peak in the 1990s, and ozone column amounts are no longer decreasing. Mid-
latitude ozone is expected to return to 1980 levels before mid-century, which is earlier than
predicted previously. However, the recovery rate will be slower at high latitudes. Springtime
ozone depletion is expected to continue to occur at polar latitudes, especially in Antarctica in
the next few decades.

Because of the success of the Montreal Protocol in controlling ozone depletion,
increases in UV-B radiation have been small outside regions affected by the Antarctic
ozone hole, and have been difficult to detect. There is a large variability in UV-B
radiation due to factors other than ozone, such as clouds and aerosols. There are few long-
term measurements available to confirm the increases that would have occurred as a result
of ozone depletion. At mid-latitudes, UV-B irradiances are currently up to 5% greater than
in 1980, but increases have been substantial at high and polar latitudes where ozone
depletion has been larger. Despite the low solar elevations in Antarctica, UV-B radiation
doses in late spring during the ozone hole period can be sufficient to induce sunburn, and are
about twice as great as those that would have occurred prior to the onset of ozone depletion.
Unfortunately, no measurements were available prior to the onset of the ozone hole to
confirm this change.

Without the Montreal Protocol, peak values of sunburning UV radiation could have
tripled by 2065 at mid-northern latitudes. This would have had serious consequences for
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the environment and for human health. This contrasts sharply with the current situation,
where clear-sky UV is only slightly greater than that prior to the onset of ozone depletion,
and is expected to decrease in the decades ahead at mid- to high latitudes.

The projected changes in ozone and clouds may lead to large decreases in UV at high
latitudes, where UV is already low; and to small increases at low latitudes, where it is
already high. This could have important implications for health and ecosystems.
Compared to 1980, UV-B irradiance towards the end of the 21* century is projected to be
lower at mid to high latitudes by between 5 and 20%, respectively, and higher by 2-3% in
the low latitudes. However, these projections must be treated with caution because they also
depend strongly on changes in cloud cover, air pollutants, and aerosols, all of which are
influenced by climate change, and their future is uncertain. With these predicted changes in
UV radiation it would become more difficult to achieve optimal exposure times for
sufficient UV-B-induced vitamin D production at high latitudes, while the risk of skin
damage would be increased at low latitudes.

Because the future UV climate remains uncertain, continued modelling and
measurement efforts are needed. Strong interactions between ozone depletion and climate
change and uncertainties in the measurements and models limit our confidence in predicting
future UV irradiance. It is therefore important to improve our understanding of the processes
involved, and to continue monitoring ozone and surface UV spectral irradiances, both from
the surface and from satellites. This capability will enable us to monitor and respond to
unexpected changes in the future.

Human Health

Health risks of solar UV-B radiation can be assessed most confidently for cataracts and
skin cancers. Although there is concern about an increased risk of infectious diseases,
data to guide public health decisions are lacking. The incidences of cataract and skin
cancers continue to rise in many countries, with significant societal impacts and costs to
health care systems. In some regions the incidence of melanoma in children and young
people is no longer increasing, or increasing incidence is confined to less lethal forms. These
changes probably reflect intensive public health information campaigns, based on sound
research findings. For infectious diseases, equivalent research findings are not available
except from animal studies. Use of replacements for ozone depleting substances may result
in risks to health but these have not been quantified.

Health benefits of sun exposure are principally derived from vitamin D production in
the skin following solar UV-B irradiation. Optimal vitamin D status supports bone health
and may decrease the risk of several internal cancers and autoimmune, infectious and
cardiovascular diseases. It is not yet clear whether oral vitamin D supplementation provides
all of the benefits of UV-induced vitamin D or whether higher vitamin D status is always
beneficial. Appropriate sun exposure to balance risk and benefits depends on personal

XVi
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characteristics such as genetic background (including skin colour and vitamin D receptor
types) and external/environmental factors (including diet, season, time of day and latitude).
This is an area of active current research, the results of which will provide guidance to the
general public to better balance the benefits of sun exposure whilst minimizing risks.

Health effects associated with combined changes in solar UV radiation and climate are
plausible; directed studies are required to guide health care decisions and future
policies regarding health care. Higher temperatures are likely to lead to more skin cancers
for the same exposure to UV radiation. However, this is the most definitive statement that
can be made to date about a combined effect, as more studies have not been done. Although
higher temperatures may change sun exposure patterns, there is considerable uncertainty in
modeling future human behaviour in response to climate change. There is enough
information to suspect that combined effects could be serious, but the data to develop robust
risk estimates are not available.

Terrestrial Ecosystems

In areas where substantial ozone depletion has occurred, results from a wide range of
field studies suggest that increased UV-B radiation reduces terrestrial plant
productivity by about 6%. This reduction results from direct damage and increased
diversion of plant resources towards protection and acclimation. Long-term effects of
reduced plant growth could be important, particularly for potential carbon sequestration
(capture).

Changes in UV radiation caused by global environmental change can have very
important consequences for terrestrial ecosystems. Region-specific changes in cloud
cover and vegetative cover (in response to increased aridity or deforestation) predicted for
the coming decades are likely to have large impacts on the levels of UV radiation received
by terrestrial organisms. These variations in UV radiation (both UV-B ad UV-A) will affect
a large range of ecosystems.

Predicted changes in climate may modify plant and ecosystem responses to UV
radiation. For example, while moderate drought can decrease UV sensitivity in plants,
further decreases in precipitation and increasing temperatures due to climate change are
likely to restrict plant growth and compromise plants to re-distribute resources for protection
from UV radiation and other climate factors. Thus even limited climate change could have
consequences for survival, especially in harsh environments.

UV radiation promotes the breakdown of dead plant material and consequently carbon
loss to the atmosphere. Exposure of vegetation and soils to UV radiation may increase in
the future at low to mid-latitudes due to reduced cloud cover or more intensive land use. The
breakdown of dead plant material through the action of sunlight (photodegradation) is a very
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important ecosystem process in many environments, especially for those components that
decay only very slowly by microbial action.

Variations in UV-B radiation caused by climate change and ozone depletion can have
large effects on plant interactions with pests, with important implications for food
security and food quality. Plant consumption by herbivores (e.g. insects) usually decreases
under elevated UV-B radiation. Over the coming decades, rising atmospheric carbon dioxide
and increased planting density may counteract this beneficial effect of UV-B radiation.

UV-B radiation may improve the quality of food, for example, through increased
antioxidant activity, flavour and fibre content. Knowledge gained in this area could be
used in the design of agricultural systems that take advantage of these natural plant products
to increase nutritional value.

Solar UV-B radiation changes microbial biodiversity with consequences for soil
fertility and plant disease. Changes in the composition of microbial communities on dead
plant material can alter rates of decay (an important ecosystem process that contributes to
soil fertility). On living plants, changes in species composition of microbes by UV-B
radiation can affect susceptibility to fungal infections.

Aquatic Ecosystems

Detrimental effects of solar UV-B radiation have been demonstrated for many aquatic
organisms. In contrast, relatively little information is available regarding consequences on
biodiversity and species composition, or on the interactions between trophic levels within
natural ecosystems.

For several aquatic organisms, UV-B-induced negative effects are worsened by
environmental pollution. UV-B radiation has a greater impact on aquatic organisms in
sites polluted by crude oil and heavy metals such as cadmium, selenium or copper.

Climate change will alter the exposure of aquatic organisms to solar UV radiation by
influencing their depth distribution as well as the transparency of the water. Increased
temperature due to climate change tends to decrease the depth of the upper mixed layer, thus
exposing organisms to higher irradiances. Dissolved organic matter (DOM) is the major
factor influencing UV transparency in most inland waters and coastal areas. In some regions,
DOM concentrations have nearly doubled in the past 20 years. Since some waterborne
human pathogens are sensitive to solar UV radiation, changes in DOM may alter their
exposure and inactivation.

Xviii
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Enhanced solar UV-B radiation in conjunction with rising global temperatures may
negatively affect seaweeds that have ecologic and economic importance. The vertical
distribution of seaweeds in their ecosystem is strongly determined by solar UV radiation.
Early developmental stages of brown and red algae are impaired by these environmental
factors.

Climate-driven changes in environmental conditions may exceed the capacity of
protective strategies of aquatic organisms to adapt to solar UV radiation. Different
species use different combinations of avoidance strategies, photoprotection and photorepair,
which determine the limits of their ability to adapt to high solar UV radiation. While many
cyanobacteria, which are major biomass producers in both marine and inland ecosystems,
are sensitive to solar UV radiation, others can survive in habitats with extreme UV-B
irradiances, frequent desiccation and extreme temperatures by using a combination of
adaptive strategies.

The rise in atmospheric CO, concentrations increases the acidity of the water, making
calcified organisms more vulnerable to solar UV-B radiation. The continued
acidification of marine waters impairs carbonate incorporation in calcified organisms, such
as phytoplankton, seaweeds and corals.

Biogeochemical Cycles

There are interactions between the effects of solar UV radiation and climate change on
the processes that drive the carbon cycle. These interactions could accelerate the rate of
atmospheric CO; increase and subsequent global warming beyond current predictions.

Projected shifts to warmer and drier conditions, such as in the Mediterranean and in
western North America, will increase UV-induced carbon loss to the atmosphere. UV-
induced breakdown of dead plant material is likely to become a much more significant
pathway for CO, emissions to the atmosphere.

In mid- and high-latitude oceanic areas, the capacity to take up atmospheric CO; is
decreasing. This decrease is mainly due to negative effects of climate change and solar UV
radiation on photosynthesis and related CO, uptake processes in oceans.

Predicted climate-related increases in runoff from the Arctic and alpine regions to
aquatic ecosystems will accelerate the UV-induced breakdown of soil organic carbon
into atmospheric CO,. The runoff also reduces water clarity and thus UV exposure in
freshwaters and the coastal ocean.
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Feedbacks involving greenhouse gases other than CO, are increasing due to interactive
effects of UV radiation and climate change. For example, increases in oxygen-deficient
regions of the ocean caused by climate change enhance emissions of nitrous oxide, an
important greenhouse and ozone-depleting gas.

Further reductions in solar UV-B irradiance reaching the Earth’s surface caused by
recovery of the ozone layer may retard photochemical reactions of organic and
inorganic pollutants. This effect may increase the persistence and exposure concentrations
of organic pollutants. On the other hand, in the case of metals, this may be beneficial, since
UV-induced transformation of metals often increases their toxicity.

Air Quality

The impacts of air pollution on human health and the environment will be directly
influenced by future changes in climate, emissions of pollutants, and stratospheric
ozone. Ultraviolet radiation is one of the controlling factors for the formation of
photochemical smog which includes tropospheric ozone and aerosols; it also initiates the
production of hydroxyl radicals, which control the amount of many climate- and ozone-
relevant gases in the atmosphere. Uncertainties still exist in quantifying the chemical
processes and wind-driven transport of pollutants. The net effects of future changes in UV
radiation, meteorological conditions, and anthropogenic emissions may be large but will
depend on local conditions, posing challenges for prediction and management of air quality.

Numerical models predict that future changes in UV radiation and climate will modify
the trends and geographic distribution of hydroxyl radicals, thus affecting urban and
regional photochemical smog formation, as well as the abundance of several
greenhouse gases. Concentrations of hydroxyl radicals are predicted to decrease globally
by an average of 20% by 2100, with local concentrations varying by as much as a factor of
two above and below current values. However, significant differences between modelled
and measured values in a limited number of case studies show that we do not fully
understand the chemistry of hydroxyl radicals in the atmosphere. Therefore, the
consequences for human health and the environment are uncertain.

Photochemically produced tropospheric ozone is projected to increase over the next 20-
40 years in certain regions of low and middle latitudes because of interactions of
emissions, chemical processes, and climate change. If emissions of anthropogenic air
pollutants from combustion of fossil fuels, burning of biomass, and agricultural activities
continue to increase, concentrations of tropospheric ozone will tend to increase. Climate-
driven increases in temperature and humidity will also increase tropospheric ozone
production in polluted regions, but reduce it in more pristine regions. Higher temperatures of
some soils tend to increase emissions of nitrogen oxides (NOx) and biogenic volatile organic
compounds (VOCs), leading to greater background concentrations of ozone in the
troposphere. For the future protection of human health and the environment, more effective
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controls will need to be considered for emissions of NOx and VOCs related to human
activities.

Aerosols composed of organic substances have a major role for climate and air quality,
and contribute a large uncertainty to the energy budget of the atmosphere. Aerosols
are mostly formed via the UV-initiated oxidation of volatile organic compounds from
anthropogenic and biogenic sources, although the details of the chemistry are still poorly
known and current models under-predict their abundance. A better understanding of their
formation, chemical composition, and optical properties is required to assess their
significance for air quality and to better quantify their direct and indirect radiative forcing of
climate.

The decomposition of substitutes for ozone-depleting substances can lead to a range of
chemical species, however with little relevance expected for human health and the
environment. The hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs)
used as substitutes for ozone-depleting CFCs can break down into trifluoroacetic acid
(TFA), which is very stable and will accumulate in the oceans, salt lakes, and playas.
However, based on historical use and projections of future uses, including new products
entering the market such as the fluoro-olefins, increased loadings of TFA and
monofluoracetic acid (MFA) in these environmental sinks will be small. Even when added
to existing amounts from natural sources, risks from TFA (and the more toxic MFA) to
humans and organisms in the aquatic environment are judged to be negligible.

Materials

Increased ambient temperature accelerates the UV-induced degradation of plastics and
wood, thus shortening their useful outdoor lifetimes. Natural and man-made materials
are widely used in outdoor construction, agriculture and other applications. The increased
rate of degradation at the higher temperatures depends on the specific material, the UV
radiation environment and the geographic location of exposure.

The presently available stabilisation technologies can mitigate the damage to some
types of common polymers routinely exposed to solar UV radiation. State of the art
stablisers, surface coatings and material substitution technologies, are likely to control the
deleterious effects of environments that have enhanced UV radiation and temperature, but
only for some types of common plastics.

Plastic nanocomposites and wood-plastic composites that are increasingly used in
outdoor applications appear to have relatively higher solar UV radiation stability
compared to conventional materials. The use of nanofillers in composites is increasing as
these deliver a superior performance compared to conventional composites. Wood-plastics
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composites, although also UV-stable compared to the plastic alone, can still suffer reduced
lifetimes at high humidity levels.
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Summary

The Montreal Protocol is working, but it will take several decades for ozone to return to 1980
levels. The atmospheric concentrations of ozone depleting substances are decreasing, and
ozone column amounts are no longer decreasing. Mid-latitude ozone is expected to return to
1980 levels before mid-century, slightly earlier than predicted previously. However, the re-
covery rate will be slower at high latitudes. Springtime ozone depletion is expected to contin-
ue to occur at polar latitudes, especially in Antarctica in the next few decades. Because of the
success of the Protocol, increases in UV-B radiation have been small outside regions affected
by the Antarctic ozone hole, and have been difficult to detect. There is a large variability in
UV-B radiation due to factors other than ozone, such as clouds and aerosols. There are few
long-term measurements available to confirm the increases that would have occurred as a re-
sult of ozone depletion. At mid-latitudes UV-B irradiances are currently only slightly greater
than in 1980 (increases less than ~5%), but increases have been substantial at high and polar
latitudes where ozone depletion has been larger. Without the Montreal Protocol, peak values
of sunburning UV radiation could have been tripled by 2065 at mid-northern latitudes. This
would have had serious consequences for the environment and for human health.

There are strong interactions between ozone depletion and changes in climate induced
by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate change
affects ozone. The successful implementation of the Montreal Protocol has had a marked ef-
fect on climate change. The calculated reduction in radiative forcing due to the phase-out of
chlorofluorocarbons (CFCs) far exceeds that from the measures taken under the Kyoto proto-
col for the reduction of GHGs. Thus the phase-out of CFCs is currently tending to counteract
the increases in surface temperature due to increased GHGs. The amount of stratospheric
ozone can also be affected by the increases in the concentration of GHGs, which lead to de-
creased temperatures in the stratosphere and accelerated circulation patterns. These changes
tend to decrease total ozone in the tropics and increase total ozone at mid and high latitudes.
Changes in circulation induced by changes in ozone can also affect patterns of surface wind
and rainfall.

The projected changes in ozone and clouds may lead to large decreases in UV at high lati-
tudes, where UV is already low; and to small increases at low latitudes, where it is already
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high. This could have important implications for health and ecosystems. Compared to 1980,
UV-B irradiance towards the end of the 21 century is projected to be lower at mid to high
latitudes by between 5 and 20% respectively, and higher by 2-3% in the low latitudes.
However, these projections must be treated with caution because they also depend strongly
on changes in cloud cover, air pollutants, and aerosols, all of which are influenced by climate
change, and their future is uncertain.

Strong interactions between ozone depletion and climate change and uncertainties in
the measurements and models limit our confidence in predicting the future UV radiation. It is
therefore important to improve our understanding of the processes involved, and to continue
monitoring ozone and surface UV spectral irradiances both from the surface and from satel-
lites so we can respond to unexpected changes in the future.

Introduction

The amount of ultraviolet radiation (UV)* received at Earth's surface has important implications
for human health, terrestrial and aquatic ecosystems, biogeochemical cycles, air quality, and dam-
age to materials, which are assessed in subsequent papers of this thematic issue. Research into the-
se topics was stimulated by the realisation, more than 30 years ago, that the stratospheric ozone
layer was at risk, and that there would be consequent increases in UV-B (280-315 nm) radiation.
Increases in UV-B due to decreasing ozone amounts were observed during the 1980s and 1990s,
particularly at high latitudes (> ~60°), where ozone depletion was more pronounced. However,
because of the success of the Montreal Protocol” in reducing the ozone depleting substances
(ODSs), ozone is no longer decreasing and at unpolluted sites, unaffected by changes in cloud
cover, the increases in UV have not continued in recent years. Based on our current understanding
(which may be incomplete), a gradual recovery of ozone is expected in the decades ahead. Chang-
es in other factors, such as clouds, air pollution (including aerosols), and surface albedo, are some-
times more important for changing UV radiation, and may also lead to future differences on urban
and regional scales. For the forest and aquatic environments, respectively, the UV transmission of
canopy foliage and water must also be considered.

By the end of the 21* century, amounts of ozone in most regions are expected to be greater
than they were before ozone depletion began prior to 1980. Therefore, in the absence of changes in
other factors, UV-B would be expected to decrease. However, at some locations it is possible that
UV will remain elevated due to decreasing extinctions by clouds and aerosols, particularly if the
combustion of fossil fuels is significantly reduced by that time. In some regions, such as at high
latitudes, where increases in cloud cover and reduction of the area of snow or ice are projected as a
consequence of climate change, decreases in UV at the surface may be expected.

It is well known that UV radiation can have harmful effects on human health (e.g., skin
cancer and eye damage), terrestrial and aquatic ecosystems and materials. However, UV radiation
also has beneficial effects, for example by stimulating the production of vitamin D in humans and
other animals (adverse and beneficial effects are discussed in detail in Chapter 2. At mid- and
high- latitudes, wintertime UV is very low, and human populations may be at risk from insuffi-
cient vitamin D, a risk which may increase further if ozone increases in the years ahead and if the
current trend toward indoor living continues.

* For ease of reading, we use “UV” as an abbreviation of “UV radiation” or “amount of UV radiation”. The
term “UV irradiance” means the measured quantity of UV radiation (usually in units of W m™) incident on a
horizontal surface. See the glossary for further details, including definitions of UV-A, UV-B and UV-C.

1 Here we take the Montreal Protocol to include its subsequent amendments and adjustments.
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Here the past changes and projected future changes in UV are assessed, focussing on the
effectiveness of the Montreal Protocol implementation and the effects of interactions between
ozone depletion and climate change. Although brief progress reports'>>"*” have been published in
the last three years, this paper summarises changes in our understanding of these factors in the pe-
riod since the last full assessment report in 2007."** To put this work into context, we include a
brief discussion of changes in stratospheric ozone, which is described in greater detail in the WMO
Scientific Assessment of Ozone Depletion.

Past changes in UV

Despite the paucity of corroborative long-term measurements of UV radiation, studies and theory
have established a clear inverse relationship between column ozone and UV-B radiation reaching
the surface of Earth. It is therefore generally accepted"** '* that during the period of declining col-
umn ozone starting prior to 1980 and continuing through the 1990s, UV would have increased by
a few percent at mid-latitudes (~ i.e., latitudes 30°-60° in both hemispheres), so that the UV expe-
rienced there since the late 1990s probably exceeds that at any time in the last century. However,
this assumes that changes in cloud cover and aerosols have been small — an assumption which at
many locations is not valid. Further, over timescales of hundreds of years or longer, it is unknown
whether the current UV levels are particularly severe. Better proxy methods are needed to estimate
these effects reliably and to better understand the severity of the present situation in a longer his-
torical context.

Estimates of UV from periods prior to modern instruments

Changes in UV over timescales of centuries have been estimated from records of sunspot number -
an index of solar activity. Increased solar activity leads to increased UV-C (100-280 nm) radiation
in the upper atmosphere, which in turn enhances the photochemical formation of ozone and hence
the absorption of UV-B radiation. Therefore an inverse relationship between solar activity and
UV-B irradiance at the surface is expected. For example, the 11-year solar activity cycle is respon-
sible for increases in UV-C irradiance of a few percent between minimum and maximum. These
increases lead to enhanced production of stratospheric ozone, which in turn reduces UV-B trans-
mitted to Earth's surface by a few percent between solar minima and solar maxima in recent solar
cycles. It has been further suggested that long-term changes in UV-C exceed these variations by a
factor of two, and that during quieter periods (low number of sunspots), such as the Maunder min-
imum in the 17" century, surface UV-B irradiance may have been significantly higher than in the
modern epoch.'®

Over much longer timescales, before the appearance of man, UV irradiances may have
been much greater than at present, due to differences in the composition of the atmosphere. For
example, a recent modelling study estimated that about 4 billion years ago, UV-B radiation may
have been several orders of magnitude higher than at present.”® Another modelling study suggest-
ed that about 250 million years ago the UV-B levels may also have been elevated, mainly at higher
latitudes.4?6Histon'c changes in UV-B, their causes, and methods to probe them have recently been
reviewed.

For the more recent past, on timescales of a century or so, attempts have been made to es-
timate UV irradiances using information about daily sunshine duration. For example, daily totals
of solar UV radiation back to 1893 were reconstructed for Central Europe.*® The estimated annual-
ly averaged erythemal irradiances (UV-Ery)* in this region were found to be only weakly depend-

1 Erythemally weighted UV (i.e., “sunburning” irradiance, UV-Ery) is the irradiance weighted by the erythema
action spectrum (see Fig. 1-6). This is often reported to the public in terms of the UV Index (UVI) where UVI =

The Environmental Effects Assessment Panel Report for 2010



Ozone depletion and climate change: Impacts on UV radiation

ent on ozone amounts. Thus, assuming that any ozone changes prior to 1980 were no larger than
those since 1980,>' this new information extends our knowledge of historical changes in UV irra-
diance to the period before direct measurements were available. However the uncertainty in the
reconstruction is typically 10-20% for annual means.

Satellite estimates of UV

Estimates of surface UV irradiance are available from satellite measurements for the period since
the late 1970s. Changes in UV at different spectral bands over the period 1979 to 2008 for the en-
tire globe have been derived from a series of polar orbiting satellite instruments, as summarised for
UV-Ery in Fig. 1-1.>* Although satellite observations are available to higher latitudes, the latitude
range in this study is limited to 55°S to 55°N to avoid large solar zenith angle effects and seasonal
bias caused by missing data during polar nights. The reduced latitude range also helps to reduce
the effects of uncertainties in the retrieval associated with distinguishing reflections from clouds or
snow.”* * Over this time period, UV increased significantly at all latitudes except the equatorial
zone. Over the shorter period from 1979 to 1998, the increase was caused by decreases in ozone
amount, but after 1998, ozone amounts and UV irradiance in the northern mid-latitudes have been
approximately constant. The annual average UV increase due to ozone changes is partially offset
by an increase in clouds and aerosols which led to a decrease in transmission of UV to the surface
(i.e., a “dimming”), especially at higher latitudes in the southern hemisphere. For clear skies, the
largest increases in estimated UV-Ery were in the southern hemisphere (about 8% at 50°S for
clear-sky conditions compared to 5% at 50°N). At lower latitudes, the increases were smaller. It
should be noted that the effects of absorbing aerosols have not been included in this analysis be-
cause the satellite sensors do not ad-
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information on diurnal variability is provided, and there are significant uncertainties in the estimat-
ed daily doses (integrated UV irradiance during a day). Following earlier attempts to use data from
geostationary satellites to estimate effects of clouds in Europe,'*' a new algorithm has been devel-
oped to estimate diurnally-varying spectral irradiance of UV at the surface over North America
based on information (e.g., cloud, surface albedo and aerosol data) from such satellites.* The re-
sults show reasonable agreement between the satellite data and ground-based observations from
the US Department of Agriculture UV-monitoring network (bias within +3.5% and root mean
square differences of between 14 and 25%). The use of detailed information on cloud cover from
geostationary satellites will improve the estimation of daily doses of UV, which are more relevant
for effects that depend on accumulated UV.

Ground-based studies

There were few long-term records of UV radiation from ground-based instruments prior to the era
of satellite measurements. The first co-ordinated ground-based networks were established in the
1970s," but their geographical coverage was limited during the period of most-rapid depletion of
ozone prior to the 1990s. Furthermore, in some cases, the wavelength response of the instruments
was such that they were not particularly sensitive to changes in the amount of ozone, and the UV
irradiances were more strongly affected by changes in other factors, such as clouds and aerosols.
Consequently, the expected increase in UV radiation attributable to ozone depletion was not well
established by direct measurements of surface UV radiation. Significant increases in UV irradi-
ance have been observed from the United States National Science Foundations UV spectroradi-
ometer network in Antarctica,”> where ozone depletion has been substantial. However, because
ozone depletion had started well before the deployment of these instruments, the full extent of the
changes in UV-B could not be fully documented. Model calculations suggest that in some cases,
the peak UV-B irradiances would have doubled since the pre-1980 era, and current values in
spring are approximately twice as large as corresponding values in the Arctic where ozone deple-
tion has been less severe.'* '

Long-term changes in observed UV irradiance at the surface vary geographically, and are
not always in response to ozone changes alone. In some locations, the response of UV radiation to
the beginning of an ozone recovery is apparent, but in other places UV radiation is still increasing.
Since the mid-1990s, mean annual changes in UV-Ery within the United States Department of Ag-
riculture’s UV Network ranged from —0.5% to +0.2% per year,”* although in most of these cases
the trends for individual months were not statistically significant. Over the measurement period of
about one decade, there was a general increase in ozone, suggesting that changing cloud, aerosol,
air pollution and snow conditions were also important determinants of variability in surface radia-
tion in addition to ozone changes. At Belsk, Poland, although an increase in column ozone oc-
curred between 1995 and 2006, UV-B did not decrease, but instead tended to level off.!® Such var-
iations could arise from differences in the changes in clouds and aerosols among the measurement
sites, as discussed further below. The results of UV measurements and reconstructions have been
compared in a comprehensive study in Europe. Eight sites were involved, and the study included
an attribution of the changes in UV to ozone and clouds.” At some sites, records of UV were re-
constructed from the 1960s to the present. Upward trends in UV were observed from 1980 to mid-
1990s for most sites. However, UV irradiances in the 1980s, before ozone depletion became ap-
parent at these sites, were also low compared with the long-term average. Y ear-to-year variability
was also large, but there was a strong commonality in the long-term changes between the sites,
indicating that widespread regional effects are important. Attribution of the observed changes be-
tween ozone and cloud effects shows that the low irradiances in the 1980s were primarily a
cloud/aerosol effect. The largest effects from ozone generally occurred in the 1990s (see Fig. 1-2).
The eruption of Mt Pinatubo in 1991 had an important contribution to the changes in the mid-
1990s, through reducing the ozone amounts (tending to increase UV) and increasing aerosol ex-
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tinctions (tending to decrease UV). As discussed further below, these results for Europe cannot be
extrapolated to other regions, as there are strong regional differences in the patterns in long-term
changes in cloud cover.”

Biological proxies to
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study, the concentra-
tions of a different UV-protective substance in herbarium samples of a liverwort (a moss-like
plant) were investigated as a proxy for UV-B. However, no trend was found over the years 1850-
2006.”

Further studies have been carried out to investigate the association between UV radiation
and the concentration of protective compounds (flavonoids) in Antarctic mosses.'”’” Measurements
taken since the 1970s, spanning periods before and after the onset of Antarctic ozone depletion,
reveal significant negative correlations between measured ozone amounts and the concentration of
flavonoids, suggesting that these herbarium specimens may reveal historical UV-B radiation.
However, factors other than ozone, such as changes in cloud cover and distribution in the locations
of samples, may have had a significant influence on the UV exposures received.

A spore dosimetry method has been used to investigate relationships and trends of biologi-
cally effective doses of solar UV radiation in Asia, Europe and South America from 1999 to
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Here the past changes and projected future changes in UV are assessed, focussing on the
effectiveness of the Montreal Protocol implementation and the effects of interactions between
ozone depletion and climate change. Although brief progress reports'>>"*” have been published in
the last three years, this paper summarises changes in our understanding of these factors in the pe-
riod since the last full assessment report in 2007."** To put this work into context, we include a
brief discussion of changes in stratospheric ozone, which is described in greater detail in the WMO
Scientific Assessment of Ozone Depletion.

Past changes in UV

Despite the paucity of corroborative long-term measurements of UV radiation, studies and theory
have established a clear inverse relationship between column ozone and UV-B radiation reaching
the surface of Earth. It is therefore generally accepted"** '* that during the period of declining col-
umn ozone starting prior to 1980 and continuing through the 1990s, UV would have increased by
a few percent at mid-latitudes (~ i.e., latitudes 30°-60° in both hemispheres), so that the UV expe-
rienced there since the late 1990s probably exceeds that at any time in the last century. However,
this assumes that changes in cloud cover and aerosols have been small — an assumption which at
many locations is not valid. Further, over timescales of hundreds of years or longer, it is unknown
whether the current UV levels are particularly severe. Better proxy methods are needed to estimate
these effects reliably and to better understand the severity of the present situation in a longer his-
torical context.

Estimates of UV from periods prior to modern instruments

Changes in UV over timescales of centuries have been estimated from records of sunspot number -
an index of solar activity. Increased solar activity leads to increased UV-C (100-280 nm) radiation
in the upper atmosphere, which in turn enhances the photochemical formation of ozone and hence
the absorption of UV-B radiation. Therefore an inverse relationship between solar activity and
UV-B irradiance at the surface is expected. For example, the 11-year solar activity cycle is respon-
sible for increases in UV-C irradiance of a few percent between minimum and maximum. These
increases lead to enhanced production of stratospheric ozone, which in turn reduces UV-B trans-
mitted to Earth's surface by a few percent between solar minima and solar maxima in recent solar
cycles. It has been further suggested that long-term changes in UV-C exceed these variations by a
factor of two, and that during quieter periods (low number of sunspots), such as the Maunder min-
imum in the 17" century, surface UV-B irradiance may have been significantly higher than in the
modern epoch.'®

Over much longer timescales, before the appearance of man, UV irradiances may have
been much greater than at present, due to differences in the composition of the atmosphere. For
example, a recent modelling study estimated that about 4 billion years ago, UV-B radiation may
have been several orders of magnitude higher than at present.”® Another modelling study suggest-
ed that about 250 million years ago the UV-B levels may also have been elevated, mainly at higher
latitudes.4?6Histon'c changes in UV-B, their causes, and methods to probe them have recently been
reviewed.

For the more recent past, on timescales of a century or so, attempts have been made to es-
timate UV irradiances using information about daily sunshine duration. For example, daily totals
of solar UV radiation back to 1893 were reconstructed for Central Europe.*® The estimated annual-
ly averaged erythemal irradiances (UV-Ery)* in this region were found to be only weakly depend-

1 Erythemally weighted UV (i.e., “sunburning” irradiance, UV-Ery) is the irradiance weighted by the erythema
action spectrum (see Fig. 1-6). This is often reported to the public in terms of the UV Index (UVI) where UVI =
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Summary

The Montreal Protocol is working, but it will take several decades for ozone to return to 1980
levels. The atmospheric concentrations of ozone depleting substances are decreasing, and
ozone column amounts are no longer decreasing. Mid-latitude ozone is expected to return to
1980 levels before mid-century, slightly earlier than predicted previously. However, the re-
covery rate will be slower at high latitudes. Springtime ozone depletion is expected to contin-
ue to occur at polar latitudes, especially in Antarctica in the next few decades. Because of the
success of the Protocol, increases in UV-B radiation have been small outside regions affected
by the Antarctic ozone hole, and have been difficult to detect. There is a large variability in
UV-B radiation due to factors other than ozone, such as clouds and aerosols. There are few
long-term measurements available to confirm the increases that would have occurred as a re-
sult of ozone depletion. At mid-latitudes UV-B irradiances are currently only slightly greater
than in 1980 (increases less than ~5%), but increases have been substantial at high and polar
latitudes where ozone depletion has been larger. Without the Montreal Protocol, peak values
of sunburning UV radiation could have been tripled by 2065 at mid-northern latitudes. This
would have had serious consequences for the environment and for human health.

There are strong interactions between ozone depletion and changes in climate induced
by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate change
affects ozone. The successful implementation of the Montreal Protocol has had a marked ef-
fect on climate change. The calculated reduction in radiative forcing due to the phase-out of
chlorofluorocarbons (CFCs) far exceeds that from the measures taken under the Kyoto proto-
col for the reduction of GHGs. Thus the phase-out of CFCs is currently tending to counteract
the increases in surface temperature due to increased GHGs. The amount of stratospheric
ozone can also be affected by the increases in the concentration of GHGs, which lead to de-
creased temperatures in the stratosphere and accelerated circulation patterns. These changes
tend to decrease total ozone in the tropics and increase total ozone at mid and high latitudes.
Changes in circulation induced by changes in ozone can also affect patterns of surface wind
and rainfall.

The projected changes in ozone and clouds may lead to large decreases in UV at high lati-
tudes, where UV is already low; and to small increases at low latitudes, where it is already
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ent on ozone amounts. Thus, assuming that any ozone changes prior to 1980 were no larger than
those since 1980,>' this new information extends our knowledge of historical changes in UV irra-
diance to the period before direct measurements were available. However the uncertainty in the
reconstruction is typically 10-20% for annual means.

Satellite estimates of UV

Estimates of surface UV irradiance are available from satellite measurements for the period since
the late 1970s. Changes in UV at different spectral bands over the period 1979 to 2008 for the en-
tire globe have been derived from a series of polar orbiting satellite instruments, as summarised for
UV-Ery in Fig. 1-1.>* Although satellite observations are available to higher latitudes, the latitude
range in this study is limited to 55°S to 55°N to avoid large solar zenith angle effects and seasonal
bias caused by missing data during polar nights. The reduced latitude range also helps to reduce
the effects of uncertainties in the retrieval associated with distinguishing reflections from clouds or
snow.”* * Over this time period, UV increased significantly at all latitudes except the equatorial
zone. Over the shorter period from 1979 to 1998, the increase was caused by decreases in ozone
amount, but after 1998, ozone amounts and UV irradiance in the northern mid-latitudes have been
approximately constant. The annual average UV increase due to ozone changes is partially offset
by an increase in clouds and aerosols which led to a decrease in transmission of UV to the surface
(i.e., a “dimming”), especially at higher latitudes in the southern hemisphere. For clear skies, the
largest increases in estimated UV-Ery were in the southern hemisphere (about 8% at 50°S for
clear-sky conditions compared to 5% at 50°N). At lower latitudes, the increases were smaller. It
should be noted that the effects of absorbing aerosols have not been included in this analysis be-
cause the satellite sensors do not ad-
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high. This could have important implications for health and ecosystems. Compared to 1980,
UV-B irradiance towards the end of the 21 century is projected to be lower at mid to high
latitudes by between 5 and 20% respectively, and higher by 2-3% in the low latitudes.
However, these projections must be treated with caution because they also depend strongly
on changes in cloud cover, air pollutants, and aerosols, all of which are influenced by climate
change, and their future is uncertain.

Strong interactions between ozone depletion and climate change and uncertainties in
the measurements and models limit our confidence in predicting the future UV radiation. It is
therefore important to improve our understanding of the processes involved, and to continue
monitoring ozone and surface UV spectral irradiances both from the surface and from satel-
lites so we can respond to unexpected changes in the future.

Introduction

The amount of ultraviolet radiation (UV)* received at Earth's surface has important implications
for human health, terrestrial and aquatic ecosystems, biogeochemical cycles, air quality, and dam-
age to materials, which are assessed in subsequent papers of this thematic issue. Research into the-
se topics was stimulated by the realisation, more than 30 years ago, that the stratospheric ozone
layer was at risk, and that there would be consequent increases in UV-B (280-315 nm) radiation.
Increases in UV-B due to decreasing ozone amounts were observed during the 1980s and 1990s,
particularly at high latitudes (> ~60°), where ozone depletion was more pronounced. However,
because of the success of the Montreal Protocol” in reducing the ozone depleting substances
(ODSs), ozone is no longer decreasing and at unpolluted sites, unaffected by changes in cloud
cover, the increases in UV have not continued in recent years. Based on our current understanding
(which may be incomplete), a gradual recovery of ozone is expected in the decades ahead. Chang-
es in other factors, such as clouds, air pollution (including aerosols), and surface albedo, are some-
times more important for changing UV radiation, and may also lead to future differences on urban
and regional scales. For the forest and aquatic environments, respectively, the UV transmission of
canopy foliage and water must also be considered.

By the end of the 21* century, amounts of ozone in most regions are expected to be greater
than they were before ozone depletion began prior to 1980. Therefore, in the absence of changes in
other factors, UV-B would be expected to decrease. However, at some locations it is possible that
UV will remain elevated due to decreasing extinctions by clouds and aerosols, particularly if the
combustion of fossil fuels is significantly reduced by that time. In some regions, such as at high
latitudes, where increases in cloud cover and reduction of the area of snow or ice are projected as a
consequence of climate change, decreases in UV at the surface may be expected.

It is well known that UV radiation can have harmful effects on human health (e.g., skin
cancer and eye damage), terrestrial and aquatic ecosystems and materials. However, UV radiation
also has beneficial effects, for example by stimulating the production of vitamin D in humans and
other animals (adverse and beneficial effects are discussed in detail in Chapter 2. At mid- and
high- latitudes, wintertime UV is very low, and human populations may be at risk from insuffi-
cient vitamin D, a risk which may increase further if ozone increases in the years ahead and if the
current trend toward indoor living continues.

* For ease of reading, we use “UV” as an abbreviation of “UV radiation” or “amount of UV radiation”. The
term “UV irradiance” means the measured quantity of UV radiation (usually in units of W m™) incident on a
horizontal surface. See the glossary for further details, including definitions of UV-A, UV-B and UV-C.

1 Here we take the Montreal Protocol to include its subsequent amendments and adjustments.
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S
Interactions with climate change Midlatitudes (30'-50'N)
Scientifically, and at political and policy 301 July 2, noon conditions
levels, there are strong links between the , i
depletion of ozone and climate change. The - » . i
Kyoto Protocol on climate change has 1'3’ 20 world avoided
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Protocol. However, addressing climate 2 4sh 1
change is much more complicated than the e
phase-out of ODSs.”’ 10} -

There has been an increased focus 5 M
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on understanding physical interactions be- Yeur

tween ozone depletion and climate change.
These are more Complex than prev]ously Fig. 1-3 UV index for clear skies predlcted by a Cllmate'
thought (see also Chapters 3-6). They can chemistry model \‘/‘ersus year.for EYVO fpmre scenarios:

K in both di ons: ch . (black curve) the “world avoided” by implementing the
wor - In bot lreCtIOI.ls' c .anges n OZO_ne Montreal Protocol, and (red curve) a “reference future”,
can induce changes in climate, and vice  calculated using the observed and currently predicted
versa. Changes in climate can also induce  chlorine concentrations. The UV index is calculated using
changes in UV radiation without affecting the July 30° — 50° N zonal-mean ozone, and for local noon
ozone. Thus, the return of ozone (or UV) to on 2 July. The horizontal grey llng shows the 1975-1985
. . . average from the fixed chlorine simulation. Adapted from
its value at any particular date in the past o
should not necessarily be interpreted as a

recovery from the effects of ODSs.'**

Impacts of ozone depletion on climate change

As noted earlier,'” the Montreal Protocol has helped to mitigate effects caused by the increases in

the main GHGs (i.e., CO,, CH4 and N,O). However, on the negative side, future reductions in
GHGs arising from this Montreal Protocol “windfall” will be slower, leading to more rapidly in-
creasing climate impacts from the main GHGs in the future. Further, the concentrations of hydro-
fluorocarbons (HFCs), which are replacements for CFCs and are also GHGs, are increasing rapid-
ly. By 2050, the increased climate forcing from these HFCs will exceed the reduction in climate
forcing due to the phase-out of CFCs."* It has been suggested that rapid action to curb further
emissions of HFCs may be among the most effective means of limiting climate change in the next
few decades.®

In recent decades, increases in Antarctic temperatures may have been suppressed by
changes in stratospheric ozone affecting wind patterns even at locations in the northern hemi-
sphere,'™ so that melting of the west Antarctic ice sheet may proceed faster in future decades, as
stratospheric ozone recovers.'> The effects of changes in stratospheric chemistry and circulation
associated with ozone recovery have not been included in all models used in previous assessments
of climate change,'" although these effects have been investigated together in the most recent Sci-
entific Assessment of Ozone Depletion.' Improved predictions of climate change should be
achieved by extending the upper boundary of climate models to include the stratosphere.

For accurate prediction of future changes in climate, all forcing agents must be included,
rather than the principal GHGs alone. These forcing agents should include changes in ozone with
altitude™ and longitude,”® changes in the mixtures and concentrations of ODSs,'"” and changes in
acrosols.''* For example, climate models that include stratospheric chemistry predict that the ob-
served increase in westerly winds at southern high latitudes will not continue, as previously
thought, but will decrease in the next few decades as ozone recovers.'”’
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Impacts of climate change on stratospheric ozone and UV radiation

Changes in different components of the earth-atmosphere system due to global warming may af-
fect ozone and UV radiation. The changes in UV may be a direct consequence of the changes in
ozone, or they may be due to changes in other factors such as changes in aerosols, clouds, or sur-
face reflectance. The extent of sea-ice in the Arctic is decreasing rapidly due to global warming
and models suggest that ice cover in summer will disappear within the next few decades.””*® The
reduced surface albedo may have important implications for future climate by increasing the frac-
tion of solar energy that is absorbed at Earth®S surface. Furthermore, organisms that were once liv-
ing below the ice will be exposed to increased doses of UV, but organisms living above the sur-
face will receive lower doses of UV due to the reduced reflectivity. It has been postulated that re-
ductions in Arctic sea-ice resulting from climate change could also lead to significant reductions in
ozone and associated increases in UV due to changes in atmospheric circulation.'”

As discussed further elsewhere,™ increases in GHGs are expected to influence future
changes in ozone. For example, as noted previously,** outside polar regions, decreased strato-
spheric temperatures that result from climate change are expected to slow down the rate of chemi-
cal destruction of ozone, and so aid ozone recovery. However, in polar regions the decreased strat-
ospheric temperatures can lead to increased areas of polar stratospheric clouds, which provide sur-
faces for rapid ozone loss, and therefore inhibit ozone recovery.'” Most models also predict that
by the end of the 21* century, ozone amounts will be significantly greater than they were in 1980,
before the onset of anthropogenic depletion of ozone.”" '** However, changes in atmospheric cir-
culation resulting from climate change can induce regional differences in ozone, leading to in-
creases in UV in some regions and reductions in other regions.”

It has been suggested that global warming could be counteracted by injection of sulphur
compounds directly into the stratosphere to produce aerosols that reflect incoming solar radiation
back to space. A secondary effect of this strategy would be the direct reduction of UV radiation
reaching the surface due to extinction by these aerosols. However, this geo-engineering strategy
would increase Arctic ozone depletion during the 21 century and delay Antarctic ozone recovery
by 30 to 70 years."* Other geo-engineering schemes have also been suggested. However, because
the atmosphere is a complex system, any deliberate interventions should be treated with great care
as they may have unanticipated adverse effects.

Future changes in UV

Changes in UV radiation in the future are estimated by model simulations that are based on the
projected changes in ozone and clouds, which are the most important factors that are known to in-
fluence UV. Because of the complex interactions between ozone depletion and climate change,
particularly with regard to future changes in clouds and aerosols, continued monitoring of ozone
and UV radiation will remain important. In particular, it will be necessary to maintain an extensive
ground-based UV measurement capability to enable us to confirm whether the measures taken un-
der the Montreal Protocol continue to be effective, and whether the model predictions for the fu-
ture are consistent with observations.

Projected changes in clear-sky UV

New simulations have been carried out using coupled Chemistry-Climate Models (CCM), incor-
porating projected changes in total ozone columns and vertical profiles of ozone and temperature.
One such study® reported that clear-sky surface erythemal irradiance would decrease over mid-
latitudes by 5 to 15% over the 21" century, while at southern high latitudes the decrease would be
twice as much. Surface erythemal irradiance was projected to decrease globally at somewhat high-
er rates in the first half of the 21* century and more slowly later on. This decreasing tendency
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would be more pronounced over latitudes where stratospheric ozone depletion was largest."*' An-
other simulation® for the period 1980-2080 found that a reduction of UV to values similar to those
in 1980 would be achieved before the mid-century at most latitudes, but because of the continued
increase of ozone thereafter, UV would continue to decrease. By 2080, erythemally weighted irra-
diances would be on average 25% lower at high latitudes and 10% lower at mid-latitudes. These
estimates have appreciable uncertainties, ranging from about 3% at mid latitudes to about 5% at
high latitudes. For some weighting functions (e.g., DNA-damage) the changes are larger.

Fig. 1-4 shows the pro-
jected annually averaged changes
in clear-sky UV-Ery from 1960 to " ."'/\\
2100 relative to 1980,121’ 0 hased f
on projected changes in ozone
from 15 models. These new simu-
lations show that UV-Ery is pro-
jected to return to its 1980 values -
in the early 2020s at northern lati- L
tudes, with a slower return in the i —
southern hemisphere, especially

over Antgrctilca. These' return 160 1980 2000 2020 2040 2060 2080 2100
dates are significantly earlier than YEAR

reported in th? preYlouS assess- Fig. 1- 4. Time series of projected changes in annual mean of noon-
ment. UV-Ery is projected to con-  time clear-sky erythemally weighted UV over the period 1960 to
tinue to decrease thereafter, ex- 2100, relative to 1980, smoothed with a 5-year running mean. Re-
cept at low latitudes where a  sults are zonal means for several latitude belts. Updated from ref.> %
small increase is projected. How-

ever, there is a wide range in return dates between the models. These studies do not take into ac-
count the potentially important changes in cloudiness, surface reflectivity, and tropospheric aerosol
loading due to or additional to climate change. The projected return date for annual mean UV to
1980 levels occurs a few years earlier than for ozone, which is projected to return to its 1980 levels
earlier for the summer months when UV high, than for the winter months when UV is low.
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Another atmospheric chemistry-climate model has been used to isolate the effects of cli-
mate change from those of ozone depletion and recovery on clear-sky UV-Ery.” Under the “mod-
erate” emissions scenario (designated AB1) of the Intergovernmental Panel on Climate Change,”’
tropospheric ozone increases markedly between 1965 and 2095 as a result of changes in atmos-
pheric circulation induced by climate change. The overall change varies with location and season.
The predicted decrease in UV-Ery of 9% in northern high latitudes is a much larger effect than that
due to stratospheric ozone recovery alone. In the tropics, clear-sky UV-Ery is predicted to increase
by 4%; and in southern high latitudes in late spring and early summer by up to 20%. The latter in-
crease is equivalent to nearly half of that generated by the Antarctic ,0zone hole™. The results sug-
gest that climate change will alter the tropospheric ozone budget and UV radiation at the surface,
with consequences for tropospheric temperatures, air quality, and human and ecosystem health.

Projected effects of cloud changes on UV

Although clouds have large effects on UV, there has been only limited progress in forecasting fu-
ture cloud prevalence or characteristics, or in calculating the detailed radiative effects of realistic
cloud situations. It is uncertain whether the radiative effects of clouds in the future will be greater
or less than at present. A recent modelling study suggests that, in response to climate change,
cloud cover will increase at high latitudes by up to 5% but will decrease at low latitudes (< ~30°)
by up to 3%."3 If this prediction is correct, there could be important implications for human
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health, the local ecosystems, biogeochemical cycles and air quality, since UV radiation would in-
crease at low latitudes where it is already high, but decrease at high latitudes where it is already
low. The already large latitudinal gradients in UV radiation will become even larger. However,
these modelled cloud effects have not yet been verified against observed effects, and large uncer-
tainties remain.

New simulations with 15 different CCMs have provided more robust predictions of ozone,
and 4 of these models also provided estimates of future surface solar irradiance both under clear-
skies and for cloud-affected conditions.”’

When the effects of projected changes in clouds are included, a further reduction in UV—
Ery of about 2% is calculated for mid-latitudes. In the tropics, UV is projected not to return to its
levels in 1980. Although UV is projected to decrease at all latitudes during the 21* century, in the
tropics this decrease is smaller and lasts only until the middle of the century. Thereafter low lati-
tude UV-Ery increases in response to the projected decreases in ozone due to the acceleration of
the large scale atmospheric transport (specifically, the “Brewer-Dobson” circulation).'” Although
the magnitude of this increase due to ozone is small (on average 2%) compared to the changes pro-
jected for the higher latitudes, the inclusion of clouds in the calculations results in an additional
increase in UV-Ery of between 3 and 6% at low latitudes (see Fig. 1-5). This additional increase in
a region where UV-Ery is already high would increase the risk of adverse effects on ecosystems
and human health.

At high latitudes,
especially in the Arctic
spring, increasing cloudi-
ness is expected to further
reduce the UV irradiance
at the surface. While
changes in ozone are re-
sponsible for a reduction
in UV-Ery of up to
~10%, the increases in
cloud cover predicted by
the models produce a fur-
ther reduction in UV-Ery
of ~10%. Reduced sur-
face albedo due to de-
creases in the extent of
sea ice during the 21"
century will further am-
plify these reductions in

3
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UV at the surface (but Average all-sky erythemal iradiance change between 1980 and 2100 (%)
increase UV below the | -
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merly covered by ice).

We note that the differ- Fig. 1-5. Multi-model average changes in surface erythemal irradiance from
ences in the estimates 1980 (1975-1985) to 2100 (2089-2099) under all-sky conditions for four

among models are large, months, calculated with a radiative transfer model using projections of ozone,
cloudiness, temperature and solar radiation from 15 different CCM runs. Up-

rﬁducmg lconlt\}[dence IE dated from refs.'*" ! Note the seasonally-dependent bands of missing data at
these results. More wor high latitudes.

is needed to simulate fu-
ture cloud changes with confidence.
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The changes described in Figs 4 and 5 are for erythemally-weighted UV irradiances.
For other environmental effects, the influence of ozone differs, as described further below.
However, the influences of changing cloud cover are similar for most environmental effects.

Biological relevance of ozone changes

Sensitivity of UV radiation to ozone changes

The damaging or beneficial effects of UV radiation often have a strong wavelength-dependence,
the effect being generally larger at shorter wavelengths. These effects are quantified using
weighting functions, also called “action spectra”, which typically increase towards shorter wave-
lengths in the UV-B region. Examples of action spectra, illustrating their huge diversity, are shown
in Fig. 1-6. Action spectra express the
relative response at different wavelengths.
To calculate physical effects, they are
combined with a response in relevant units 1
at the normalisation wavelength.

The relationship between change
in total column ozone (Os3) and change in
biologically effective UV irradiance (E)
can be quantified in terms of the “Radia-
tion Amplification Factor” (RAF). For
small changes in ozone, the RAF is de-
fined as the relative fractional change in 0.001
effective UV irradiance with fractional

0.1

0.0

Relative Response

change in total column ozone: 18
0.0001 .
RAF = - (AE/E) / (AO5/O5) 280 320 80 400
‘ Wavelength (nm)
where AE and AO; are the respective < o
. . rylhema,

changes of UV irradiance (E) and ozone Bt
(O5). For example, RAF=1.5 means that a —e DNA damage
1% decrease in ozone will lead to a 1.5% sessssssscass Generalised plant damage
increase in effective UV. Processes with —— Patdamage

. .. — =— =— - Bleaching ol DOM {/50)
steeper agtlon spectra are more sensitive to Open oceen CO pholoproducion
changes in ozone, and have larger RAFs ~ cccaaa. Mortality of copepod
(see Fig. 1-6). An earlier assessment” in- Secondary organic asrasol 1o CO (x50)

cluded a comprehensive list of RAFs for

time. Since then, several new action spec- induced effects listed in Table 2. Curves are labelled by

h 1abl i their summertime RAF and colour-coded according to the
tra have become available. An updated list nature of the effect (e.g., health effects in red). Note that the

of RAFs for these, and for some common-  action spectra for bleaching of dissolved organic matter
ly-used older action spectra, is tabulated = (DOM) and secondary organic aerosols have been scaled by
below (Table 1-2). Note that uncertainties 1/50 and 50, respeqtively, to bring their normalisation at

in the weighting functions can be large 00 "M close to unity.

and these uncertainties propagate through

to these RAFs. Therefore, differences in the RAFs, shown in Table 1-2, should not be over-
interpreted.

As the effect of ozone on UV is non-linear, for larger changes in ozone, the power form
should be used™:
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E'/E = (0570, )
where the superscripts (+ and -) refer to the cases with higher or lower ozone amounts, respective-
ly.

Table 1-2. RAFs for action spectra calculated on the basis of daily integrals for latitude

30°N. This is an update of Table 1.1 in ref.”

Effect RAF Jan | RAF July | Refer-
(290 DU) | (305DU) | ence
Exponential decay (14 nm/decade) 1.00 1.01 -
UV-B (280-315 nm) 1.25 0.99 -
UV-A (315-400 nm) 0.03 0.02 -
Erythema (CIE, standard reference) 1.1 1.2 50
Erythema (from tuneable laser) 1.6 1.5 :
Squamous skin cancer in humans (SCUP) 1.2 1.2 !
US Industrial Safety Standard (ACGIH) 1.4 1.5 !
Cataract using whole pig lens 1.3 1.1 7
Visual sensitivity in insect 0.1 0.1 7
Previtamin D3 (CIE) 1.7 1.4 0
DNA damage (Setlow) 2.2 2.1 e
DNA damage in alfalfa 0.5 0.6 100
Generalised plant damage (Caldwell, truncated at 2.2 1.8 2
313 nm)
Plant damage (extended to 390 nm) 0.3 0.4 =
Phytoplankton Phaeodactylum 0.3 0.3 >
Phytoplankton Prorocentrum 0.4 0.4 >
Phytoplankton 0.8 0.8 "
Inhibition of photosynthesis in phytoplankton 0.3 0.3 1z
Damage to freshwater cladoceran (Daphnia) 0.72 0.74 148
Bleaching of dissolved organic matter (DOM) 0.04 0.04 o
Baltic Sea - photoammonification 0.2 0.2 138
Photoproduction of CO from tropical savanna litter | 0.3 0.3 108
Coastal ocean biologically labile photoproduction 0.2 0.2 5
Open ocean CO photoproduction 0.3 0.3 e
Mortality of copepod Boeckella gracilipes 0.6 0.7 1
DNA damage in embryos of sea urchin 0.1-0.2 0.1-0.2 70
Inhibition of hypocotyl growth in Arabidopsis 1.6 1.3 »
Inhibition of photosynthesis in kelp (depth depend- | 0.1-0.4 0.1-0.4 5
ent)
Secondary organic aerosol to carbon monoxide 0.2 0.2 70
Secondary organic aerosol to formic acid 0.2 0.2 13

16
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Effect RAF Jan | RAF July | Refer-
(290 DU) | (305DU) | ence

Material: PVC, 2.5% TiO,, approx as exp(-0.058*1) | 0.3 0.3 >
Material: Rigid Sheets, approx as exp(-0.082*k) 0.4 0.4 6
Material: Mechanical pulp, approx as exp(-0.110*4) | 0.08 0.08 7

0; > 0,+0('D) 1.5 1.4 o8
H,0, > 2 OH 0.3 0.3 >
NO, 2 NO + O(CP) 0.02 0.02 ¥
HNO; - OH + NO;, 0.8 0.8 >
NOs(aq) 2 NO,(aq) + O 0.6 0.5 ¥
CH,O - H + HCO 0.5 0.4 >
CH,0 - H, +CO 0.2 0.1 >
CH;COCH; - CH;CO + CH;, 1.5 1.5 >

While the concept of RAF is a good approximation, it cannot generally be applied as a

single value under all circumstances. It depends on all factors that may alter the shape of the irra-
diance spectrum, the solar zenith angle (SZA) and the ozone column amount being particularly
important. This dependency for the erythemal action spectrum is illustrated in Fig. 1-7. For SZAs
between 0° and 50°, the RAF is 1.1£0.1, but for larger than 50° SZA and large total ozone column
amounts, resulting in strong absorption of radiation, the RAF for erythema gradually decreases.
Limitations of the RAF and its application to other action spectra have been discussed in more de-
tail elsewhere.*

Attempts to quantify the risks and

benefits of UV radiation
6134

RAF for Erythema

as a function of SZA and Ozone

Assessments prior to 200 empha-

sized the risks of increased UV radia- = "
tion, and gave little attention to benefits. 550
However, in recent years there has been 500
increased awareness of possible benefits.
Therefore, future reductions in UV irra- 450
diance as the ozone layer recovers may — _ 440
not necessarily be beneficial in some 3
regions, particularly if ozone returns to § -
higher levels than prior to the 1980s. 300
Significant reductions in UV could have
implications for human health, and pos- e
sibly other environmental effects. For 200

human health, the main beneficial effect
of UV radiation is through inducing the
synthesis of vitamin D in the skin. Bal- 100
ancing the risks and benefits of solar UV
radiation has become a challenge for
policymakers and health advisors.

= i
0 1M 20 30 40 S50 60 70
SZA (deg)

80 90

Fig. 1-7. The RAF for erythema,* calculated as a function of

The most important determinant solar zenith angle and total ozone column amount.

of UV radiation at Earth's surface is the
path length of the radiation through the atmosphere. Consequently, differences in sun angle are
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responsible for large latitudinal and seasonal variations in both beneficial and harmful UV. These
changes differ in magnitude, depending on the relevant weighting functions. Compared with the
action spectrum for erythema® which is used to calculate the UV, the action spectrum for vitamin
D production® is confined more to the UV-B region (see erythema and pre-vitamin D curves in
Fig. 1-6). This affects the seasonal and diurnal variability. Thus at mid latitudes, the UVI at noon
in winter is typically 1, which is only about 10% of its summer value. On the other hand, vitamin
D-weighted UV radiation shows a summer/winter contrast that is approximately twice as large as
that for UVL In each case, the weighted irradiances decrease at higher latitudes, and the ratio be-
tween summer and winter values increases rapidly. Daily doses show more marked seasonal varia-
tions than peak noon values due to the longer daylight periods in summer and shorter daylight pe-
riods in winter.

Because of the success of the Montreal Protocol, increases in UV-B radiation due to ozone
depletion have been modest in most populated regions of the world (i.e., outside the regions af-
fected by the Antarctic ozone hole). Thus wintertime deficiencies in vitamin D production in mid
and high latitude regions are unlikely to have been ameliorated (See Chapter 2). Monthly climato-
logical maps of the mean vitamin D-weighted UV radiation incident on a horizontal surface, and
various other biological weightings, are now available,”” and methods have been devised to esti-
mate vitamin D-weighted UV from measurements of erythemal irradiance.*” * In many cases the
biologically-relevant dose may differ appreciably from that on a horizontal surface. For non-
horizontal surfaces the winter dose is increased significantly compared to horizontal surfaces, par-
ticularly under conditions of high surface albedo.” It should also be noted that the action spectra
for the production of vitamin D and erythema published to date have large uncertainties, and may
require revision in the future.”’ Both of these weighting functions include an arbitrary normalisa-
tion, so their magnitudes should not be interpreted in terms of direct health consequences.

The effective dose of vitamin D-weighted UV over 60 min around local noon has been
calculated from spectral measurements at three European stations.”” Seasonal and latitudinal dif-
ferences between sites are very large (see Fig. 1-8). In summer, these noon doses at the lower lati-
tude sites can be up to 250 times = ..
higher than in winter at higher lati- b By 59 S
tudes. For some skin types, optimal
vitamin D production is impractical
for some months, especially at the
high latitude sites. We emphasise
that there is large uncertainty in de-
termining the thresholds shown in
Fig. 1-8 (shaded area). These uncer-
tainties will likely be resolved as re-
sults from new studies become
available. o

= Jokiginen - #0.8°N

08

Dose for vitanan O productsan (ki m?)

1] a0 1) 120 150 80 110 240 770 300 330 360
Measurements of spectral By il yae

irradiance have been used to o ) .
Fig. 1-8. Average vitamin D weighted UV dose received on a

estimate the exposure times to : )

.. . horizontal surface exposed for 60 min centred at local noon at
optimize beneficial effects OfUV78 three sites. The shaded area represents the range of thresholds
while minimizing risks (Fig 1-9). equivalent to 1000 TU vitamin D production for 25% of skin ex-
These calculations are for radiation  posed according to'* for the full range of Fitzpatrick skin types

falling on a horizontal surface. For ~ (I-VD." Adapted from ref .

more realistic surface geometries,

the exposure times would tend to be longer at high UVI values (when the sun is high in the
sky), and shorter at lower UVI values (when the sun is lower in the sky). Generally, there is a

18 The Environmental Effects Assessment Panel Report for 2010



Ozone depletion and climate change: Impacts on UV radiation

wide margin between UV insufficiency and damage; however, this is not the case for low
UVI when little skin is exposed. Based on these calculations, for the present wintertime UV
irradiances at mid-latitudes (~45°N or S), sufficient vitamin D should be produced in less
than 1 hour of full body exposure. However, this result is inconsistent with earlier findings
that no vitamin D is produced at mid-latitudes in winter'*® and therefore suggests that there
may be a problem with the currently accepted action spectrum for the production of vitamin
D. The sensitivity of the vitamin D assay method for the earlier study'*® was rather low
compared with modern techniques and more work is needed to resolve these inconsistencies.
See Chapter 2 for further discussion on the vitamin D issue.

Exposure Times (for fair skin)
Erythema

Personal exposure to UV radiation <00

The exposure of an individual to UV 100 s—e—e Vit D: FacesHands
(personal exposure) can far exceed the g ::: gf i:z::::::‘lh '
thresholds recommended by health agen- 50 —— VRD: Fil boty -
cies, especially during summer vacation -

periods when the available daily dose re- % 20 UV Damage
ceived at mid-latitudes on a horizontal s T——
surface can exceed 70 standard erythemal z 3

doses (SED).” Even in Antarctica, where E sF

the sun elevation is smaller than at lower = E

latitudes, UV exposures can approach that sk

value. This is partly because of low ozone Insufficient UV

amounts and partly because of the long 1 i
length of day and high surface albedo. A as = i { | | i i
study of UV exposures of expeditioners y 2 4 6 8 10 12 14
on Antarctic resupply voyages was per- uvi

formed using pqusulphone dOSImetry Fig. 1-9. Indicative exposure times for skin damage or for
over the summer, including the period of  sufficient vitamin D production as functions of UVI, where
the springtime Antarctic “ozone hole”.  “sufficient” vitamin D production is taken as the time re-

The median measured daily exposure was quired to receive a dose equivalent to 1000 IU. The latter

0 times depend on the area of skin exposed and both depend
3.2 SED and about 80% of the workers on the skin type. The curves are for fair skin (for which it

received more than the occupational ex- has been assumed that 1 Minimum Erythemal Dose (MED)
posure limits. At one of the sites (Casey, =250 m™). For highly susceptible individuals, the times
66°S), peak UVI values sometimes ex-  for erythema could be shorter, while for darker skins these
ceeded 12. Some workers also reported times could be up to ~5-times longer. Adapted from ref ’®.

mild erythema.*

The UV radiation received by an individual may be expressed in terms of the exposure ra-
tio (ER) of erythemally-weighted dose received by a given part of the body and the available am-
bient dose incident on a horizontal surface. These ratios are usually expressed as percentages:

ER =100% x ED,/ ED,

where ED, is the ambient erythemal dose, in SED, received on a horizontal surface (1 SED = 1
Standard Erythemal Dose = 100 J m™ of erythemally weighted irradiance),” and ED, is the per-
sonal dose received by an individual, based on a measurement at a representative anatomical site.
While this is a valid quantity for assessing skin damaging effects such as erythema, in other cases
(e.g., for assessing vitamin D production), a further scaling would be necessary to account for the
proportion of uncovered skin.
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Exposure ratios depend on lifestyle, but are usually very small. This may be beneficial for
preventing skin damage, but may be detrimental for maintaining optimal vitamin D status.

A comprehensive study in Germany using polysulfone UV dosimeter badges concluded
that the ER varies greatly between the anatomical body sites tested, but is typically ~2%.%* In two
studies in New Zealand using electronic dosimeters, an ER of ~5% was measured for primary
school children,"" and only reached ~20% for the population subset of outdoor workers.*” Another
study in Denmark using electronic personal UV dosimeters,” appears to refute the widespread be-
lief that most of our lifetime cumulative UV dose is received during childhood.'*®

However, in some population groups, exposure ratios can be much larger. A recent study,
using polysulfone UV dosimeter badges, reported no significant differences in solar UV exposure
on a specific anatomical site (chest) among three groups of Italian sunbathers: (1) healthy sun-
tanned people, (2) healthy non-suntanned people and (3) people affected by abnormally high sen-
sitivity to solar exposure.''” The mean ER reported in the study was ~20%, and ranged from ~10
to ~40%. Another study, by the same group, on skiers at a high albedo alpine site found even
higher ER values on the forehead, with a median ER of 60%, and sometimes even exceeding
100%.""® However, large ER values are the exception rather than the rule for the wider population.

Prior to the industrial revolution, and especially before the widespread introduction of
glass windows, these exposure ratios would have been much larger. For the glass material used in
typical windows, the transmission falls below 10% for wavelengths less than 310 nm. Consequent-
ly, only 5-10% of sun-burning UV radiation and an even smaller fraction of vitamin D-weighted
UV radiation are typically transmitted. However, the resulting reductions in UV exposure may
have been negated by changes in clothing habits and the fashion to be tanned. In recent years, there
has been a further trend towards more indoor vocational and recreational activities in everyday
life, punctuated with only occasional exposures to high UV irradiances, for example during vaca-
tions.** To circumvent the difficulties in monitoring UV exposures, attempts have been made to
develc;g) behavioural models for estimating exposure to UV radiation for different population
types.

Gaps in our knowledge

At the present time, there are few reliable satellite-based measurements of atmospheric ozone,
which are needed to estimate global patterns and variability in UV radiation. A continuation of
reliable measurements - without gaps - is vitally important. Most current satellite sensors for esti-
mating surface UV radiation do not adequately probe the lower troposphere (altitudes below ~
Skm), so the method for deriving surface UV radiation is rather insensitive to changes in pollution
in the boundary layer of the atmosphere.

Despite the few attempts to reconstruct past UV records, there is a large gap in our
knowledge of past changes in UV on a global scale, and in particular, the changes resulting from
decreasing ozone over the latter part of the 20™ century, especially prior to the satellite era.

Projections of future changes in UV radiation are uncertain, due mainly to the complexity
in the projections of cloud and aerosol changes. It is therefore important to maintain a geograph-
ically wide-spread network of high-quality ground-based UV spectral measurements to determine
whether the measures taken under the Montreal Protocol are effective in moderating UV radiation,
and whether future model predictions are consistent with observations. Our ability to predict future
changes in UV is limited by our inability to accurately predict future changes in clouds and pollu-
tion. Even if we were confident about changes in cloud cover, we are still limited in our ability to
model their effects realistically. The inclusion of stratospheric processes (chemistry and circula-
tion) in climate models would lead to more accurate predictions.
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Knowledge about the ranges of both beneficial and detrimental effects of UV radiation is
still incomplete. For many biological processes, including skin cancer or vitamin D production in
humans, our ability to assess biological impacts is limited by incomplete knowledge of the rele-
vant action spectra and the geometric conditions of exposure. Even the widely-used action spec-
trum for erythema is an idealization which may be inappropriate in many cases.

Finally, although the main focus of this assessment is on the long term effects of ozone de-
pletion, it is noted that ozone can also change over much shorter time scales,” ''" '** and the bio-
logical impacts of the corresponding changes in UV may also be important. It is not known
whether the frequency and severity of these events will change in future as a result of climate
change. In many cases (including erythema and vitamin D production), threshold effects, recovery
times, repair mechanisms, and linearities of the effects are not well established. Knowledge of rec-
iprocity of effects is incomplete. For example, is the effect from an exposure to UV for a given
period always equivalent to that from a UV source of one tenth the strength with an exposure peri-
od 10 times as long?
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Chapter 2. The human health effects of ozone depletion and in-
teractions with climate change
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Summary

Depletion of the stratospheric ozone layer has led to increased solar UV-B radiation (280-315
nm) at the surface of the Earth. This change is likely to have had an impact on human expo-
sure to UV-B radiation with consequential detrimental and beneficial effects on health, alt-
hough behavioural changes in society over the past 60 years or so with regard to sun exposure
are of considerable importance. The present report concentrates on information published
since our previous report in 2007.

The adverse effects of UV radiation are primarily on the eye and the skin. While so-
lar UV radiation is a recognised risk factor for some types of cataract and for pterygium, the
evidence is less strong, although increasing, for ocular melanoma, and is equivocal at present
for age-related macular degeneration. For the skin, the most common harmful outcome is
skin cancer, including melanoma and the non-melanoma skin cancers, basal cell carcinoma
and squamous cell carcinoma. The incidence of all three of these tumours has risen signifi-
cantly over the past five decades, particularly in people with fair-skin, and is projected to
continue to increase, thus posing a significant world-wide health burden. Overexposure to
the sun is the major identified environmental risk factor in skin cancer, in association with
various genetic risk factors and immune effects. Suppression of some aspects of immunity
follows exposure to UV radiation and the consequences of this modulation for the immune
control of infectious diseases, for vaccination and for tumours, are additional concerns. In a
common sun allergy (polymorphic light eruption), there is an imbalance in the immune re-
sponse to UV radiation, resulting in a sun-evoked rash.

The major health benefit of exposure to solar UV-B radiation is the production of vit-
amin D. Vitamin D plays a crucial role in bone metabolism and is also implicated in protec-
tion against a wide range of diseases. Although there is some evidence supporting protective
effects for a range of internal cancers, this is not yet conclusive, but strongest for colorectal
cancer, at present. A role for vitamin D in protection against several autoimmune diseases
has been studied, with the most convincing results to date for multiple sclerosis. Vitamin D
is starting to be assessed for its protective properties against several infectious and coronary
diseases.
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Current methods for protecting the eye and the skin from the adverse effects of solar
UV radiation are evaluated, including seeking shade, wearing protective clothing and sun-
glasses, and using sunscreens. Newer possibilities are considered such as creams that repair
UV-induced DNA damage, and substances applied topically to the skin or eaten in the diet
that protect against some of the detrimental effects of sun exposure. It is difficult to provide
easily understandable public health messages regarding “safe” sun exposure, so that the posi-
tive effects of vitamin D production are balanced against the negative effects of excessive
exposure.

The international response to ozone depletion has included the development and de-
ployment of replacement technologies and chemicals. To date limited evidence suggests that
substitutes for the ozone depleting substances do not have significant effects on human
health.

In addition to stratospheric ozone depletion, climate change is predicted to affect hu-
man health, and potential interactions between these two parameters are considered. These
include altering the risk of developing skin tumours, infectious diseases and various skin dis-
eases, in addition to altering the efficiency by which pathogenic microorganisms are inacti-
vated in the environment.

Introduction

Depletion of the ozone layer has led to an increase in solar UV-B radiation reaching the
Earth®s surface, with many consequences for human health. These can be beneficial, such as
promoting the synthesis of vitamin D, or detrimental, such as inducing skin cancer and cata-
ract. It should be noted here that changes in human behaviour with regard to sun exposure
over the past 60 years or so have probably contributed much more significantly to alterations
in health risks than ozone depletion. Such changes, leading to an increase in exposure to so-
lar UV radiation, include the widespread perception that a tanned skin is desirable and an in-
dicator of good health, the huge rise in the popularity of sunshine holidays (and thus expo-
sures to different UV radiation environments) encouraged by inexpensive air travel, and the
wearing of minimal clothing and swimwear when air temperatures rise. Other changes have
led to a decrease in exposure to solar UV radiation, including fewer outdoor occupations and
more urban living. Climate change may also increase the vulnerability of the population to
UV radiation.

The present assessment focuses on the four year period from 2006 to the present, ex-
cept where some background information is included for clarity. It follows a similar format
to our previous report published in 2007.>** First the harmful effects of solar UV radiation on
the eye, the skin and the immune system are considered. Secondly the positive aspects of
UV-mediated endogenous production of vitamin D in protecting against several diseases are
discussed. A third section considers ways in which individuals can protect their eyes and
skin from solar UV radiation, and provides some cost-benefit analyses. The impact of toxici-
ty and air pollution resulting from new substitutes for the ozone depleting substances is dis-
cussed (with detail presented in an online supplement to this paper). A final section assesses
the sparse information available to date on the possible health effects of the interactions be-
tween climate change and ozone depletion. Changes in lower atmospheric air quality as a
result of UV radiation and climate change may also have health consequences, and this is
considered elsewhere (see Chapter 6).
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The effects of solar UV radiation on the eye

There is convincing evidence that UV radiation exposure is a risk factor for some types of
cataract, pterygium, pinguecula (conjunctival degeneration) and squamous cell carcinoma of
the cornea and conjunctiva. In addition, acute photokeratitis and photoconjunctivitis are
clearly UV-induced, and retinal burns can result from high intensity exposure, such as look-
ing directly at the sun. For other disorders including ocular melanoma and age-related macu-
lar degeneration, the evidence of a role for UV radiation is scanty and/or contradictory. Pre-
vious reports have reviewed the mechanics of UV-B irradiation of target tissues in the eye,*
and the two major effects of chronic UV radiation, pterygium and cataract,®” > as well as
effects on the cornea and conjunctiva.'” Here we update that evidence and focus further on
diseases where there remains uncertainty for an association with exposure to UV radiation,
particularly UV-B radiation.

Pterygium

Pterygium is an inflammatory, proliferative and invasive growth on the conjunctiva and cor-
nea of the human eye that can impair vision.”> Recent studies support an association be-
tween higher levels of sun exposure and development of both primary and recurrent (after
surgery) pterygium,284 but provide no information regarding the relative importance of UV-A
or UV-B radiation.

Previous work has implicated both dust and UV radiation in the pathogenesis of pter-
ygium.*> Support for the latter is indicated by the high prevalence in fishermen and sailors,
who are not exposed to dust, but to UV radiation that is scattered and highly reflected from
the sea, which can be up to 20% of the incident UV radiation.*® Furthermore, exposure to
scattered, rather than direct, UV radiation is more likely to irradiate the region of the eye
where pterygium is generally found. Indeed it has been suggested that scattered light may
expose the basal stem cells at the junction of the white of the eye and the cornea to increased
amounts of UV radiation, leading to mutations in tumour suppressor genes and the generation
of damaging reactive oxygen radicals.*> UV-B irradiation may also cause the release of pro-
inflammatory cytokines into tears bathing the mucosal surface, with resulting chronic in-
flammation and fibrovascular proliferation leading to pterygium formation.*”

Cataract

In the previous report™ we assessed the epidemiological evidence for an association between
exposure to UV-B radiation and the three main types of age-related cataract: cortical, nuclear
and posterior subcapsular. There is considerable evidence that UV irradiation is a risk factor
for the development of cortical cataract, with less evidence to support a relationship with nu-
clear cataract, although the timing of exposure may be particularly important for the latter.
The evidence for an association with posterior subcapsular cataract remains weak. There has
been little progress in this area. One study established an action spectrum for cataractogenesis
using cultured whole porcine crystalline lens,**' which was in good agreement with previous-
ly published action spectra for isolated lens epithelial cells and in vivo models. The peak ef-
fectiveness for the production of lens anterior subcapsular lesions occurred in the UV-B
waveband, around 290 nm (see Chapter 1, Table 1-2). More recent research has focused
largely on animal studies, examining mechanisms of UV-induced development of cataract. A
wide range of animals has been used, including mice and rats," **?'! rabbits''* '"* and guin-
ea pigs,”'* but none provides an ideal model for the human lens, and whether UV-A or UV-B
wavelengths are more important for cataract formation varies from species to species.

The Environmental Effects Assessment Panel Report for 2010 33



The human health effects of ozone depletion and interactions with climate change

Ocular melanoma

Limited evidence indicates that there may be a link between solar UV-B radiation and the
development of ocular melanoma. Such tumours include both external, involving the eyelid
and conjunctiva, and intraocular tumours, involving the iris, ciliary body and choroid (collec-
tively known as the uvea). The latter comprise the majority of ocular melanomas and are the
most common primary eye cancer in adults with a reported annual incidence per million of 6
in fair-skinned and 0.3 in dark-skinned individuals."’ Examples are shown in Fig. 2-1.

Although there is substantial lenticular transmission of
UV-B radiation in childhood, this decreases with age
so that, in adulthood, uveal melanocytes are exposed to
only a small amount of UV-B radiation.”> This sug-
gests that exposure of external and uveal melanocytes
to UV-B radiation, at least in adulthood, is different.
One study showed that higher exposure to UV radia-
tion in the first 20 years of life is a risk factor for ocu-
lar rnelanoma,327 while others have demonstrated an
increased risk in relation to light-coloured irides, pre-
vious photokeratitis (due to welding or snow blind-
ness), exposure to sunlamps, and wearing sunglasses or
hats (interpreted as indicating photosensitivity).'*> >’
282,398 quch evidence supports exposure to UV radia-
tion as a causative factor in ocular melanomas, but epi-
demiological data suggest that the effects may be con-
fined to external tumours.” For example, the age-
standardised incidence of conjunctival melanoma in-
creased more than 7-fold in Swedish men and women
between 1960 and 2005, with the increase confined to
tumours of UV-exposed conjunctiva (rather than the
tarsal conjunctiva lining the eyelid). In contrast, the
incidence of uveal melanoma is stable or even declin-
ing.>’”" In the non-Hispanic white population in the
USA (1992-2002), there was an inverse latitudinal gra- .
dient in the incidence of conjunctival melanoma (2.5- Fig. 2-1. Intraocular malignant melano-
. . ¢ : ma: (A) an amelanotic iris melanoma with
fold increase from 47-48° to 20-22° latitude, i.€. in- pytrient blood vessels, causing a rolling
creasing incidence with higher ambient UV radiation), out (ectropion) of the pigment layer and
but decreasing risk of uveal melanoma with decreasing distortion of the pupil, and (B) a dome-

latitude (higher ambient UV radiati 01’1).372 shaped choroidal melanoma WiFh mottled
appearance (photographs supplied by Dr

. A. Cullen, University of Waterloo, Cana-
Age-related macular degeneration da).

L ’
yee g

Age-related macular degeneration (AMD), also called

age-related maculopathy, is the most frequent cause of loss of vision in humans living in de-
veloped countries. This retinal disease is most commonly the non-exudative (dry/atrophic)
form, but the more severe exudative (wet/neovascular) form can also occur (see Fig. 2-2).
The aetiology of AMD is unclear but is thought to involve both genetic and external factors,
such as solar UV radiation. In animal studies, reactive oxygen species generated as a result
of UV-induced changes can damage the retinal pigment epithelium, leading to degeneration
of photoreceptors of the neural retina and the development of AMD.'*

34 The Environmental Effects Assessment Panel Report for 2010



The human health effects of ozone depletion and interactions with climate change

AMD is significantly more common in higher ambient
UV radiation settings or in population groups having
greater exposure to UV radiation, such as farmers and
fishermen.*” **> Higher sun exposure, assessed either
by questionnaire’” '®® or by facial wrinkling,"’ is as-
sociated with an increased risk of AMD, particularly
the exudative form. Furthermore, in an Australian
study, participants who had a history of sun-sensitive
skin (burning rather than tanning) had a decreased risk
of exudative AMD compared with subjects who had
average sun-sensitivity,”" an observation that could be
explained by the former subjects having had lower
lifetime sun exposure. These findings form a con-
sistent picture of support for UV radiation being a risk
factor, at least in exudative AMD. However, other
studies reveal no association between ambient UV ra-
diation or past sun exposure and AMD,** and no evi-
dence to support dependence on a specific wavelength
range. It is possible that any correlation between UV
radiation and AMD may be confounded by other fac-
tors such as variable genetic susceptibility or even blue
light which is capable of generating reactive oxygen

i Fig. 2-2. Age-related macular degenera-
Species. tion: (A) early dry form showing discrete
yellow spots (drusen) at the posterior pole
and mild retinal pigment epithelial chang-

The effects of solar UV radiation on the skin ¢ 24 (B) sudden onset wet form with
extensive macular oedema (fluid in and

behind the retina), suggesting underlying
Melanoma abnormal blood vessels (photographs

Epidemiology of melanoma. The annual incidence of supplied by Dr A. Cullen, University of

cutaneous malignant melanoma (CMM) varies geo- vaterloo, Canada).

graphically from between 5 and 24 per 100,000 in Eu-

rope and the USA”" 1> 2% to over 70 per 100,000 in higher ambient UV radiation regions of
Australia and New Zealand.®® **>*"> Even in locations with lower incidence, there are specif-
ic high-risk groups such as non-Hispanic white men older than 65 years in the USA, where
the incidence is greater than 125 cases per 100,000."”> In Australia, melanoma is currently
the third most commonly reported cancer in men and women overall, and the commonest in
women aged 17-33 years.” CMM is uncommon in individuals under the age of 20, although
an increase of 2.9% per year between 1973 and 2003 in the USA has been reported in a re-
cent review.'"’

Many studies in various countries indicate that the incidence of CMM has increased
by 1-3% per year over the past half century.’® ¢ 192220288 [y 4 few instances it has stabilised
over recent years,”® **° particularly in people younger than 40 years. For example, in Swe-
den, the previously rapid increase in the incidence of CMM in teenagers from 1973 levelled
off between 1983 and 1992, and since then has decreased.'”  This situation has been at-
tributed to intensive public health campaigns over the past 30 years or so advocating avoid-
ance of sunburn and seeking medical care promptly if pigmented skin lesions arise.”> ** 2%
298.35% The increasing incidence pertains particularly to thin (early) melanomas, with the in-
cidence of thick (late) melanomas relatively unchanged.*® ' 2% ¥ ‘Whether this is real or
an artefact of screening and diagnostic drift (in situ lesions not diagnosed previously as CMM
now being included) remains controversial.

The Environmental Effects Assessment Panel Report for 2010 35



The human health effects of ozone depletion and interactions with climate change

Mortality rates due to CMM, which increased in most European countries as well as
in North America, Australia and New Zealand in the 1980s, peaked around 1990 and, since
then have tended to be stable, for example in the USA,195 or to decrease, for example in
women in Northern Ireland.**® Any such reduction in the next few years will probably be due
to early detection and treatment rather than to primary prevention and changes in ambient UV
radiation.

The distribution of CMM varies by age and sex, probably related to different patterns
of exposure to the sun. Head and neck tumours are found particularly in elderly
populations,”” " *** and are thought to be correlated with chronic sun exposure, as indicated
by their association with solar keratoses,” **° considered as a marker of repeated solar UV
irradiation. In younger age groups, the highest rates of CMM occur on the trunk in males and
on the extremities in females.”’>*> Intermittent sun exposure and sunburn’® *% > in child-
hood® ' 2% and throughout adulthood®* '* are major risk factors.

In high ambient UV radiation locations, the development of pigmented moles (ac-
quired melanocytic nevi, AMN) in young children is very common,'*®*** particularly where
there is a combination of fair skin type with higher sun exposure and episodes of sunburning.
For example, only 8.3% of Brazilian children aged 2-8 years had no AMN.*** Waterside va-
cations in the USA were associated with a 5% increase in the number of small moles in chil-
dren examined at age 7 years, with a lag in the development of new moles of one year after
the vacation.**’

An important question for CMM in relation to stratospheric ozone depletion concerns
the wavelength dependency of initiation and development. Although an early study in the
Xiphophorus hybrid fish suggested a role for UV-A radiation,”™ this has not been supported
by more recent work in the same model*'? or in mammalian models, including the South
American opossum”® and several genetically modified mouse strains [for example "']. The
weight of evidence now supports UV-B radiation as critical to the initiation of melanoma,
although a contributory role for chronic exposure to UV-A radiation in the progression of
melanoma, through free radical formation or direct effects on DNA, is possible.**’

Genetic damage and risk of melanoma. Cancer is thought to result from mutations in
genes that control cell proliferation and migration/invasion into surrounding tissue. Mutations
in key genes in CMM have been identified; but there is a lack of characteristic UV-related
mutations in these genes and it is not clear whether and how they might be affected by UV
radiation.

In human CMM, the pathway involving Ras proteins is frequently activated, with
stimulation of cell growth, while the protein p16Ink4a, which acts as a tumour suppressor, is
frequently down-regulated. In parallel with epidemiological findings on risk from early life
exposures, and in contrast to an earlier study,’** a single exposure to UV radiation of new-
born mice deficient in pl6Ink4a induced melanomas in the adult animals, and a defect in
DNA repair (deficient XPC protein) further enhanced the formation of melanomas.*®

Recently, the entire genetic sequences of a cell line from a CMM metastasis and a
lymphoblast cell line derived from normal blood cells of the same person have been com-
pared. There was an astonishingly large number of mutations in the CMM cells (33,345 so-
matic base substitutions), the majority of which were typical of changes that accompany ex-
posure to UV radiation.”>* This titanic analysis unambiguously established that UV radiation
was the major cause of the mutations, at least in this CMM.

36 The Environmental Effects Assessment Panel Report for 2010



The human health effects of ozone depletion and interactions with climate change

Non-melanoma skin cancer

Epidemiology of non-melanoma skin cancer. Individuals in many countries continue to
experience significant annual increases in the incidences of the non-melanoma skin cancers
(NMSCs): basal cell carcinoma (BCC) and squamous cell carcinoma (SCC).*"** For exam-
ple, the incidence of BCC increased by 3% per year from 1996-2003 in the UK,*' and the in-
cidence of SCC increased four-fold from 1960-2004 in Sweden.”® The incidence of NMSC
in Australia in 2002 was five times greater than the incidence of all other cancers
combined.®®' In subtropical Australia, the incidence rate for people affected by a primary
BCC was almost the same as for those with multiple lesions, indicating that the disease bur-
den may be higher than is apparent from the usually cited incidence rates that rely on number
of people affected rather than number of tumours.”®* In some regions or subpopulations, the
increases in the incidence rates have slowed,”" '*® particularly in younger cohorts (<60 years
for BCC and <50 years for SCC),*" possibly related to the introduction of public health edu-
cational programmes. In some locations there is a change in the distribution of NMSC on the
body with an increase occurring on the trunk and upper arms. This has been attributed to the
fashion for intentional body tanning in recent years.”’ One study in the Netherlands found
that, between 1990 and 2004, an increasing proportion of BCC patients were in the high soci-
oeconomic status group, as defined by income and value of housing (with a concomitant de-
crease in the proportion in the lower socioeconomic status group).>>>

In most populations, SCC is about 2.2-fold and BCC about 1.6-fold more common in
men than women.'” This is possibly due to higher sun exposure in males who tend to have
more outdoor occupations and recreational activities, a larger area of skin exposed than wom-
en, and are less likely to use sunscreens.”™ >** However, recent animal studies also suggest
that there may be a biological gender bias in risk, possibly through protective effects of local
synthesis of estrogens that protect females against UV-induced photocarcinogenesis.™ 2% 3%

Exposure to solar UV-B radiation is well-recognised as the predominant environmen-
tal risk factor for both SCC and BCC.”*"* For SCC, cumulative life-time exposure, particu-
larly occupational sun exposure, is key.”>’ For BCC, the relationship is thought to be more
complex: in one study the risk of BCC on the head was especially increased in sun-sensitive
individuals, whereas BCCs on the trunk were more related to the number of reported sun-
burns rather than to general sun-sensitivity.”?’ One common location for BCC is the inner
canthus of the eye where the upper and lower eyelids meet. This is relatively sun-protected
by the nose, eyebrow ridge, orbit and the cheek bone, but UV radiation may be reflected from
the tear film, resulting in high dose exposure near the tear duct.

Genetic damage and risk of non-melanoma skin cancer. Several UV-B-specific mutations
are recognised in BCCs and SCCs,”” such as in the p53 gene and also in the PTCH gene of
BCCs."” A number of other UV-related genetic factors may also be important in NMSC
risk, but are less well-described. These include mutations in genes related to repair of DNA
damage® ™ 200 283 305342 3 d alterations in DNA methylation, where the latter is known to
promote UV-induced DNA damage and affect genes involved in the regulation of the cell cy-
cle and cell adhesion.””® "> #%3* Varjants of the melanocortin 1 receptor (MCIR) gene that
determines skin pigmentation and phototype, and variants in other pigment genes, have been
associated with BCC risk””*"" ! and various polymorphisms in genes related to UV-induced
immunosuppression and tolerance can affect the risk of BCC and SCC.* 22> %% 33! Finally,
variants in the gene coding for the vitamin D receptor (see “Immune and other effects of vit-
amin D” section below) increase the risk of NMSC''® and of solar keratosis,”' the precursor
lesion to NMSC.
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Effects of solar UV radiation on the immune system

Mechanisms of UV-induced immunosuppression

Immune responses fall into two broad categories — innate and acquired/adaptive. The former
responses are non-specific and act rapidly as the initial response to microbial challenge. The
latter responses are specific to each microorganism, and require, in many cases, that the anti-
gens are taken up by antigen presenting cells (often dendritic cells), processed and then pre-
sented to the particular T lymphocytes that recognise the antigen fragments. As a conse-
quence, these T cells are activated to proliferate and to secrete immune mediators. It was
recognised many years ago that exposure of mice to UV radiation can suppress adaptive im-
mune responses, " and that antigen-specific tolerance is induced, so that a further application
of the same antigen at a later date still does not lead to the generation of an immune re-
sponse.’' More recently, it has been demonstrated that UV radiation can downregulate al-
ready established (memory) immune responses.’> 2 **!  Furthermore, exposure to multiple
suberythemal doses of UV radiation from solar simulated lamps, to mimic what might occur
during the summer months, does not lead to any protection against the immunosuppression
developing, despite most people responding to such chronic irradiation by tanning and epi-
dermal thickening.**°

The mechanisms involved are complex and are summarised in Fig. 2-3. Details can
be found in recent reviews.” > " *** The main points are that DNA and trans-urocanic acid
in the epidermis act as important chromophores to initiate the immunosuppressive pathway
and that a particular subset of T cells, called T regulatory cells, are induced at the end. On
stimulation, these produce the immunosuppressive cytokine, interleukin (IL)-10, and develop
and maintain immune tolerance. They also suppress the activation, cytokine production and
proliferation of other types of T cells which are involved in immunostimulatory functions.
Various aspects of UV-induced immunosuppression that affect human health are outlined be-
low, starting with viral and bacterial infections and vaccination, followed by the skin cancers,
and ending with the “sun-allergy” disease, polymorphic light eruption (PLE).

UV radiation
+

The effec-t of UV- Chromophores/Photoreceptors ONA trans-urocanic acid

induced immunosup- " wnbihanted Salds

pression on infectious &
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Although there are about 3
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subjects is limited at Fig.2-3. Summary of steps leading to suppression of cell-mediated immunity

present to two viruses, following UV irradiation.
namely herpes simplex
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virus (HSV), which causes cold sores, and human papillomavirus (HPV), which commonly
causes warts. It is possible that other human infections may be affected but have not been
investigated as yet.

Viral infections. Aspects of the reactivation of HSV from latency following exposure to so-
lar UV radiation were outlined in our previous report.”>> In brief, the viral genome is main-
tained in nerve tissue following the primary infection, and UV radiation is a common stimu-
lus for its reactivation, release from the nerve tissue, and subsequent replication in the epi-
dermis. There is probably a direct interaction between the latent HSV and UV radiation, pos-
sibly via damage to nerve endings, which leads to the activation of promoters within the viral
genome. In addition, temporary UV-induced immunosuppression in the local skin site will
occur, allowing replication of the virus and development of the ,,cold sore” before immune
control is regained.

For HPV, two interactions between solar UV-B radiation and the virus will be dis-
cussed here. First, the most common de novo malignancy arising in organ transplant recipi-
ents (OTR) is skin cancer: SCC occurs 65-250 times, BCC 10 times and CMM 6-8 times
more frequently than in the general population. In OTR, persistent warts caused by HPV in-
fection, cutaneous SCCs and their precursor lesions (actinic keratoses) arise mainly on sun-
exposed body sites, leading to the conclusion that solar UV radiation is the major environ-
mental risk factor for SCC in such patients. Up to 90% of SCCs from OTR contain HPV
DNA.** ' HPV, UV radiation and the immunosuppressive drugs interact to promote the
tumourigenesis. For example, UV irradiation of the skin not only induces local immune sup-
pression by the mechanisms outlined in Fig. 2-3, but certain HPV types can express proteins
that interfere with the normal response of the cell to UV irradiation, such as the repair of
DNA damage and the removal by apoptosis of cells with DNA damage.'®* 2°% 3% 3% Cyclo-
sporin A, until recently the most commonly used immunosuppressive drug in OTR, also in-
terferes with the mechanisms involved in the repair and removal by apoptosis of cells with
UV-induced damage to DNA.*” Hence, the end result is the selection and accumulation of
cells with altered phenotype, leading to skin cancer. Conversely, other newer immunosup-
pressive drugs such as sirolimus may reduce the risk of skin cancer.'®’

Secondly, HPV infection appears to be involved in SCCs in healthy (immunocompe-
tent) subjects. As in the OTR, the SCCs arise on areas of the body exposed most frequently
to sunlight, such as the face and backs of the hands. A higher prevalence of DNA of certain
HPV types (beta-HPV species 2) is found in SCCs than in uninvolved skin from the same
subjects or in controls."" The same HPV types are associated with SCCs located on body
sites most exposed to the sun.'” A population survey of workers in Australia with and with-
out a history of frequent sun exposure found that the prevalence of the DNA of cutaneous
HPV was significantly higher in the forehead skin in individuals who spent more time out-
doors and in those with a history of skin cancer.”’ Indeed, the risk of cutaneous HPV infec-
tion increased with the length of time spent working outdoors. Multiple HPV types were
more common in individuals frequently exposed to the sun, a finding attributed to UV-
induced immunosuppression. Possible interactions between the mutagenic and immunosup-
pressive activity of the UV radiation and the properties of the HPV types found in some
SCCs are likely to be very diverse and are not elucidated at present, although, as outlined
above, the viral proteins that are anti-apoptotic’>* and cause a delay in DNA repair may be
important.

Finally for HPV, it should be noted that the suggestion'” that some HPV types might
play a role in the aetiology of squamous cell cancers in the conjunctiva of the eye in coun-
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tries, such as Uganda, where exposure to sunlight is very high, has not been confirmed in
more recent studies.** '

Recently a polyomavirus has been identified in the tumour cells of Merkel cell carci-
noma (a tumour of the dermis with neuroendocrine features and a very poor prognosis),
which is not found in uninvolved tissue from the patients or in any other type of skin
tumour.””> These tumours arise predominantly on sun-exposed areas of the skin in elderly
and immunosuppressed individuals.*® Although rare, its incidence in the USA has increased
3-fold over the past 15 years, possibly due to the ageing of the population and extensive sun
exposure. Currently, there is no information available regarding local or systemic immune
responses to the polyomavirus antigens, particularly to evaluate whether there could be a role
for UV-induced immunosuppression as a risk factor in the tumourigenesis.

Bacterial infections. In contrast to viruses where the acquired immune response, particularly
the T cell component, is critical for the control of infection, innate defence mechanisms may
be more important for bacteria, especially those infecting cutaneous or mucosal surfaces.”
Glaser et al."** have shown that UV irradiation of healthy volunteers induced up-regulation in
the expression of several antimicrobial peptides which form part of the innate immune re-
sponse of skin. The enhanced expression continued for at least 6 days after the irradiation.
Thus one reason for the lack of bacterial infections of human skin following solar UV radia-
tion exposure could be the production of these antimicrobial peptides. They may be particu-
larly relevant when burning of the skin has occurred and bacterial infections might be ex-
pected in blistered areas. The contrast between this result and the rodent models of bacterial
infection, where microbial load and severity of symptoms increased due to UV-induced sup-
pression of acquired immunity, may relate to the site of infection, the size of the inoculum,
and differences in gene regulation and in antimicrobial peptides between species. If the Gla-
ser et al. results"” are confirmed in other human studies, it may be necessary to consider
whether innate immune responses, which tend to be up-regulated by UV radiation, or ac-
quired immune responses which tend to be down-regulated by UV radiation, are most im-
portant in the control of specific infections, especially at early stages in the process.

The effect of UV-induced immunosuppression on vaccination

The immunosuppressive effects of UV radiation have been demonstrated in several animal
models of vaccination, both if the exposure occurs prior to (for example'®), or after’****! the
vaccine has been administered. Thus it is of much interest to consider whether exposure to
solar UV radiation could adversely affect the immune response to vaccines in human sub-
jects.

There has been only one published experimental human study in which volunteers
were whole-body irradiated with solar simulated UV radiation before being vaccinated with
hepatitis B surface antigen.””® There was little effect of exposure on the T cell or antibody
response to the vaccine except in irradiated subjects with a particular IL-1p polymorphism
(which affects the production of this cytokine) who had lower levels of antibody to the hepa-
titis protein,”* and in irradiated subjects with high cutaneous cis-urocanic acid (see Fig. 2-3)
who had suppressed T cell responses to the hepatitis protein.””> Thus UV radiation adversely
affected the generation of immune responses to hepatitis B vaccine, but only in certain indi-
viduals.

Only a few studies to date have evaluated whether season or latitude have any effect
on immune responses to vaccination. These factors are frequently used as crude measures of
personal exposure to solar UV radiation. In a meta-analysis of 10 case-control studies and 13
prospective trials of BCG vaccination against tuberculosis, where the geographical latitude of
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the study site was recorded, it was found that the efficacy of protection increased with in-
creasing distance from the equator, perhaps because of diminishing UV-induced immunosup-
pression.”” Most recently, children living in northern Israel who had been injected with the
measles-mumps-rubella vaccine at age 12 months were assessed for their antibody response
to the rubella component at age 4-5 years.'"™ In this area of the world, the UV Index in the
summer reaches 10-12, while in the winter the peak values are 2-4. The children vaccinated
in the winter months had significantly higher antibody levels compared with the children
vaccinated in the summer months, and a bigger percentage had generated adequate levels.
Thus the season when the subjects were vaccinated made a difference to the rubella antibody
level 3-4 years later. These results require corroboration in more locations with marked dif-
ferences in ambient solar UV radiation throughout the year, and using other viral vaccines. If
it is true that, due to differences in solar UV radiation and hence effects on immune respons-
es, vaccination in the summer leads to decreased immunity to the vaccine compared with
vaccination in the winter, several practical implications follow. For example, it might be rec-
ommended to undertake vaccination only at times of the year when solar UV radiation is
minimal, to ask individuals to limit their sun exposure for a few days before and after vac-
cination, and not to vaccinate an obviously sunburnt subject, especially on or through a site of
erythema.

UV-induced immunosuppression and melanoma

Solar UV radiation is a risk factor for CMM and UV radiation is recognised to be immuno-
suppressive. It is not clear as yet if these two factors are linked. Muller et al.**! have sug-
gested that immune responses in newborn children, whose skin is immunologically immature,
could determine melanoma outcomes in later life. Antigen applied at this time does not in-
duce an immune response, but instead there is generation of antigen-specific T regulatory
cells which then persist for life. Thus, if a melanoma antigen arises during this neonatal peri-
od, T regulatory cells specific for it will be produced, with the capacity to dampen effective
anti-tumour immunity in adulthood. In addition, exposure of neonatal skin to UV radiation
induces a poor inflammatory response compared with adult skin, thus limiting the develop-
ment of an immune response. A micro-array study has identified several genes involved in
enhanced immune responses in melanomas harbouring the BRAF mutations compared with
non-mutated melanomas.'® Another approach has centred on cytokine gene polymorphisms
which might result in functional changes and influence susceptibility to CMM. > 27

UV-induced immunosuppression and non-melanoma skin cancer

The development of NMSC is controlled, at least in part, by the immune system, and by ex-
posure to sunlight. For SCCs this is particularly apparent as the number of such tumours is
greatly increased on sun-exposed areas of the body in organ transplant recipients (OTR) who
are therapeutically immunosuppressed to prevent rejection of the transplant. These drugs
suppress T cell activity predominantly and therefore T cell function is thought to play a major
role in the immunological control of SCCs. UV radiation is known to suppress the produc-
tion of the T helper 1 cytokines (see Fig. 2-3) which protect against SCCs in mice.>>’ In addi-
tion, untreated human SCCs contain many infiltrating T cells of which about 50% are T regu-
latory cells.”® Furthermore, blood vessels in the tumours do not express E-selectin, a mole-
cule that skin-homing T cells require for their entry into the skin from blood. Thus SCCs ex-
clude the skin-homing T cells that could destroy the tumour cells.

A histological study of human BCCs revealed T regulatory cells surrounding the tu-
mour aggregates and immunosuppressive cytokines within the tumours.'”® Only immature
dendritic cells were found intratumourally, implying poor antigen presentation to T cells. All
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these factors suggest a lack of immunity in BCCs, although an obvious inflammatory re-
sponse is also seen,'” together with an increase in the expression of pro-inflammatory cyto-
kines.''” Thus there is evidence for both an anti-tumour response and an attenuated state of
immunity in BCCs.

UV-induced sun allergy

Polymorphic light eruption (PLE) is the most common of the disorders that are provoked by
sunlight, occurring in about 5-20% of the population. It is most frequent in the spring or ear-
ly summer, or during a sunny holiday, following the first exposure to an intense dose of sun-
light, and is characterised by red, itchy skin eruptions (Fig. 2-4). After repeated exposures,
the lesions are less likely to occur in most subjects — a process called hardening. The effec-
tiveness with which various UV wavelengths in-
duce PLE is unclear and may depend on a com-
plex mixture of factors such as dose, the genetic
background of the individual and the cutaneous
antigen provoked. Until recently it was thought
that the prevalence of PLE increased with increas-
ing distance from the equator, explained by the
more marked change in seasonal ambient solar
UV radiation at higher latitude. However, a recent
large scale European survey found that latitude
made no difference to the prevalence, suggesting
that exposure to UV radiation could trigger the
disease equally in countries with different patterns
of solar UV irradiation throughout the year.*'

PLE is immunologically-mediated, with
increased immunosurveillance, and resistance to
the immunosuppression that follows UV radiation. Fig- 2-4. Subject with polymorphic light erup-
The subjects with PLE are thought to respond to tion showing pruritic skin eruptions on sun-

. . . . exposed body sites (photograph supplied by Dr
photo-induced neoantigens in the skin by a form S. Ibbotson, University of Dundee, Scotland).
of delayed type hypersensitivity and the lack of
immunosuppression may be due to reduced neutrophil and macrophage infiltration into the
irradiated skin and possibly reduced numbers of T regulatory cells in the winter months.*
The impact of these alterations from normal is illustrated by finding that the prevalence of
PLE is 7.5% in people with skin cancer compared with 21.4% in gender and age-matched
controls without skin cancer.””’ This implies that the immunological differences in the re-
sponse of the PLE subjects to UV radiation may confer protection against skin cancer, and it
also illustrates the evolutionary significance and potential advantages and disadvantages of
UV-induced immunosuppression.

UV-induced vitamin D and its impact on health

For the majority of individuals, most of their vitamin D is derived from sun exposure. The
additional sources of vitamin D are natural food stuffs, such as oily fish, supplemented foods,
such as margarines and milk, and, in some cases, oral supplements. It has become clear re-
cently that vitamin D status is also dependent on genetic differences in the metabolism of vit-
amin D.*** A recent study in Denmark showed that the cumulative personal summer solar
UV radiation dose correlated weakly with the vitamin D status of the individual in the sum-
mer and in the following winter.’'> Dietary intake of vitamin D appears to influence vitamin
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D status during the winter, at least at high latitudes, and this may provide an explanation for
the observed weak correlation between the vitamin D status in the winter and summer, in the-
se locations.'** ?°! Recent simple model computations, based on UK data for ambient UV
radiation, indicate that sun exposures in the summer may indeed be inefficient in maintaining
a sufficiently high vitamin D status in the winter.”!

The pathway to the formation of the active form of vitamin D, 1,25-dihyroxyvitamin
D (1,25(0OH),D), after skin exposure to UV radiation'* is outlined in Fig. 2-5. Many cell
types possess the enzymatic machinery to produce 1,25(0H),D, (reviewed in'*®). The con-
centration of 25-hydroxyvitamin D (25(OH)D) in the
serum is commonly used as a measure of a person‘Ss 7-dehydrocholesterol
vitamin D status. Traditionally, the values consid- ﬁ NOrS o
ered as deficient, insufficient, sufficient and exces- " previtamin D
sive are <25 (or <27.5), 25-50, 50-250 and >250
nmol.L™" respectively. More recently, it is suggested
that the minimum level that provides the best health
benefits should be increased from 50 to at least 75 ¥
nmol.L™!, with the optimum between 90-100 nmol.L~ ®°%  25-hydroxyvitamin D
1314776, 138 13% a1though 1t should be noted that not
all agree with this opinion.””’ Any health benefit of 1,25-dihydroxyvitamin D
maintaining a high serum 25(OH)D status has not Ve o
been established,259 and, indeed, may even be detri- Fig. 2-5. Synthesis of the active form of
mental as has been shown recently for pancreatic vitamin D (1,25(0OH)2D) after solar UV-B
cancer where a concentration of > 100 nmol.L™" wags irradiation of the skin.

associated with a 2-fold increase in risk.>%’

vitaﬁ;in D

By constructing an action spectrum for the conversion of 7-dehydrocholesterol to pre-
vitamin D3 in human skin (see Table 1-6 in Chapter 1), it was concluded that the most effec-
tive wavelength for the production of previtamin D3 was between 295 and 300 nm with a
maximum at 297 nm, and no production above 315 nm, i.e. UV-B wavelengths only.”” Alt-
hough the accuracy of the original data can be questioned (reviewed in>**), this spectrum was
standardised by the CIE in 2006°' and extended mathematically to 330 nm. It has been used
subsequently in several studies for weighting the solar spectra to obtain effective doses for
potential vitamin D production at various latitudes throughout the year (See Chapter 1 and
refs! 0% 173 175- 207 234 1t is vital to obtain the best possible information in this regard so that
accurate guidance can be given to the general public and to health agencies concerning per-
sonal exposure to sunlight in order to maximise vitamin D production while minimising any
harmful effects of the UV radiation. Very few studies to date have measured the actual effect
of known doses of UV radiation on 25(OH)D levels. However, one study published very re-
cently has shown that the concentration of 25(OH)D in the majority of fair-skinned subjects
rises to sufficient levels (>50nmol.L™") (although this may be sub-optimal) following simulat-
ed summer sun exposure (at latitude 53.5°N) of 13 minutes, three times weekly for 6 weeks,
to 35% of the skin surface area.”*®> Here it should be noted that the subjects were whole-body
irradiated whereas, under natural conditions, people lying on their backs or fronts in the sun
are irradiated either on the anterior or the posterior surface, rather than both at the same time.
Thus the sunbathing time to achieve the equivalent magnitude of vitamin D synthesis would
require an exposure of about 26 minutes. Other confounding factors include posture, orienta-
tion with respect to the sun and nearby shade, leading to the conclusion that considerably
longer than 26 minutes would be required, typically greater than one hour.”

Based on the action spectrum for the production of previtamin D, the potential for
synthesis of vitamin D is dependent on levels of ambient solar UV-B radiation. The amount
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of solar UV-B radiation that reaches the surface of the Earth varies greatly, depending on the
solar zenith angle (highest in the summer and decreasing to as little as 5% of this value at
mid-latitudes in the winter months) which also accounts for its strong diurnal variation (typi-
cally 50-60% of daily solar UV radiation is incident in the 4 hour period around local noon)
(see Chapter 1 for further details). It depends also on parameters such as ozone, cloud cover,
air pollution and altitude. Furthermore, there are large interpersonal variations in the effi-
ciency of previtamin D3 production for a given dose of solar UV-B radiation. This may de-
pend on skin colour (about 6-fold more UV-B radiation appears to be required if the skin is
dark compared with fair skin®), age (about 50% less is made by the same dose of UV-B ra-
diation in an 80-year-old compared with a 20-year-old*%), obesity (leads to less bioavailabil-
ity of vitamin D as it is sequestered in fat tissue’”), baseline vitamin D status® and whether
the irradiated skin site is one that has been repeatedly exposed, such as the face, as this af-
fects the quantity of UV-B radiation reaching the deeper epidermal layers, rich in 7-
dehydrocholesterol.*> Hence it is very difficult to provide a single, simple message regarding
the optimal sun exposure for vitamin D production that is appropriate for everyone in a par-
ticular location.

The vitamin D status of populations in different countries has been assessed and gen-
erally shows that many people of all ages are below what is considered sufficient. For exam-
ple, the US National Health and Nutritional Examination Survey, 2000-2004, found the prev-
alence of vitamin D insufficiency (serum 25(OH)D <50 nmol.L™") was 26% in men and 33%
in women, and the overall deficiency (<27.5 nmol.L™") was 5%.°®® A survey in 2005 of peo-
ple aged 65 and above living in England demonstrated that 57% of women and 49% of men
were vitamin D-insufficient (<50 nmol.L™") with 13% of women and 8% of men being defi-
cient (<25 nmol.L™").""! Data from a national survey of the U.S. population indicated that the
average concentration of 25(OH)D in the serum decreased by 20% over the past few dec-
ades.'** Tt might be predicted that there would be a latitudinal gradient in vitamin D status at
the overall population level, i.e., a decrease with increasing distance from the Equator. Per-
haps surprisingly, this was not found in a recent meta-regression analysis of world popula-
tions, although a small but statistically significant gradient was shown if the analysis was lim-
ited to those with fair skin (-0.7 = 0.3 nmol.L" 25(OH)D per higher degree latitude north or
south)."* Moreover, vitamin D levels in post-menopausal women in Europe showed the op-
posite gradient: low levels in the south and high levels in the north."”” In a different multi-
centre global study of post-menopausal women, 25(OH)D levels were assessed in a single
laboratory, thus eliminating the considerable variability in measurements between centres. '™
A small, although statistically significant, overall negative gradient was found for 25(OH)D
concentration and latitude between 15% and 659; the gradient was three-fold steeper for read-
ings in the winter than in the summer (about -0.6 vs. -0.2 nmol.L" per degree). Factors such
as diet, food fortification, taking sunshine holidays in the winter months and outdoor activi-
ties may account, at least in part, for the dampening in the anticipated negative gradient in
vitamin D status with increasing latitude. Thus the latitude of residence is not strongly corre-
lated with vitamin D status and latitude may not be an appropriate proxy for vitamin D levels
in ecological studies. Rather the actual levels in individuals within study groups should be
determined, if at all possible.

Vitamin D has been recognised for almost a hundred years as preventing rickets in
children, osteomalacia (the rickets equivalent) in adults, osteoporosis and bone fractures.
More recently the role of UV radiation and vitamin D in regulating immune responses has
been revealed and evidence gathered to indicate that it might protect human subjects against a
wide and increasing range of common diseases. These aspects are considered below.
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Immune and other effects of vitamin D

The active form of vitamin D (1,25(OH),D) acts mainly through binding to, and activation of,
the vitamin D receptor (VDR), which is present in many cells including those of the immune
system. There are about 200 VDR variants (such as Fokl, Taql, Bsml, Apal) which can affect
susceptibility to infectious diseases and to skin tumours. The VDR-1,25(0OH),D complex al-
ters the function and expression of more than 200 genes. 1,25(OH),D can inhibit the matura-
tion of dendritic cells and hence reduce the presentation of antigens to the lymphocytes and
can also act directly on T cells to inhibit their proliferation and to suppress the production of
immunostimulatory cytokines. Recently, 1,25(OH),D was shown to directly induce the de-
velopment of T regulatory cells which have the potential to suppress proinflammatory cyto-
kines and to prevent the activation of autoreactive T cells.'®® Such activity is likely to be of
importance in protection against autoimmunity (reviewed in’’). In contrast, in vitamin D in-
sufficiency, there is deregulation of the normal cytokine responses, leading to the overexpres-
sion of the immunostimulatory cytokines. Other non-immune targets for vitamin D may also
play crucial roles in the prevention of autoimmunity.

The active form, 1,25(OH),D, is also important in innate immunity by inducing a
range of antimicrobial peptides.”™*>® Thus it has the potential to provide protection against a
range of infectious diseases. Finally, as malignant cells express the VDR, 1,25(OH),D may
protect against cancer by up-regulating the adherence of and signalling between cells, inhibit-
ing proliferation, enhancing differentiation, stabilising the cell cycle, promoting apoptosis,
and inhibiting neoangiogenesis (reviewed in'").

Cancer

In our 2007 assessment™ we reviewed the evidence available at that time indicating that in-
creasing exposure to the sun reduced the risk of several internal cancers. Vitamin D was
suggested as the protective factor. A recent review summarises the ecological studies associ-
ating solar UV-B radiation, vitamin D, and cancer.””” In many of these, latitude or ambient
solar UV radiation was used as a proxy for exposure to UV radiation and hence of vitamin D
status. As outlined above, vitamin D status cannot be assumed to decrease as the distance
from the equator increases but is affected by many factors including skin colour, diet, outdoor
activities, obesity, clothing habits and number of sunshine holidays, and VDR polymor-
phisms can also alter the risk of disease. While the ecological approach on its own has little
power to prove the involvement of any potential causal factor, it has led to considerable and
increasing interest in trying to evaluate the importance of solar UV radiation and of vitamin
D in protection against internal cancers. In 2008 the International Agency for Research on
Cancer (IARC), after a careful formal evaluation, concluded that there was some evidence for
a link between sun exposure and a reduced risk of colorectal cancer and adenoma (polyps),
limited evidence for such an association in breast cancer, and none in prostate cancer.'®
Other investigators disagree with the cautious approach of the IARC.' New information
which will help to resolve this issue is becoming available. For example, in 2010, a remarka-
ble set of pooled cohort studies conducted in Europe, the USA and Asia was published which
revealed no inverse correlation between serum 25(OH)D levels and the later incidences of
five types of “rarer” cancers (upper gastrointestinal, ovary, endometrial, kidney and non-
Hodgkin lymphoma), but an increased risk of pancreatic cancer in the group with the highest
25(0OH)D levels (reviewed in*). One difficulty in this area lies in distinguishing whether a
low vitamin D status causes an increased risk of cancer, or whether the low vitamin D status
is a consequence of poor general health. In addition it is possible, although not likely, that
the assessment of cancer risk based on vitamin D status in adulthood may not reflect the cu-
mulative effects of vitamin D through a whole lifetime. To illustrate recent advances in this
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area, a short overview of observational studies relating vitamin D to colorectal, breast and
prostate cancer is given below.

Colorectal cancer. A recent meta-analysis of 7 epidemiological studies showed that the
highest quintile (compared to the lowest) of circulating 25(OH)D concentration was associat-
ed with a 30% decrease in the risk of colorectal adenoma.’*’ Adenomas are benign tumours
developing from epithelial tissue and have cancerous potential. The IARC meta-analysis con-
cluded that there was evidence that lower 25(OH)D levels were associated with an increased
risk of colorectal cancer.'®® For example, in a pooled analysis of 5 studies, subjects with
25(OH)D levels greater than 95 nmol. L™ had a 55% lower risk of colorectal cancer compared
with subjects with levels less than 40 nmol.L"."** The inverse association of pre-diagnostic
25(OH)D levels and colorectal cancer has been demonstrated across a broad range of ethnici-
ties - Japanese, Latino, African-American, White, and Native Hawaiian ancestry,3 % and in a
study of over half a million participants in 10 western European countries. 17" The influence
of vitamin D status on survival in patients with colorectal cancer was established retrospec-
tively: a higher pre-diagnosis 25(OH)D level was associated with a significant improvement
in overall survival and in colorectal cancer-specific mortality.”® Also, Freedman and col-
leagues111 showed that the risk of dying from colorectal cancer in individuals with serum
25(OH)D levels higher than 80 nmol.L™' was approximately one-quarter compared with those
having levels less than 50 nmol.L". Thus there is good evidence to date that low 25(OH)D
levels are associated with an increased incidence of colorectal cancer incidence and risk of
death. One drawback of these studies is that vitamin D status is usually based on a single
25(0OH)D level, although in cohort studies, this is at least usually from blood taken prior to
the diagnosis of adenoma or colorectal cancer. It is possible that lifetime exposure to UV ra-
diation (and the resulting vitamin D status) is a better measure, but is often not available. It is
not yet clear whether supplementation with vitamin D or increased exposure to solar UV-B
radiation can modulate the risk in humans significantly, although experiments in mice with
diets deficient in, and supplemented with, vitamin D indicate that this is the case.*"’

Breast cancer. The [ARC review concluded that there was limited evidence for an associa-
tion between vitamin D insufficiency and the risk of breast cancer.'® In the USA'** and oth-
er countries,”’ the incidence of breast cancer increases with distance from the equator and
decreasing regional solar UV-B radiation, even after adjustment for possible confounding
factors such as obesity and smoking. Data from two observational studies suggest that wom-
en with pre-diagnostic 25(OH)D levels of about 130 nmol.L™" have a 50% lower risk of breast
cancer than those with levels less than 32 nmol.L™".'%° However, in a recent nested case-
control study in Sweden, there was only a weak, non-statistically significant decrease in the
risk of breast cancer associated with higher pre-diagnostic 25(OH)D levels.” Furthermore, a
recent meta-analysis of observational epidemiological studies, investigating the association
between serum 25(OH)D levels (generally a single sample, taken before diagnosis) and risk
of breast cancer incidence or mortality, showed no significant correlation.*® A large clinical
trial in post-menopausal women, randomised to receive either vitamin D (400 IU daily) and
calcium daily or placebo and followed for an average of 7 years, revealed no difference in the
incidence of breast cancer between the two groups.”® It is possible that the vitamin D dose
may have been insufficient to achieve protective levels, or some undetected premalignant
breast lesions may have been present at the start of the study, or a longer follow-up period
may have been required. Higher ambient levels of sunlight or outdoor occupations have also
been inversely linked to mortality from breast cancer.''® Further work is required to under-
stand whether exposure to solar UV-B radiation (and vitamin D) is beneficial in reducing the
risk of developing, and death from, breast cancer.
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Prostate cancer. Initial studies indicated an inverse association between the risk of prostate
cancer and sunlight exposure®> *® '%® or the level of 25(OH)D,'** 125 178 24 byt subsequent
reports have not substantiated these findings. Neither the IARC meta-analysis'®* nor a more
recent meta-analysis of 10 longitudinal studies’® found an association between 25(OH)D
level and the risk of prostate cancer. Recent observational analyses also demonstrated either
no statistically significant association™>'” or even a possible increased risk of aggressive dis-
ease with the highest 25(OH)D levels.> Any associations between particular polymorphisms
in the VDR and the risk of prostate cancer remain inconclusive,’’® and there is no evidence
that dietary or supplemental vitamin D offer significant protection (for example'™")

Skin cancers. There is mounting evidence that vitamin D and its receptor are involved in
protection against NMSC; for example, vitamin D can regulate the differentiation of normal
skin cells and reduce the proliferation of murine BCC cell lines.*® Also, topical vitamin Ds
applied daily reduced the number and size of BCCs in BCC-susceptible mice,*®' while mice
lacking the gene that codes for the VDR were more susceptible to UV-induced skin tumours
than the wild type mice.'® However,a nested case-control study of subjects where vitamin D
status was assessed prior to the diagnosis of BCC (up to 11 years prediagnosis),'> demon-
strated that the risk of BCC increased linearly with increasing serum 25(OH)D level. Thus,
in the context of BCC, vitamin D is not protective, although the carcinogenic effect of high
UV radiation, particularly as experienced in acute intermittent doses, may overwhelm any
positive effects of vitamin D production in the skin.

Autoimmune diseases

Ecological and observational studies suggest that lower solar UV radiation and/or vitamin D
status may be important risk factors for several autoimmune diseases. Two examples, multi-
ple sclerosis (MS) and type 1 diabetes mellitus (T1DM), are described below.

Multiple sclerosis. MS, the result of an immune-mediated destruction of myelin-producing
cells in the central nervous system, is the most common disabling neurological disorder of
young adults. Its incidence has increased over the past 20 years and this does not appear to
be an artifact of better diagnosis. The underlying aetiology of MS is unknown, but one of the
most striking characteristics is the strong positive latitudinal gradient in occurrence so that
the further from the equator, the higher the prevalence."” **® While there is a clear genetic
susceptibility, geographic and temporal patterns have led to the hypothesis that an important
risk factor for MS may be low exposure to UV radiation, possibly working through inade-
quate synthesis of vitamin D.*” This suggestion is supported by results using a variety of
approaches, as summarised below, but it should be noted that a new study using a mouse
model of MS (experimental autoimmune encephalomyelitis) has revealed that chronic expo-
sure to UV radiation can suppress the clinical symptoms of the disease and that this occurs
independent of vitamin D production.”? Thus the ability of the UV radiation to suppress the
immune response may be of critical importance in reducing susceptibility to MS, acting
through the mechanisms outlined in Fig. 2-3, rather than through vitamin D.

Although the latitudinal gradient in prevalence of MS may have weakened in recent
years in the USA,'" in other countries there is persistence of a gradient in incidence,’” or
prevalence.”’* *'° Evidence from several studies suggests that low ambient UV radiation®®
299.357 or low exposure to the sun prenatally or in childhood 330 may represent a particularly
significant risk for MS.

Observational studies have largely supported the suggested link between vitamin D and pro-
tection from the onset or progression of MS. In two cohort studies in the USA, higher vitamin
D intake or serum 25(OH)D levels were associated with a decreased risk of developing MS;
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higher 25(OH)D levels when aged less than 20 years were especially important.*> *** In

Tasmania the relapse rates for MS were inversely correlated with ambient erythemal UV ra-
diation and serum 25(OH)D levels.’'® Variants in genes of the vitamin D pathway” **® have
been shown to be important in risk of MS, although there are conflicting findings in relation
to variants in the VDR, *** %7 possibly because the role of environmental risk factors was
not taken into account.*>®

Type 1 diabetes mellitus. T1DM is a T-cell mediated autoimmune disease with environ-
mental and genetic risk factors. As is the case for MS, the incidence of TIDM has increased
worldwide over the last two decades™ *** and the age of onset has decreased in some re-
gions.'* '>%%% The incidence or prevalence of TIDM increases with distance from the equa-
tor, or is inversely correlated with ambient UV radiation in several countries,l%’ 216,300 41¢
hough the magnitude of the effect is generally less than that for MS. For example, in the Dia-
betes Mondial Project Group (DiaMOND) Study, the incidence of TIDM varied from less
than 5 per 100,000 at the equator to 37 per 100,000 in Finland, at 60°N.*'® In a recent Aus-
tralian study, there was a strong inverse correlation between the incidence of TIDM (ages 0-
14 years) and ambient erythemal UV radiation, but this relationship reversed in high popula-
tion density (urban) areas,”” possibly related to greater sun avoidance with increasing ambient
UV radiation in urban areas, compared with rural areas.

Many studies (but not all) note a seasonal variation in the birth of people who later
develop TIDM, with summer and autumn births being more common.”*”**%3** One hypoth-
esis to explain this finding is that low vitamin D levels in the mother during the winter pre-
ceding birth modulate the developing immune system in the foetus so that the risk of later
development of autoimmunity is increased.®* ** %> #’* Individual-level studies have shown
that higher intake of vitamin D (usually as supplements) by the mother or infant may be pro-
tective against the later development of islet cell antibodies® ''* or TIDM.'** %3 I addi-
tion, several reports have revealed that TIDM is more commonly diagnosed in the winter
than in the other seasons.®> % 132 243- 273274 1 ate winter is the time when vitamin D levels are
generally at their lowest. This finding is consistent with the loss of a proposed protective ef-
fect of a higher dose of UV radiation or higher vitamin D status. In a recent study of US
military personnel, the incidence of TIDM was more than twice as high in African Ameri-
cans compared with non-African Americans,"*” a finding possibly explained by deeply pig-
mented individuals being more likely to be vitamin D-insufficient.** Dietary and genetic fac-
tors may also be involved.

There have been conflicting findings regarding a relationship between VDR polymor-
phisms and T1DM risk, but a recent meta-regression analysis of 16 studies from 19 regions
found that two VDR variants were associated with an increase in T1DM risk with increasing
ambient winter UV radiation (long-term average midwinter-month noontime erythemal UV
irradiance for the years 1997-2004, based on satellite data), while another VDR variant was
associated with a decrease in TIDM risk with increasing ambient winter UV radiation.”
These results suggest that ambient UV radiation may modulate the association between the
VDR genotype and T1DM risk, and further implicate a role for vitamin D in TIDM.

Infectious diseases

Many infectious diseases, especially those caused by viruses affecting the respiratory system,
have a seasonal incidence with a peak in the winter months. Although this pattern could be
explained by the smaller likelihood of viral inactivation during transmission in the winter
compared with the summer, it has also been attributed to reducing levels of vitamin D as the
dose of ambient solar UV-B radiation decreases. Lower vitamin D status could diminish in-
nate immunity, particularly the expression of antimicrobial peptides in the airways, thus in-
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creasing susceptibility to infection. Definitive evidence to support such a suggestion is lack-
ing currently, although preliminary observations are consistent with vitamin D being protec-
tive.* * In a clinical trial, supplementation with vitamin D correlated with decreased inci-
dence of symptoms of the common cold and influenza in African-American post-menopausal
women, although this endpoint was not one of the original aims of the study and was not rig-
orously assessed.® More convincingly, in a recent small randomised, double-blind, placebo-
controlled trial in children in Japan, the treatment group received a vitamin D3 supplement
(1200 IU daily) and the incidence of laboratory-confirmed influenza A infections was the
primary outcome: the incidence of influenza A (but not influenza B) was reduced in the sup-
plemented group compared with the placebo group and, in addition, there was significant pro-
tection against asthma attacks.® In observational studies, low concentrations of 25(OH)D in
the serum were associated with an increased risk of acute respiratory infection in Indian chil-
dren under 5 years old,** in young Finnish men serving in the military,' and in newborns in
Istanbul.'”" In addition, in a study of almost 19,000 participants in the American Third Na-
tional Health and Nutrition Examination Survey, those subjects with serum 25(OH)D levels
of less than 25 nmol.L™" had a 55% higher odds of a self-reported recent upper respiratory
tract infection than those with levels greater than 75 nmol.L™ '* It has also been suggested
that vitamin D insufficiency may increase the risk of exacerbations of asthma through an as-
sociation with poorer lung function and an increased chance of contracting viral respiratory
infections.'”™ '°®* However, whether increasing vitamin D levels by sunlight exposure helps to
prevent asthma or to reduce the chance of an exacerbation has not yet been tested, as far as
we are aware.

Tuberculosis is caused by infection with Mycobacterium tuberculosis. As early as the
19" century, it was recognised that open air sunbaths were beneficial in the treatment of pa-
tients with tuberculosis. By the 1920s, heliotherapy was a widely accepted treatment for tu-
berculosis, although it was not advised by most specialists for acute tuberculosis of all types,
including pulmonary, as it could cause death. As a result of this therapeutic approach, sus-
ceptibility to tuberculosis or disease progression and vitamin D deficiency have been linked,
(reviewed in*"), possibly through impaired immunity to M. tuberculosis as a result of vita-
min D deficiency.”” Although early work suggested that treatment of tuberculosis patients
with oral vitamin D improved the recovery rate and enhanced the acquired immune response
against the bacilli, recent clinical trials of vitamin D supplementation,*” or UV-B
irradiation®® did not lead to any improvement in clinical outcome or mortality’* or the im-
mune response to the mycobacteria.*®

Further clinical trials are urgently required to assess whether exposure to solar UV-B
radiation and sufficient vitamin D status can prevent M. tuberculosis infection or reactivation
from the latent state, and also reduce the risk of developing other respiratory infections.**> ***
32 VDR polymorphisms need to be taken into account as some are known to confer en-
hanced susceptibility to particular infections.*>®

Cardiovascular diseases

The prevalence of coronary heart disease and hypertension increases with increasing distance
from the equator.*®® In one study, irradiating hypertensive patients with UV-B radiation re-
duced their blood pressure into the normal range, while UV-A radiation had no effect.'”
These findings are suggestive of a possible protective effect of UV-B radiation acting through
enhanced synthesis of vitamin D. Vitamin D has been shown to regulate blood pressure
through the renin-angiotensin system, and to decrease the proliferation of myocardial and
vascular smooth muscle cells. A meta-analysis of 18 randomised controlled trials involving
more than 57,000 participants demonstrated that a daily intake of vitamin D3, averaging 520
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IU, improved all-cause mortality, partly by decreasing deaths due to cardiovascular disease.'®
Later studies have also shown that lower levels of 25(OH)D and 1,25(0OH),D were inde-
pendently associated with higher all-cause and cardiovascular mortality,” including in older
adults (aged 65 and above),'”” *® and a higher risk of myocardial infarction.'” More trials
involving solar exposure or vitamin D supplementation are required to confirm a role for vit-
amin D in reducing the risk of these cardiovascular outcomes.

Personal protection

Effective personal protection can mitigate the adverse health effects from increases in ambi-
ent UV radiation, resulting from thinning of the stratospheric ozone layer and/or from climate
change and UV-exposure related factors in some regions, e.g., where cloud cover is projected
to decrease. Health campaigns in several countries such as the USA, Australia, New Zealand,
Canada and the UK (for example: www.cdc.gov/cancer/skin/basic_info/prevention.htm;
WWWw.sunsmart.com.au; www.cancernz.org.nz/reducing-your-cancer-risk/sunsmart/;
www.msc-smc.ec.gc.ca/education/uvindex/index_e) have tried to increase the public™s
awareness regarding the inherent dangers of overexposure to the sun. Such messages contain
the information that sun exposure increases the risk of skin cancer and that precautions can be
taken to reduce this risk. However, understanding in general remains low, one reason being
that a single, simple message is not appropriate for all due to variations in place, season and
skin phototype.””>*"" One potentially useful parameter is the UV Index (discussed in Chapter
1 and ref'*") which is published daily in many countries. Greater efforts are required to make
this a useglzll tool in the management of sun exposure as it is not generally understood by in-
dividuals.

Current advice centres on avoiding sunburn by seeking shade when the sun is most in-
tense, wearing clothing that protects against the penetration of UV radiation, the use of topi-
cal sunscreens, and protecting the eyes. Each of these will be discussed briefly in turn.

Shade

The most effective way to reduce exposure to the sun is avoidance, particularly in the middle
of the day. Staying indoors is best as most of the sky is blocked and glass transmits less than
10% of solar UV radiation. In one study, dense foliage offered the best outdoor protection
and a beach umbrella the least.”'® The species of tree makes a difference, and the shade var-
ies according to the season and sun angles, with highest protection usually in the summer
months.'® Careful consideration must be given to the construction of proper shade, especial-
ly the material used and the design of the shading structure to minimise diffuse and scattered
UV-B radiation. Adolescents in particular are known to be reluctant to use many protective
measures, such as wearing hats, and are frequently sunburnt in countries with high levels of
solar irradiation. One successful strategy to reduce exposure to solar UV radiation during
school hours, especially at lunch-time, is to erect special sails that provide shade in school
playgrounds and which reduce levels of ambient UV-B radiation by at least 94%.*

Clothing

Textiles can be a reliable method of personal photoprotection for covered areas of the body,
although by no means all are effective. At present there is no uniform standard for labelling
such clothing as some tests are performed in vivo in a similar fashion to sunscreens, while
others are assessed by in vitro transmittance giving a UV protection factor (UPF) (reviewed
in'?%). Many variables affect the transmission of UV radiation through textiles, such as the

porosity, colour, weight and thickness of the fabric. No information is given currently to in-
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dicate how the material responds to stretching, wetness, washing, humidity and ambient tem-
perature.

Despite these limitations, there is increas-
ing use of clothing and hats for the sun protection
of children (see Fig. 2-6) and such a method may
also be useful for the protection of outdoor workers
and others during recreational activities, particular-
ly outdoor sports.'> The main aim here is to less-
en the risk of sunburn and the development of
moles in children.'* In Australia an occupational
standard for exposure to UV radiation has been
introduced'” which states that outdoor workers
should be provided with appropriate clothing (rated
UPF50+) plus other items for their protection from
solar UV radiation. Further developments in the
manufacture of UV-protective textiles are ex-
pected.

Sunscreens

Sunscreens can be inorganic — reflecting, scattering
and absorbing UV radiation, such as zinc oxide
and titanium dioxide, or organic — absorbing UV Fig. 2-6. .Children wearing sun—protective hats
radiation, such as cinnamate and salicylate (re- and clothing (photograph supplied by Dr A.
. .0 138 . . Lesiak, Medical University of Lodz, Poland).

viewed in °°). They give different levels of protec-

tion against sunburn ranging from sun protection

factors (SPFs) of 6 to more than 50. Sunscreens of SPF 30 are recommended for use in some
official health guidelines.161 They were designed originally to protect against sunburn but
also protect against other acute effects of solar UV radiation such as sunburn cell formation
in the skin, cutaneous DNA damage, immunosuppression and reactivation of latent HSV.
With regard to the more chronic effects of solar UV radiation, the regular use of sunscreens
reduces the incidence of actinic keratoses®"> and SCCs, with a tendency (although not statisti-
cally significant) towards decreasing the incidence of BCCs."*® The beneficial effect of sun-
screens in preventing SCCs was revealed to be long-lasting, up to at least 8 years after the
end of a trial in which they had been applied daily to the head, neck, hands and forearms.**!
Furthermore, sunscreen use attenuates the development of new moles in children on body
sites that are intermittently sun-exposed.''® Such protection may reduce their risk of CMM
later in life, although the efficacy of sunscreens in preventing melanoma remains controver-
sial. ¥ 8- 140- 159 Although research in yeasts has indicated that UV-B irradiated titanium diox-
ide may be mutagenic,”" other work shows no skin absorption of such sunscreen components
and no evidence of toxicity in humans exposed via this route.**

One concern expressed about the widespread and increasing use of sunscreens is that
a vitamin D-insufficient or deficient state could result, with reduced protection against a
range of diseases. Although such an outcome has been demonstrated under very strictly con-
trolled conditions, in real life it is unlikely to occur for a variety of reasons (reviewed in**").
First, a fraction of the incident UV photons is transmitted through the sunscreen; for example
for a product with SPF 30, 3.3% of the erythemal UV irradiation will be transmitted. Sec-
ondly, and probably most importantly, sunscreens are rarely applied at the concentration that
is used to give the tested level of protection, 2 mg.cm™. Most commonly, subjects use only
about 0.5 mg.cm™. Apart from ignorance about the correct level to use, 2 mg.cm™ feels ex-
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cessive, is often visually unattractive and is costly. The relationship between the quantity of
sunscreen applied and the SPF is uncertain as one study finds a linear relationship® while
another finds a non-linear relationship with, for example, a sunscreen of SPF16 being re-
duced to SPF2 when used at 0.5 mg.cm™.'”® Because almost all sunscreens are under-
applied, calls have been made for the labelling to be changed.> **2%*-3% Thirdly, the cover-
age of the sunscreen is inevitably uneven and the frequency of re-application is often inade-
quate. Fourthly, sunscreens are rarely applied to all areas of the exposed body surface. Fi-
nally, it has been demonstrated in several recent surveys that sunscreen users often expose
themselves to more sun than non-sunscreen users and therefore are less likely to develop vit-

. . . 16, 17,312
amin D insufficiency. 6.17.3

A “sensible” approach is advocated for the use of sunscreens. The SunSmart pro-
gramme in the United Kingdom stresses the need to avoid sunburn and emphasises the fact
that the amount of sun exposure required to ensure production of sufficient vitamin D is less
than the amount that causes sunburn.’”’ In Europe, Diffey recommends that sunscreens with
high SPF values are not applied all day every day but are reserved for times of exposure to
intense solar UV radiation, during a sunshine holiday and during recreational activities in the
middle of a summer day.*” This contrasts with the position statement issued in 2007 in Aus-
tralia and New Zealand that considered the risks and benefits of sun exposure.” In both
countries, the local UV Index throughout the day is used as the Sunsmart UV Alert: use of
sunscreen is recommended if the value is 3 or higher. Media reports in several countries have
begun to highlight the suggested health benefits of vitamin D and have tended to emphasise
the negative aspects of sun protection while promoting sun exposure (for example®®).
Changing attitudes towards sun behaviour have been studied in Queensland: evidence of a
recent reduction in sun protection practices in this high solar UV radiation environment was
found;}/hich could lead to a significant increase in the incidence of skin cancer in future
years.

Other topical or oral agents that protect against UV-induced skin damage

In most individuals, it is likely that some DNA photodamage will occur due to solar UV radi-
ation, even if various methods of photoprotection are used. Thus, alternatives are being
sought which function beyond absorption or avoidance of UV radiation,”* some of the most
promising of which are described below.

Skin creams have been developed containing DNA repair enzymes (Advanced Night
Repair Concentrate) with the aim of minimising skin cancer risk in susceptible individuals
especially if they are unavoidably exposed to the sun.'” ' When applied topically, they
protect against the immunosuppression that follows solar UV radiation. In addition, RNA
fragments (UV-C-irradiated rabbit globulin mRNAs which decrease sunburn cell formation
and DNA damage), applied topically to human skin at the time of irradiation, minimise UV-
induced immunosuppression.

An approach creating considerable interest at present concentrates on substances that
are applied topically or taken orally, and that could be used alongside the sunscreens to pro-
vide additional protection. Compounds that activate the tanning pathway, such as melano-
cyte-stimulating hormone, reduce inflammation and promote DNA repair when applied topi-
cally.20 Both oral” and topical®" **’ nicotinamide (vitamin B3) protect against UV-induced
immunosuppression of the tuberculosis skin test (Mantoux reaction), and a topical mixture of
vitamin C, ferulic acid and a-tocopherol also provides substantial photoprotection.””* Over a
three year study period, subjects taking angiotensin converting enzyme (ACE) inhibitors and
angiotensin receptor blockers by the oral route had a lower incidence of skin cancer than non-
users.”’ Supplementation of the diet with the probiotic bacterium Lactobacillus johnonii for
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several weeks prior to exposure to solar UV radiation accelerated the recovery of immune
function in the irradiated skin.**’ Green tea polyphenols have long been known to protect
against many of the damaging effects of UV radiation in human skin, acting by a variety of
cellular, molecular, and biochemical mechanisms (reviewed in®"*). Most recently a green tea
extract applied topically to the skin of subjects before UV radiation reduced the epithelial
damage,”” and, in another study, both green and white tea extracts also applied topically to
human skin after UV radiation protected against several of the effects of UV radiation on cu-
taneous immunity.**

Cost-effectiveness of sun protection education and sunscreens

The SunWise programme which runs in schools in the USA teaches children how to protect
themselves from overexposure to the sun. It has been evaluated to determine its cost-
effectiveness.'™  Assuming that the programme continues until 2015 at the current funding
levels, it is estimated to avert more than 50 premature deaths, 11,000 skin cancer cases and
loss of 960 quality-adjusted life-years amongst the subjects taking part. In addition to the
morbidity and mortality benefits, for every dollar invested in SunWise, between 2-4 dollars in
medical care costs and productivity losses would be saved. Thus SunWise is considered a
successful and worthwhile investment. A similar exercise has been undertaken in Australia
where the equivalent programme, SunSmart, was started in the early 1980s. 2 Only the inci-
dence of melanoma was included in the calculation as there is lack of coverage of BCC and
SCC incidences in cancer registries. On a national scale, the programme is estimated to avert
the loss of 120,000 disability-adjusted life-years over the next 20 years, with associated re-
ductions in health care costs. Every dollar invested in SunSmart will return AU$2.30 in
terms of health costs, although further returns are likely if societal perspectives are included.
Therefore SunSmart is considered excellent value for money.

There is interest also in determining the cost-effectiveness of public education cam-
paigns promoting the use of sunscreens for the prevention of actinic keratoses and NMSC.
Gordon et al."*! have published the first such study in which the cost effectiveness of advising
a cohort of Australians living in sub-tropical Queensland to apply sunscreen daily versus ad
hoc use over a 5 year period was calculated. The cost of the programme was US$0.74 per
person and the saving to the government was US$109 per person, providing much better val-
ue for the expenditure. It was concluded that community-based interventions that promote
regular sunscreen use in fair-skinned subjects living in sub-tropical or tropical environments
are cost-effective in protecting against skin cancer. Such analyses for other public health ad-
vice regarding personal protection from the detrimental effects of solar UV radiation would
be beneficial. Any savings in the costs for human health from protecting the ozone layer are
unknown at the present time.

Eye protection

The eye is naturally protected from overhead solar irradiation by its location within the bony
orbit of the skull and by the brow, lids and eyelashes. Hence, the structures of the eye are on-
ly infrequently exposed to direct solar UV radiation, although exposure via scattering can be
considerable. In Norval et al.** the interaction of solar UV-B radiation with target tissues in
the eye was discussed and the importance of peripheral light focussing when considering ocu-
lar protection.

Sunglasses are the most practical and effective method of protecting the eye. The In-
ternational Organization for Standardization continuously modifies its standards for sunglass-
es and related eyewear (ISO 12312-2, 2009). Although most sunglasses manufactured cur-
rently provide protection from axially incident ambient UV radiation, they may permit UV
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irradiation from above, from ground reflections and laterally if they are poorly fitting. One
study in India found that all branded and most unbranded sunglasses provided good protec-
tion against penetration of UV-A radiation but satisfactory protection against UV-B radiation
was not provided by all sunglasses, whether branded or unbranded.”” In another study, excel-
lent protection from UV radiation was achieved by some inexpensive sunglasses, that was
superior in some cases to branded products.” In general, apart from absorption of UV radia-
tion, the more expensive sunglasses have lenses of better quality but much of the increased
cost is accounted for by the designer frames and logos. Ideally sunglasses should meet inter-
national standards, and be wrap-around in design or have side shields in the case of prescrip-
tion lenses. Goggles are recommended at high altitudes and for snow sports.

It has been confirmed recently that UV-blocking contact lenses are capable of protect-
ing the cornea, aqueous humour, and crystalline lens from UV-induced pathologic changes.’
The conjunctiva and lids are not protected by such lenses and they should not be considered
as substitutes for sunglasses. The UV radiation absorber is incorporated into the polymer of
the contact lens and the absorption properties vary with thickness across the lens.”*® For ex-
ample a minus (negative) contact lens to correct myopia is thicker at the edge than the centre
and would provide more protection to the periphery of the cornea and from peripheral rays
than the centre of the lens.

Risks associated with the use of substitutes for ozone depleting substances

As a part of the Montreal Protocol, signatories are committed to the development and use of
acceptable alternatives or replacements for the ozone depleting substances (ODSs). The in-
troduction of new chemicals, or old chemicals for new uses, may result in increases in human
exposures to these chemicals; thus the substitutes need to be evaluated not only for their abil-
ity to replace ODSs per se but also for their ability to do so within a framework of acceptable
risk. From a regulatory standpoint, at least within the USA, such evaluation is being under-
taken by the Significant New Alternative Policy (SNAP) programme of the Environmental
Protection Agency, details of which are provided in an online supplement to this paper.
However, much of the information to which the SNAP programme has access is not publicly
available. As a consequence, while the SNAP programme is discussed in detail in the online
supplement, the focus of this section is the information in published research papers.

While there are probably several hundred chemicals and chemical mixtures being
used as replacements for ODSs in various applications, there is little recent information on
their toxicity. However, a number of reviews have summarized the limited older data availa-
ble on the toxicity of a number of the classes of the chemicals that serve as ODS substitutes
and their degradation products.'®" %> 3233 Of the substitutes discussed, probably the most
toxic is sulfuryl fluoride, a fumigant proposed to replace methyl bromide. Fatalities have
been reported from acute occupational exposures and the occupational exposure limit has
been set very low (5 ppmv).>*® For the hydrofluoroethers (HFEs), carcinogenicity, mutagen-
icity, reproductive toxicity or systemic chronic toxicity are thought unlikely. Overexposure
under occupational conditions is possible, although the levels needed for severe effects, e.g.
cardiac sensitization are extremely high (>100,000 ppmv).320 There are little or no specific
data for the hydrofluoropolyethers (HFPEs), but by analogy, the expectation is that the
HFPEs will not pose any risks to humans from carcinogenicity, mutagenicity or reproductive
toxicity. The information on perfluoro-n-alkanes is similar to that of the HFPEs, that is, they
have low toxicity, low flammability, and low corrosiveness. Degradation products from the-
se classes of chemicals include a variety of toxic compounds such as carbonyl fluoride, hy-
drogen fluoride, hydrogen chloride, formaldehyde, formic acid, and acetic acid but there are
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little if any data on the atmospheric concentrations of these compounds.’***** The findings
for hydrofluorocarbons (HFCs) with regard to reproductive toxicity indicate little reason for
concern. Exposure to degradation products, such as carbonyl fluoride and, by analogy, sodi-
um fluoride, have shown some developmental effects in animals. There are insufficient data
on the reproductive effects of other degradation products, including trifluoroacetic acid and
formic acid, to draw any conclusions about safety.'®! 1?2

Possible health effects of the interactions between climate change and ozone
depletion

The World Health Organisation has stated that human health should be at the centre of con-
cerns about climate change and is working to ensure that the issue of health has prominence
at various international conferences, including the United Nations Framework Convention on
Climate Change in Copenhagen 2009. At a meeting of the Commonwealth Health Ministers
in May 2009, the view was expressed that local adverse health effects due to climate change
were actually occurring already, and require urgent public health management.”'® When con-
sidering possible interactions between stratospheric ozone depletion and climate change, it is
not possible at present to come to any firm general conclusions regarding their impact on
human health as so little research has been published in this area, perhaps due to the lack of
interdisciplinary approaches.

Many assessments predict the effect of climate change on increasing the incidence of
allergic diseases and several infectious diseases, such as malaria, Lyme disease (a bacterial
infection spread by ticks) and leishmaniasis (a protozoal infection spread by sand-fly bites) in
different parts of the world, but do not include changes in solar UV-B radiation.” ' 2%
Climate factors suggested to affect infectious and other human diseases include increased wa-
ter temperature leading to increased survival of waterborne agents, increased rainfall leading
to increased breeding sites for insect vectors, increased humidity leading to enhanced micro-
bial survival in the environment, decreased seasonal exposure to solar UV-B radiation lead-
ing to lower vitamin D levels with diminished protective effects, increased atmospheric pol-
lutants leading to less efficient mucociliary action, and changing rainfall patterns and ocean
temperatures that result from long-term natural variabilities such as the El Nifio Southern Os-
cillation events.'”” One obvious uncertainty for solar UV radiation is whether people will
spend more or less time outdoors in sunlight in the future as temperatures rise but as humidi-
ty, storms, floods and drought also increase.

The following summarises the present sparse knowledge regarding interactions be-
tween climate change and ozone depletion with respect to human health.

Skin cancer

On the basis of previous results obtained from photocarcinogenic experiments in mice housed
at different temperatures, van der Leun and de Gruijl**® suggested several years ago that ris-
ing temperatures due to global warming might enhance the induction of skin cancer by solar
UV radiation. This has been tested by correlating the incidence of skin cancer in fair-skinned
people in 10 regions of the USA with measured annual UV irradiance and temperature (aver-
age daily maximum temperature in the summer months) in each of the regions. The analysis
showed a predominant influence of the UV radiation but also a statistically significant influ-
ence of temperature.”” For the same UV irradiance, each one degree Celsius increase in
temperature resulted in an estimated 3% increase in the incidence of BCC, and 6% of SCC.
This consequence may therefore represent a significant hazard in terms of global health. Fur-
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thermore, high temperatures and humidity, as experienced in the tropics and as predicted for
some areas for the future, may increase the deleterious effects of UV-B radiation on human
health, including suppression of immunity to infectious diseases and skin cancers.'®*

Infectious diseases

One study of illness in children aged less than six years, presenting as emergency cases in
Sydney, found that the maximum daily temperature was a risk factor for both fever and gas-
troenteritis, while increasing UV Index was inversely correlated with gastroenteritis inci-
dence; air quality was not a significant risk factor.'®

A group in Philadelphia has assessed the seasonality of both invasive pneumonia,
caused by Streptococcus pneumoniae, and invasive meningococcal disease and tested associ-
ations with acute (day-to-day) environmental factors. For pneumonia, the weekly incidence
in Philadelphia County was greatest in the winter months. This pattern correlated with ex-
tended periods of lowest solar UV radiation and, to a much lesser extent, with temperature.**>
The limited solar UV radiation available at higher latitudes, (Chapter 1) could aid the survival
of the bacterium or could adversely affect innate immunity, possibly through the lack of vit-
amin D. As temperature is not a major factor in the seasonality of invasive pneumonia, glob-
al warming is unlikely to affect the incidence of the disease significantly, although increased
cloud cover could reduce ambient UV radiation and hence lower the vitamin D status. For
invasive meningitis, the number of cases in Philadelphia was highest in the late winter and
early spring.'”” A one-unit increase in the UV Index 1-4 days prior to the onset of symptoms
was associated with a 46% decrease in the odds of disease. The dose of solar UV-B radiation
could affect transmission from a colonised subject or the infectivity of the bacteria.

Thus, although the evidence to date is sparse, ozone depletion leading to increased
solar UV-B radiation, or decreases in UV radiation projected for the future (Chapter 1), in
combination with other environmental factors, could impact significantly on the incidence of
particular infectious diseases.

Dermatoses

Chronic actinic dermatitis (CAD) is an uncommon eczematous photosensitivity disease af-
fecting mainly sun-exposed sites on the body. The provoking wavelengths are within the
UV-B waveband in almost all patients.'* As more cases have been diagnosed since 1991 in
the Pusan region of South Korea than in previous years, the relationship between various cli-
mate factors and the incidence of CAD was investigated.'® Recent changes in the climate of
Pusan include increased air temperature all year round, expanding desertification with Asian
dust and a year-by-year increase in sunshine duration. A close correlation was found be-
tween the number of cases of CAD and increased ambient sunshine. This emphasises the re-
lationship between solar UV radiation and photosensitivity disorders and how climate change
can affect their incidence.

Environmental effects

UV radiation in sunlight is a major factor in causing the death of microorganisms in the envi-
ronment that are pathogenic for humans. It acts by direct effects on genomic DNA or by the
generation of reactive oxygen species. UV radiation can inactivate human pathogens present
in drinking water. For example, natural sunlight was tested recently for its ability to reduce
the infectivity in drinking water of bacteria, viruses and protozoa that can cause disease in
human subjects.74 Other reports demonstrated that insolation rapidly inactivated the protozo-
an Cryptosporidium parvum in environmental waters, with UV-B radiation identified as the
most effective waveband.®® ' Interactions between temperature, pH and water transparency
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will affect the UV-induced reduction in infectivity of this microorganism.®® Sagripanti et
al.*’! examined the inactivation of the virulent bacterium Burkholderia pseudomallei by sun-
light under different environmental conditions such as in rain water and in seawater, and
showed that an increase in exposure to solar UV-B radiation led to increased microbiocidal
activity. Sunlight exposure is an important mechanism for inactivating certain microorgan-
isms in sewage in shallow sea water, provided the water is clear.®* One study has revealed
that inactivation of some bacterial species in fresh water occurred more rapidly in the summer
than in the winter, and that inactivation by sunlight increased with increasing salinity of the
water.””" The efficiency of inactivation of microorganisms by exposure to sunlight in the en-
vironment is determined by a complex mixture of factors including the amount and type of
photoproducts produced, the ability to repair the damage, the ambient temperature,*** the pH
and salinity of the water, and the solar spectrum. At least 60-94% of the killing of bacteria by
solar exposure is suggested to be due to the UV-B component of sunlight.®’

Further work is required to assess possible interactions between changes in climate,
such as global warming, and solar UV-B radiation on the viability of pathogenic microorgan-
isms in the environment.

Gaps in knowledge

Stratospheric ozone depletion leading to increased solar UV-B radiation has had adverse
health effects on human populations, the most serious and widespread being skin cancer and
cortical cataract. Such an increase in solar UV-B radiation can be beneficial in increasing
vitamin D status and thus lowering the risk of developing a range of diseases. Although the
ozone layer is projected to recover slowly in the coming decades, continuing vigilance is re-
quired regarding exposure to the sun: for ageing populations who are more susceptible to a
number of serious diseases in which UV radiation plays a part but also for young people, as
risk for at least some UV-related diseases may be largely determined by early-life exposures.
Personal protection to prevent sunburn is recommended whilst ensuring enough sun exposure
to provide sufficient vitamin D. When climate change is considered together with ozone de-
pletion, any health effects, either advantageous or disadvantageous, are hard to assess cur-
rently as the impact of such a change on societies and behaviour is not clear. However, it
may be more difficult to maintain adequate vitamin D status from exposure to the sun at mid

to high latitudes. Many gaps in our knowledge remain, some of which are summarised in Ta-
ble 2-1.

Table 2-1. Suggested gaps in current knowledge regarding solar UV-B radiation and
human health

Subject Key questions

The eye What are the wavelength dependencies for cataract development?
Does solar UV-B radiation play a role in age-related macular degeneration?
What role does solar UV-B radiation play in uveal melanoma?

The skin What is the UV wavelength dependency for melanoma induction?
What is the interaction between solar UV radiation and the human papillomaviruses
that are involved in squamous cell carcinoma?
Does vaccination in the summer months or in a sun-exposed individual lead to a sup-
pressed immune response against some vaccines?
What is the mechanism for the induction of T regulatory cells following UV radia-
tion?
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Does solar UV radiation induce innate defence mechanisms in human skin that can
control bacterial and other infections?

Is there a balance between the positive and negative effects of UV-induced immuno-
suppression?

What is the optimal vitamin D status for all its health benefits, and how much solar
UV-B radiation is required to attain it in people of different skin colour living at dif-
ferent latitudes at different times of the year?

Is exposure to UV-B radiation and/or vitamin D status linked directly with protection
against certain internal cancers, autoimmune diseases and infectious diseases?

Can all the potential benefits of vitamin D adequacy be met from supplementation?

Protection measures What is the most effective health message to give the general public regarding

“safe” sun exposure?
How can public understanding and use of the UV Index be improved?
Can components of our diet or substances applied topically provide protection for
the eye and skin against the harmful effects of UV radiation?
Is additional photoprotection required after cataract surgery?
Should the SPF of sunscreens be modified to reflect the actual concentration com-
monly used by the public?
Is it important to measure and publicise the immune protection factor of sunscreens?

Effects from climate Does an increase in temperature combined with increased
change/ozone depletion  solar UV-B radiation cause enhanced adverse effects in the eye and/or skin?
interactions Will sun exposure behaviour alter with climate change conditions?

What effect does climate change have on lifestyle factors which influence personal
sun exposure such as sunshine holidays, clothing, diet and tanning?

Does climate change alter the daily solar UV-B radiation reaching the earth®s sur-
face?

Does climate change affect the efficacy of solar UV radiation to inactivate pathogen-
ic microorganisms in water supplies?

Will populations migrate to environments that have more favourable climates (cool-
er, better water supplies, etc.), but increase/decrease the risks of harmful effects of
solar UV-B radiation or vitamin D insufficiency?
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Effects of solar ultraviolet radiation on terrestrial ecosystems

Chapter 3. Effects of solar ultraviolet radiation on terrestrial
ecosystems. Patterns, mechanisms, and interactions with climate
change
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Summary

Ultraviolet radiation (UV) is a minor fraction of the solar spectrum reaching the ground sur-
face. In this assessment we summarize the results of previous work on the effects of the UV-
B component (280-315 nm) on terrestrial ecosystems, and draw attention to important
knowledge gaps in our understanding of the interactive effects of UV radiation and climate
change. We highlight the following points: (i) The effects of UV-B on the growth of terrestri-
al plants are relatively small and, because the Montreal Protocol has been successful in limit-
ing ozone depletion, the reduction in plant growth caused by increased UV-B radiation in ar-
eas affected by ozone decline since 1980 is unlikely to have exceeded 6%. (ii) Solar UV-B
radiation has large direct and indirect (plant-mediated) effects on canopy arthropods and mi-
croorganisms. Therefore, trophic interactions (herbivory, decomposition) in terrestrial eco-
systems appear to be sensitive to variations in UV-B irradiance. (iii) Future variations in UV
radiation resulting from changes in climate and land-use may have more important conse-
quences on terrestrial ecosystems than the changes in UV caused by ozone depletion. This is
because the resulting changes in UV radiation may affect a greater range of ecosystems, and
will not be restricted solely to the UV-B component. (iv) Several ecosystem processes that
are not particularly sensitive to UV-B radiation can be strongly affected by UV-A (315-400
nm) radiation. One example is the physical degradation of plant litter. Increased photodegra-
dation (in response to reduced cloudiness or canopy cover) will lead to increased carbon re-
lease to the atmosphere via direct and indirect mechanisms.

Introduction

Terrestrial ecosystems represent the largest store of active organic carbon in the biosphere,'*®
and include biomes of widely variable climate regimes with a diverse set of organisms
adapted to this range of conditions.*® Key ecosystem services include food and fibre produc-
tion, as well as protection of watersheds and water quality and regulation of atmospheric
composition."”

Terrestrial ecosystems are being perturbed directly and indirectly by anthropogenic
activity. Increased temperature and atmospheric CO,, and altered precipitation patterns, are
generally considered to be the most important climate change factors affecting terrestrial eco-
systems. Superimposed on those drivers are changes in the levels of solar UV-B radiation re-
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sulting from stratospheric ozone depletion and other atmospheric factors (Chapter 1). Model
calculations that incorporate satellite measurements of ozone, and cloud and aerosol reflectiv-
ity, show a significant increase in UV-B radiation reaching the Earth’s surface between 1979
and 2008; this increase occurred at all latitudes except the equatorial zone, with the largest
increments taking place at mid to high latitudes in the Southern Hemisphere® (see also Chap-
ter 1).

Recovery of stratospheric ozone, due to the successful implementation of the Montre-
al Protocol, is predicted over the decades ahead (see Chapter 1 and ref *®). However, the addi-
tional effects of climate change on ozone chemistry and UV transmission through the atmos-
phere make future UV levels at the Earth’s surface much more difficult to predict (Chapter
1). Changes in UV-B radiation also occur in response to environmental and anthropogenic
factors other than ozone depletion. For example, changes in cloudiness (associated with cli-
mate change) and aerosol concentrations may also affect UV irradiance at regional, or even
global scales (see Chapter 1 and ref.") Reduced cloud cover and conditions of increased aridi-
ty, predicted by current climate models for some regions,” ®* '** are likely to have strong ef-
fects on the UV irradiance received at ground level. Furthermore, deforestation or changes in
agricultural practices that alter plant canopy cover or structure may have important effects on
UV levels received by vegetation, canopy arthropods, and microbes in terrestrial ecosystems.
These changes in UV radiation are predicted to occur over a greater geographic area than that
affected by ozone depletion (Chapter 1) and may therefore affect a much more diverse range
of terrestrial ecosystems.

In this report, we consider recent advances in our understanding of the effects of UV
radiation on terrestrial ecosystems, and assess the biological consequences of changes in UV
radiation resulting from ozone depletion and other climate change factors. In the first part, we
build upon our latest report™ and yearly updates' and present an analysis of the responses to
UV-B radiation of the various components (trophic levels) and processes (trophic-level inter-
actions; biogeochemical cycles) of terrestrial ecosystems. Next, we highlight recent progress
in the understanding of the basic mechanisms of plant responses to UV-B radiation. Finally,
we briefly address technical issues associated with the design and interpretation of experi-
ments intended to evaluate biological effects of UV-B radiation. This assessment is mainly
concerned with UV-B radiation effects, but because climate change may also result in signifi-
cant variation in UV-A levels [for example, due to changes in clouds, Chapter 1], the effects
of this spectral region will be considered in those cases where there is sufficient information
to anticipate possible ecological consequences.

Effects of UV radiation on organisms at different trophic levels

Primary producers

Growth responses. The general conclusion that has emerged from studies with terrestrial
plants is that photosynthesis (CO; fixation per unit leaf area) is not significantly affected by
changes in UV-B radiation when plants are grown under natural conditions. However, UV-B
radiation may have subtle inhibitory effects on biomass accumulation, often correlated with a
reduction in the rate of leaf area expansion. The primary literature reporting on these effects
has been discussed in previous reports® and in several reviews’” > 1% 13,

In this report, we have focused on a selected number of reviews and meta-analyses of
published information that permit a quantitative assessment of the sensitivity of plant growth
to ozone-induced variations in UV-B levels under field conditions. One such study is a meta-
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analysis of experiments carried out in polar regions in both hemispheres'”. This analysis
considered results from both UV-B attenuation (reduction through filtering or screening) and
supplementation (addition of UV-B radiation using lamps) studies, and provides rough esti-
mates of dose-response functions, where parameters such as leaf area and biomass are plotted
against the dose of UV-B radiation received by plants (Fig. 3-1A). The authors of this analy-
sis concluded that the effects of UV-B radiation on plants (mosses and angiosperms) of Arc-
tic and Antarctic ecosystems are similar to those reported for higher plants of lower latitudes
(Ballaré et al.’; Searles et al.'*®). The response is characterized by small reductions in leaf
area and growth rate (biomass accumulation) as UV-B radiation increases (Fig. 3-1A), and is
accompanied by responses at the biochemical and physiological levels (see following section
on Protection and Acclimation).

(A) Dose-response relationship for plant biomass  (B) Change in UV irradiance between 1979 and 2008
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Fig. 3-1. A quantitative estimate of the reduction in the growth of the primary producers that may have oc-
curred as a consequence of increased UV-B radiation between 1979 and 2008. (A) Change in aboveground
biomass as a function of experimentally-imposed changes in weighted UV irradiance. The growth data are
derived from a meta-analysis of field studies in high-latitude ecosystems (which involved experimental atten-
uation or supplementation of ambient solar UV-B radiation), and are expressed as % change in relation to the
growth of the plants receiving ambient solar radiation'”. The UV doses are weighted using the generalised
plant function®, and expressed as % change relative to the ambient level [Note that, for this function, a 10 %
increase in UV corresponds to a 5% reduction in ozone; i.e., a RAF of 2 (see McKenzie ef al.”’). The red lines
focus on the example discussed in the text. For areas where ozone depletion over the last three decades has led
to a 20 % increase in the summertime levels of weighted UV radiation (areas approximately designated by the
red circles in panel B), the difference in plant growth between 1979 and the present would be 6% or less, giv-
en the slope of the dose-response relationship and assuming that all other factors are equal. (B) Percentage
change in UV irradiance (numbers inside the coloured areas), weighted using the generalised plant function®®,
as a function of time of the year and latitude (between 55° S and 55° N), between 1979 and 2008 (data from
Herman™). Note that the relative changes in weighted UV irradiance at 50° to 55° S are much greater near the
winter solstice, but the absolute irradiance levels are very low during the winter and vegetation is less physio-
logicallv active and nossiblv snow-covered at that time of vear.

The slope of the plant biomass response to UV-B irradiance derived from this meta-
analysis (-0.32; Fig. 3-1A) indicates an approximate 1% reduction in growth for each 3% in-
crease in weighted UV-B irradiance. If this slope is considered in the context of the changes
in weighted UV-B irradiance that occurred over the last 30 years (Fig. 3-1B)®, it is possible
to produce an estimate of the magnitude of the changes in the growth of the primary produc-
ers that may have occurred as a consequence of ozone depletion. Thus, for example, in areas
such as the southern tip of South America (at 55° S), where ozone depletion has led to a 20%
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increase in the summertime levels of UV-B radiation, (the areas approximately designated by
the red circles in Fig. 3-1B), the estimated difference in plant growth rate between the present
and 1979 would be 6% or less (see red lines in Fig. 3-1A).

This analysis has several strengths, which are summarized below.

1) The analysis produces a quantitative estimate of the effects of changes in UV-B
radiation on the growth of terrestrial primary producers.

2) The estimate agrees well with quantitative data produced by other analyses of field
experiments. For example, the UV-B attenuation experiments carried out in southern
South America in the late 1990s (the peak in ozone-depletion), indicated that the
negative effect of the enhanced UV-B radiation on plant growth was ~3-4% (Ballaré
et al.”). Furthermore, a comprehensive meta-analysis of UV-B supplementation
studies'” concluded that the average response to treatments that simulated 10 to 20 %
depletion of 0zone was a 6% reduction in plant biomass. A more recent meta-
analysis®® yielded results that were quantitatively consistent with those of Searles and
co-workers'?’, and suggested that the average sensitivity to UV-B radiation would be
lower in woody perennials than in herbaceous plants.

3) Combining results from several studies reduces effects of random variation in
individual experiments. The coefficient of variation in individual field studies in
natural ecosystems is frequently >10%. Because the number of replicates in these
studies is normally low, due to cost and logistic limitations, it is clear that responses
of the magnitude predicted by the analysis presented in this report are unlikely to be
detected as statistically significant in individual studies.

At the same time, the analysis presented here has some limitations. First, it assumes a
linear dose-response relationship, which is not necessarily the case. Second, it assumes that
the growth responses measured in experiments where the UV-B radiation levels are abruptly
increased or decreased (by supplementation or filtering techniques) would hold true for con-
ditions where the UV-B irradiance received by the ecosystems changes gradually over a peri-
od of several years.

Protection and acclimation. Terrestrial plants have highly efficient protective mechanisms
against the damaging effects of solar radiation, and this is one of the reasons why increased
UV-B radiation resulting from ozone reduction has only modest consequences on plant
growth (Fig. 3-1A). As sessile photosynthetic organisms, they are continuously exposed to
extreme variations in the levels of solar radiation, including the UV-B component. Plants ac-
climate to changes in UV-B levels through several defense responses, including morphologi-
cal changes, accumulation of effective UV-screening compounds, production of increased
amounts of antioxidants, stimulation of DNA repair, as well as other regulatory adjustments.
Plant acclimation is mediated by UV-B-induced changes in gene expression via UV-B-
specific and non-specific signaling pathways.”® Numerous mechanisms of acclimation and
adaptation have been detailed in previous reports.'>*°

Depending on the degree of stress, acclimation responses are likely to involve an en-
ergy cost with consequent redistribution of resources for production of protective compounds
or structures. As an example, the metabolic cost of accumulating increased levels of UV-
absorbing compounds in response to abrupt increases in UV-B radiation was calculated for an
Antarctic leafy liverwort. That cost represented only 2% of the carbon fixed by photosynthe-
sis, but such a cost could have cumulative effects on plants growing in polar regions that are
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already constrained by short growing seasons."”” In an experiment with a native Patagonian
shrub (Grindelia chiloensis), plants responded to attenuation of solar UV-B radiation with
more plant biomass, greater height and increased leaf area, which correlated with a reduction
of 10% in the glucose equivalent used in the synthesis of UV-B protective resin.'*® From the-
se experiments, it may be inferred that energy is allocated from growth to protection when
plants are exposed to natural sunlight with its UV-B component. The magnitude of the energy
cost is likely to be species-specific and dependent on environmental conditions. Protective
responses other than production of secondary metabolites are also likely to incur a cost to the
plant.

Genotypes within a given species of plant can differ in their tolerance to UV-B radia-
tion.* ™ ! Genotypic differences in acclimation to UV-B radiation may contribute to the
variation in growth responses that has been documented in field studies (see, e.g., scattering
in Fig. 3-1A), and may allow for directional selection for UV-B tolerance within plant popu-
lations in response to long-term changes in UV-B levels. A recent short-term study®’ assessed
the natural variation in constitutive (inherent) and induced protection of the photosynthetic
function from UV-induced damage using over 200 lines (varieties) of Arabidopsis thaliana, a
member of the mustard family (Brassicaceae). Constitutive protection did not correlate with
the latitudinal distribution (and presumed gradation in natural UV-B radiation) of the popula-
tions tested. Also, among lines from high altitudes, both constitutively highly tolerant and
moderately tolerant populations were found. However, lines from lower latitudes were found
to activate UV defenses more readily than those of higher latitudes. Correlation between ac-
climative/adaptive response to UV-B radiation and habitat origin has also been reported in
studies with other species.'> Jansen et al.®’ point out that some of the differences reported in
the literature may be explained by the selection of parameters used to measure plant re-
sistance to UV-B radiation, as well as confounding effects of environmental variation in fac-
tors other than UV-B radiation (see also Torabinejad and Caldwell'*").

UV-B radiation and other variables of the biotic and abiotic environment can interact
to produce cross-tolerance (i.e., tolerance to one stress induced by another stress), as well as
resilience to subsequent stress due to the establishment of a level of protection.”” Cross-
tolerance has been documented for a number of environmental stressors (examples in Izaguir-
re et al.®® and Mittler et al.wl) and has, in some instances, been attributed to the activation of
common signaling pathways. For example, in an analysis of gene-expression responses to
pulses of drought, cold, and high UV-B radiation under laboratory conditions, plants were
found to exhibit commonalities in their reactions to the various stressors, involving a core set
of stress-related genes.”® A well-documented case of UV-induced protection against other
stress factors is the effect of solar UV-B radiation increasing plant resistance to insect her-
bivory.'® UV-B radiation induces the synthesis of several secondary metabolites, including
those of the phenylpropanoid pathway, which act as effective UV-absorbing sunscreens.®
The response usually involves an increase in the concentration of these compounds as well as
differential regulation and shifts in their relative abundance.’” °* 19 126 3% Stydies that com-
bined detailed analyses of plant tissue chemistry and herbivory bioassays suggest the effect of
UV-B radiation increasing plant resistance against herbivorous insects may be at least partial-
ly mediated by changes in phenolic metabolites, which may have toxic effects on plant con-
sumers** (see also section on Consumers and decomposers).

From the point of view of modeling the quantitative impacts of changes in UV radia-
tion on plant growth (Fig. 3-1), an important implication of acclimation/adaptation responses
is that the slope of the dose-response relationship may change depending on the duration of
the experiment. Thus, in a short-term experiment (days), where plants have little time to ac-
climate to changes in the light environment, changes in UV-B radiation may trigger larger
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effects on growth than those produced by gradual increases in UV-B irradiance over a period
of several years.

Consumers and decomposers

Canopy arthropods. Some of the most prominent and best characterized effects of solar UV-
B radiation in terrestrial ecosystems have been documented at the interface between plants
and plant-eating (herbivorous) insects.” ' '* 2 ' Generally, the intensity of herbivory on
plants grown under field conditions increases if the UV-B in the solar spectrum is attenuated
using filters.”

The “anti-herbivore” effect of UV-B radiation can be considerable. The dose response
relationship published in our last report,”® and reproduced here in Fig. 3-2, indicates a dou-
bling in the intensity of herbivory by insects with an attenuation of 25% in the level of solar
UV-B radiation. This strong effect of attenuation of solar UV-B radiation on levels of her-
bivory has been confirmed in more recent studies.** Importantly, the slope of this response is
substantially steeper than the one shown in Fig. 3-1A for the effects of UV-B radiation on
plant growth. Hence, there is reason to suspect that the increases in UV-B that occurred as a
consequence of ozone depletion and other environmental factors (Fig. 3-1B) may have
caused larger effects on levels of herbivory than directly on primary productivity. Similarly,
herbivory is likely an important determinant of the impacts of future variations in UV-B lev-
els (increases or decreases) on biomass production and losses of biomass to herbivory.

The conclusion regarding
quantitative impacts has several ca-
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resulted in increased levels of insect
herbivory or differences in the responses between species of insects.”” ** Therefore, in any
given ecosystem, different species of insects may have a range of responses to the changes in
plant tissue quality caused by enhanced UV-B radiation. An implication of this variation in
the response is that changes in UV-B radiation resulting from ozone depletion (or recovery),
clouds and aerosols (Chapter 1), or from other sources, such as changes in canopy cover and
architecture, have great potential to alter the species composition and diversity of the com-
munity of canopy insects.
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The mechanisms that mediate the effects of solar UV-B radiation on insect herbivory
have been studied in some detail. The conclusion emerging from that body of work is that
some of these effects are a consequence of a direct action of UV-B radiation on the insects,
whereas others are indirect, i.e., mediated by changes in the quality of plant tissues.

Direct deleterious effects of UV-B radiation on insect performance (e.g., increased
mortality of larvae) were documented some time ago.”” *° However, recent research has
demonstrated that UV-B radiation may also serve as a signal to canopy arthropods (insects,
spiders, etc.) that elicits changes in behaviour.** *”-**** Direct perception of solar UV-B radi-
ation has been demonstrated in field studies with thrips, Caliothrips phaseoli, a common crop
pest.”> ** Presumably, specific UV-B sensitivity plays a role in the mechanisms that allow
canopy arthropods to locate favourable feeding positions or areas of low UV-B exposure
within the plant canopy.” '** ' Although not directly connected with herbivory studies, Li
and co-workers demonstrated that females of a jumping spider species (Phintella vittata)
choose a mate based on sex-specific UV-B reflectance patterns,”™ *” and observational studies
with hornets showed that flight activity correlated better with solar UV-B irradiance than
with other environmental variables.'** Mazza and co-workers proposed that specific percep-
tion of UV-B in thrips is achieved by a combination of broad-band UV receptors and filtering
compounds in the insect’s visual system.”® Studies in vertebrates also suggested perception of
UV-B in poison dart frogs.”® The finding that some animals can react specifically to UV-B
under natural conditions has important implications for our understanding of the ecological
roles of UV-B radiation, and suggests that changes in the UV-B environment in plant com-
munities may have complex effects on the behaviour of animals in the canopy. However, the
quantitative significance of direct behavioural responses of animals to UV-B radiation in de-
fining response patterns at the ecosystem level (e.g. changes in rates of herbivory) has yet to
be established.

Indirect effects of solar radiation on animals (i.e., effects mediated by changes in the
plant host) have been extensively documented in bioassays where the insects themselves are
not exposed to the UV-B radiation treatments. Thus, “choice” and “no-choice” bioassays with
herbivorous insects have shown that ambient solar UV-B radiation can produce changes in
the plant tissues that affect choice of sites for insect feeding'® '* and oviposition (egg-
laying),** 3 as well as insect growth and survival.'* > 81 82157 The increase in plant re-
sistance to herbivory by insects has been correlated with UV-B-induced variations in a num-
ber of tissue quality traits, such as nitrogen content™, leaf phenolics,** 8" #% %> 12 cyanogenic
compounds,® and defense-related proteins such as inhibitors of insect proteinases.®> 2% 17
Increased accumulation of phenolic compounds in plant tissues is one of the most consistent-
ly reported responses to UV-B radiation. These phenolic compounds contribute to filtering
out UV-B photons before they reach sensitive molecules in the interior tissues (mesophyll).
However, they are also thought to play a role in direct defense against herbivores.** *7- ¢! ¢ 84
190 3% 1 fact, UV-B radiation and insect damage trigger partially overlapping patterns of
phenolic compounds in some plant species.®* A partial convergence in response also has been
evidenced in studies that measured changes in gene expression elicited by her-
bivory/wounding treatments and exposure to UV-B radiation.”* ©

These observations have lent support to the idea that the effects of solar UV-B radia-
tion on interactions between plants and insects may be mediated by stimulation of the hormo-
nal signaling cascades that plants activate to defend themselves against herbivore attack.’® **
63. 136 Recent studies in a species of wild tobacco (Nicotiana attenuata) have indicated that
some effects of solar UV-B radiation on plant defense against insects require biosynthesis of
jasmonates (which are the principal hormones that orchestrate plant defense responses against
insects), while others do not. Among the responses to UV-B radiation that do not depend on
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jasmonate signaling are the accumulation of flavonoids and other phenolic compounds with
potential anti-herbivore activity. On the other hand, the UV-B-induced accumulation of sev-
eral polyamine conjugates is totally dependent on jasmonate production, and UV-B strongly
enhances the expression of defense-related proteins (proteinase inhibitors) triggered by her-
bivory through a jasmonate-dependent pathway.** Solar UV-B radiation does not increase
accumulation of jasmonates in N. atfenuata, but increases sensitivity to jasmonates, presuma-
bly via regulation of some of the downstream components involved in jasmonate signaling.
The increased sensitivity to jasmonate thus leads to stronger defense responses in plants ex-
posed to UV-B radiation compared to those grown under attenuated levels of UV-B.** Bioas-
says carried out in the field have indicated that those effects of UV-B radiation on plant
chemistry that require jasmonate signaling play a quantitatively important role in the mecha-
nisms whereby solar UV-B increases plant resistance to herbivorous insects.** ** Detection of
significant effects of solar UV-B on jasmonate signaling is important, because recent field
studies have shown that the impacts of elevated concentrations of atmospheric CO; on the
intensity of herbivory (more herbivory under elevated CO,) may be caused by a reduced acti-
vation of the jasmonate pathway of plant defense.'”® Thus, improved understanding of the
effects of UV-B radiation on the mechanisms of defense may be useful for analyzing the im-
pacts of multiple environmental factors (such as UV-B, CO,, etc.), as well as for the design or
selection of crop varieties with increased resistance to herbivory.

Microbial communities. Solar UV-B radiation is one of several environmental factors that
influence the biodiversity of microbes growing on a range of materials, including the surfaces
of leaves and dead plant material (plant litter). By altering the microbial communities that are
present, UV-B radiation can thus affect microbial decomposition, which is globally an im-
portant process, since it affects the potential for carbon sequestration in terrestrial ecosystems
and the flux of CO; to the atmosphere. For example, experimental attenuation of UV-B radia-
tion reaching the surface of plant litter in a field study carried out in Tierra del Fuego (south-
ern Patagonia) changed the species composition of fungal communities on the litter, and in-
creased the rate of microbial decomposition.'” Another recent study reporting changes in
plant litter following exposure of branches of alder and birch trees to solar UV radiation indi-
cated changes in tissue chemistry that subsequently influenced the microbial release of CO,
as the litter was decomposing.” While it is difficult to generalize from such studies, they do
indicate that UV radiation can have complex effects on microbial decomposition.

Live foliage can provide a habitat for a diverse set of microbes,*® and the composition
of these microbial communities can be influenced by solar UV-B radiation striking the leaf
surfaces.”® Furthermore, studies in maize have shown that the effects of UV-B radiation on
bacterial diversity depend on the plant genotype, suggesting that at least some of the effects
of UV-B are indirect (i.e., mediated by changes in the plant, such as changes in plant surface
chemistry)."*> In parallel with these studies that focused on microbial diversity on the leaf
surface, other researchers have shown that solar UV-B radiation can also alter plant resistance
to leaf pathogens. When ambient UV-B radiation was filtered out from areas of tea crops dur-
ing the wet season in Sri Lanka, the relative abundance of Xanthomonas spp. (a phyllosphere
bacterium) increased, and this correlated with an increase in the incidence of the fungus that
causes blister blight, the major leaf disease of tea plants.”® A recent study in maize® found a
genetic correlation between low bacterial diversity on leaf surfaces and resistance to fungal
blight. This suggests that some dominant bacteria may suppress other bacteria and, at the
same time, increase resistance of plants to fungal infection. These studies are beginning to
reveal the nature of the interactions between microbial organisms that take place on living
foliage. Progress in this direction will increase understanding of the biological implications of
the effects of UV-B radiation on microbial diversity.
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As in the case of plant-herbivore interactions, the effects of UV-B radiation on plant-
associated microbes may be direct (i.e., UV-B acting directly on the microorganisms) or indi-
rect (mediated by UV-B-induced changes in the plant tissues). Indirect effects have not been
studied to the same level of detail as plant-insect interactions. However, given the evidence
showing that solar UV-B can interact with jasmonate signaling,** and the well-established
fact that jasmonates play a central role in plant defense responses against certain types of
pathogens,''? it seems likely that changes in UV-B levels will result in variations in plant re-
sistance to pathogen attack.

Finally, experimentally imposed changes in UV radiation aboveground can alter the
quantity and diversity of microbes in the soil® or microfauna below the surface in peat-
lands."™® '? Unlike the leaf surface, this is an environment devoid of UV radiation. Conse-
quently, shifts in microbial species composition are indirect UV effects, which may be medi-
ated by processes such as changes in root exudates,''” ''® or in the case of peat, through
changes in the plant tissues or exudates of the peat.'*’ Although alterations in the populations
of microorganisms and microfauna below the surface have been demonstrated, the broader
significance of these changes for ecosystem function is still unclear.

Effects of UV radiation on biogeochemical cycles

In this section we highlight recent advances in the understanding of UV effects on biogeo-
chemical cycles and their implications for predicting the responses of terrestrial ecosystems
to variations in UV resulting from ozone and climate change. For further discussion of the
subject, the reader is referred to Chapter 5.

Carbon cycle

Of particular importance for the changing carbon balance of terrestrial ecosystems is net eco-
system exchange (NEE), the balance between gross photosynthesis of the vegetation and the
total efflux of CO, from the ecosystem. As discussed previously (see Growth responses), ma-
nipulative field studies did not reveal general effects of UV-B radiation on net photosynthesis
(carbon assimilation per unit leaf area), even though shoot biomass can show some sensitivity
to variations in UV-B irradiance (Fig. 3-1A).""> '** Another pathway whereby changes in
UV-B radiation may affect ecosystems is through belowground processes. Alterations in
plant roots and associated microorganisms (mycorrhizae),™* soil microbial communities''’
and microfauna® have been reported in response to aboveground manipulations of UV radia-
tion. However, a general perspective of the chain of events causing these belowground re-
sponses, and their significance for ecosystem function is still lacking. Therefore, at this point,
there is little evidence to show how NEE will respond to variations in UV-B radiation.
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However, because the effects of UV-A and
short-wave visible radiation can be quite large, photo-
degradation could be strongly enhanced by increases in
the amount of radiation resulting from decreased cloud
cover or conditions of increased aridity.” Photodegra-
dation affects predominantly the lignin fraction of
plant litter, reducing its abundance when the material is
exposed to sunlight (Fig. 3-4). Because lignin is known
to play a key role in retarding biological (microbial)
decomposition,'*® increases in photodegradation as a
result of climate change may have important conse-

cific regions of the solar spectrum demon-
strates that both UV (<400 nm) and visible
(400-700 nm) radiation can drive photo-
degradation in the field. (A) Mass loss of
grass litter exposed to solar radiation
transmitted through different cut-off filters
in a semi-arid grassland. (B) Mass loss of
artificial cellulose-lignin substrates with
10% lignin concentration exposed to solar
radiation transmitted through different cut-
off filters. Adapted from Austin and
Ballaré® (C) CO, evolution from leaves
exposed to solar radiation transmitted

through different cut-off filters. Adapted

quences, accelerating microbial respiration and hence K
from Brandt et al.

carbon release to the atmosphere.” This indirect effect
of increased photodegradation may be particularly important in scenarios of greater variabil-
ity in climate, with increased alternation between dry periods (which may favour photodegra-
dation) and periods of abundant precipitation (which favour microbial activity).

Nitrogen oxides

Trace gases of nitrogen, NOy (NO and NO,), are present in small quantities in the atmos-
phere, but are very important in a variety of chemical reactions (Chapter 6). These and other
oxides of nitrogen, NOy, can play important roles in atmospheric chemistry. One of those,
nitrous oxide, N,0O, is now considered to be the single most important ozone-depleting emis-
sion, exceeding the contribution of chlorofluorocarbons.'” Plant shoots have been shown to
emit NO, when exposed to solar UV radiation,”” with NO likely originating from leaf tis-
sues. Other nitrogen oxides (NOy) from conifers appear to emanate from the surfaces of foli-
age when exposed to UV-B radiation.''* There is a suggestion that global NO, emissions
from boreal forests might be roughly equivalent to those from industrial and traffic sources.”’
Although several uncertainties remain, this suggests an important role for solar UV-B radia-
tion interacting with plant tissues in the production of reactive nitrogen.
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Methane

Although the release of methane into the atmosphere had been generally considered to occur
only under conditions of very low oxygen, measurable release of methane from vegetation in
an atmosphere with normal oxygen levels has been reported.” This has led to considerable
controversy.”® *% 193 147 199 130 A Jthough interpretations vary, it appears that methane can be
produced from plant pectins through a photochemical process driven by solar UV
radiation."”’ Recent estimates suggest that the quantity of methane emitted from terrestrial
ecosystems by this process is not relevant from the perspective of the global methane budg-
et.'® However, methane is the next most important greenhouse gas after water vapour and
CO,, and thus the potential importance of this process clearly deserves attention (Chapter 1).
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decreasing cloud cover in  zymes. The bars indicate lignin content before and after a period of exposure
some regions (Fig. 3- to sunlight. Adapted from Austin and Ballaré.’
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5)'*? will increase trans-
mittance of UV through the atmosphere (Chapter 1), and also through the plant canopy if the
reduction in clouds is accompanied by conditions of increased aridity (as predicted by some
models, Fig. 3-6)"* ** and reduced vegetative cover. Similarly, in polar and alpine regions,
vegetation is often protected for many months of the year by layers of snow and ice that ef-
fectively block solar radiation. Reductions in these protective layers due to climate warming
will increase the duration of exposure to UV-B radiation and, particularly in the Southern
Hemisphere, would coincide with
ozone-depletion events.”>! This in- 80
creased UV-B radiation is likely to be &0
combined with changes in water o A
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combinations of stressors at a region- - EEa  Eamee—TEE
al level, as well as studies that con-
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Fig. 3-5. Modeled trends for total cloud cover (% change
1960-2100 —see colour scale at the bottom of the graph) as a
function of latitude. Boxed areas highlight low and mid-
latitudes, where models predict reduced cloud cover. Adapted
from Trenberth and Fasullo.'**
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Fig. 3-6. Modelled trends for precipitation (% change between the periods 2090-2099 and 1980-1999; see
colour scale at the bottom of the map). Values are multi-model averages based on the SRES A1B scenario for
June to August. White areas are where less than 66% of the models agree in the sign of the change and stip-
pled areas are where more than 90% of the models agree in the sign of the change. Boxed areas highlight mid-
latitudes, where models predict reduced precipitation. Adapted from IPCC.%

sider the biological effects of such combinations. Ideally, factorial studies should be used to
evaluate the influences of simultaneous changes in various factors (e.g., increased prevalence
of drought, higher temperatures, more available nitrogen and increased UV radiation). Infor-
mation from such studies is also required to apportion correctly the effects of combined fac-
tors. For example, increased incident UV-B radiation (as a result of ozone depletion) is corre-
lated with the Southern Annular Mode, indicative of atmospheric variability, and with in-
creasing wind at coastal Antarctic sites in the summer.'*" '*° This can make it difficult to at-
tribute changes in growth rate observed in Antarctic mosses specifically to the negative ef-
fects of UV-B radiation or to desiccation from drying winds, although the results clearly
show an impact of the ozone hole on the dominant moss flora.*® '**

The following examples from recent studies of factor combinations discuss how other
changes in climate enhance or ameliorate effects of UV radiation. Given the paucity of such
interaction studies, a comprehensive meta-analysis, as discussed earlier for plant growth, is
not possible.

UV radiation and precipitation

Changes in precipitation patterns and increased evaporative loss due to increased temperature
are likely to occur as a result of climate change in many regions.” > ' Reduced water
availability in terrestrial ecosystems is one of the few environmental factors that clearly inter-
acts with UV-B radiation; past reports highlight numerous studies demonstrating reduced UV
sensitivity in higher plants under water stress.”’ Recent studies of single plant species under
controlled conditions have also shown some of the ways in which cross-tolerance to drought
and UV-B radiation might occur. When grown under moderate UV-B levels, Arabidopsis
plants were more tolerant to a 12-day drought treatment than plants grown without UV-B, as

94 The Environmental Effects Assessment Panel Report for 2010



Effects of solar ultraviolet radiation on terrestrial ecosystems

indicated by two-fold higher photosynthetic rates, and higher relative water contents.'”® In a

study of poplar tree cuttings, exposure to enhanced UV-B radiation significantly decreased
plant growth and photosynthesis under well-watered conditions, but these effects were ob-
scured by drought, which by itself caused a more drastic growth reduction.” Two studies™ *°
which combined high doses of UV-B radiation and water deprivation showed that, overall,
UV-B and water stress reduced growth considerably, but less than would be predicted from
the additive effects of both stressors. While these results could reflect increased resilience to
UV-B in higher plants pre-treated by water deprivation, the apparent interaction may simply
indicate that the comparatively subtle effects of UV-B radiation are overwhelmed by those of
reduced water availability (e.g., reduced growth, or leaf expansion).

Most of these interaction studies have focused on higher plants (especially cultivated
species) that were grown under well-watered conditions and then subsequently exposed to
drought treatments. At the other end of the scale, in regions where water severely limits pri-
mary production, such as in arid lands, any reduction in availability of water could compro-
mise the ability of the organisms to tolerate UV radiation. Cryptogamic communities (com-
prising lower plants such as mosses, lichens and algae) are common in these ecosystems.
Such communities can be highly tolerant of desiccation. However, if precipitation declines
further as a result of region-specific climate change (Fig. 3-6), almost all the fixed carbon
would be allocated to maintenance and repair, potentially reducing the resources available for
uv plgo;[gction. This could critically compromise the ability of many desert organisms to sur-
vive. ”

Studies in Antarctic mosses that related the changes in UV-B-protective pigments and
accumulation of DNA photoproducts (damage) to a range of environmental factors suggest
that water availability strongly influences the effects of UV-B radiation.'* Accumulation of
both UV-B-protective pigments and damage to DNA were negatively correlated with plant
water content in Bryum pseudotriquetrum.”® '** Fully desiccated Antarctic moss species can
exhibit considerable resilience to high UV-B radiation; however, when the mosses are hy-
drated, greater DNA damage occurs at lower relative water content than in fully hydrated
plants, and this is likely due to reduced ability for repair. For organisms already existing at
their physiological extreme, the biological cost of UV-B protection'** or repair’” could com-
promise survival, but this has yet to be shown.

Biological soil crusts, a consortium of cyanobacteria, lichens, and mosses, are an im-
portant component of many dryland ecosystems. Although they produce relatively little bio-
mass, they can be critical in stabilizing arid land soils. Results from a study that augmented
UV-B radiation over two years showed that negative effects occurred during the warmer year,
when increased temperatures reduced moisture and thus the time available for active growth
and carbon gain.'? The longer periods of desiccation are presumed to have reduced the ability
of these organisms to fix carbon and allocate energy to the production of UV-protective pig-
ments and other defenses. While desert organisms can survive naturally high levels of UV
radiation under current moisture conditions in extremely harsh environments, even limited
gglimate change could shift the balance from sufficient productivity to increased morbidity.'>

Interactions between UV radiation, elevated CO, and temperature

Although increased atmospheric CO, and temperature are important variables in climate
change studies, adequately controlling these factors while simulating natural radiation (espe-
cially UV-B), is technically very challenging. As reported previously,’® several studies have
used sunlit controlled environment chambers to manipulate UV-B radiation, temperature and
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CO, simultaneously.”” ”® While such chambers were very useful in controlling these factors,
they frequently fail to reproduce field conditions due to the high UV levels employed and the
omission of solar UV-A radiation from the controls. These studies report that high tempera-
tures combined with increased UV-B radiation had detrimental effects on a range of produc-
tion’” "' and reproductive’® '*® characteristics in soybean and cotton. Higher CO, failed to
ameliorate the negative effects in soybean.”” ’® In two-factor experiments using cotton, ele-
vated CO; similarly failed to ameliorate the negative effects of very high doses of UV-B ra-
diation on photosynthesis and growth.159’ 160

Experiments designed to evaluate simulated global warming and different UV-B lev-
els have shown responses to both of these factors for individual species and plant communi-
ties (see, e.g., Day et al. . 7zaller et al. ' ). However, there is little evidence of significant
interactive effects between UV-B radiation and warming.'> **°* '**> For example, in a 2-year
field experiment in a South American fen ecosystem, which combined warming of 1.2°C (air
temperature) with near ambient- or reduced-solar UV-B treatments,'> plant decomposition
was generally faster under near ambient UV-B than under reduced UV-B, but was unaffected
by temperature. In contrast, the number and biomass of earthworms were negatively affected
by warming but unaffected by UV-B radiation. An interesting feature of that study was that
the effects of both UV and warming treatments were minor compared to the effect of addi-
tional rainfall in one of the years, which doubled plant biomass compared to the drier year.
This highlights both the importance of long-term studies, which can control inter-annual vari-
ation in weather conditions, as well as the difficulties associated with designing experiments
that fully consider multiple and interacting climate factors. Some evidence for significant in-
teractive effects comes from studies with plants from Antarctic Peninsula tundra communi-
ties. Day et al.* used plastic film coverings (to increase air temperatures by 1.2°C) and this
was combined with three UV treatments (near ambient UV-B and two reduced solar UV-B
radiation levels using different filter combinations in this area of naturally elevated UV-B
radiation). After two years, reproduction in the studied species (Deschampsia antarctica and
Colobanthus quitensis) was accelerated by UV-B at ambient temperatures, but in the warm-
ing treatments, UV-B had no effect.

UV radiation and increased nitrogen levels

Deposition of biologically available nitrogen occurs in many locations, especially in temper-
ate latitudes near nitrogen sources from industrial and agricultural activity. Several studies
have investigated the effects of interactions between nitrogen and UV-B radiation on agricul-
tural and forest species (see Caldwell ez al.>®), but there is little evidence of consistent inter-
active effects. The effects tended to be species-specific. The available agricultural studies
investigated the effects of nitrogenous fertilizer rather than the deposition of nitrogen from
anthropogenic sources (the amounts and timing of nitrogen availability in fertilization and
deposition events are usually quite different). In the study of biological soil crusts discussed
above, deposition of nitrogen only alleviated UV-induced inhibition of growth in a limited
number of cases. '

Future approaches to predicting interactive responses

While we have addressed interactions of UV-B radiation with a number of other potential
combinations of environmental factors in this short synopsis, most studies, for logistic rea-
sons, were only able to address one interaction or two, or occasionally three factors at a time.
In addition, because of difficulties in manipulating multiple factors at the field plot level,
many studies are performed in controlled environments. Most interaction studies address the
effects of changes in the mean levels of a certain factor, rather than the interactive effects of
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discrete events of extreme conditions. Thus, the challenges of predicting real-world responses
with several interacting environmental factors are not trivial, especially at the ecosystem
scale. While the need for this type of assessment is clear, the pathway to achieve it is not.

Mechanisms of plant responses to UV-B radiation

Elucidating the mechanisms that mediate plant responses to solar UV-B radiation is important
for understanding the effects of UV-B radiation on ecological interactions (e.g., plant-
herbivore interactions), and for devising strategies for manipulating and possibly exploiting
plant sensitivity to UV radiation in species of economic interest.

One of the major obstacles to our understanding of how UV-B radiation is perceived
by plants is that the identity of the primary UV-B photoreceptor/s is not well defined. Data
derived from a variety of sources, as well as work done on animals, indicate that damage to
DNA and activation of receptors on the surface of the cell may trigger some of the responses
to UV-B radiation in plant cells.”™ ®* '*® However, evidence derived from physiological, mo-
lecular, and genetic studies indicate that other mechanisms of UV-B perception are present in
plant cells.”® ®* 6 There are several lines of evidence suggesting that plants have specific
photoreceptors for UV-B radiation, analogous to the photoreceptors involved in the percep-

tion of visible light and far-red radiation (phytochromes, cryptochromes and phototropins).*:
68, 146

Studies in the reference plant, Arabidopsis thaliana, have demonstrated that the pro-
tein encoded by UV RESISTANT LOCUS 8 (UVRS) controls the expression of numerous
genes involved in acclimation to and protection against UV-B radiation. The genes regulated
by UVRS include genes involved in the biosynthesis of flavonoids (protective phenolic sun-
screens), the gene encoding a cyclobutane pyrimidine dimer (CPD) photolyase (UVR2, which
is essential for repair of UV-B-induced DNA damage), and genes connected with protection
against oxidative stress and photooxidative damage™. Significant advances have been made
in the last few years in the identification of additional components involved in this UV-B-
specific signaling pathway. These components include the E3 ligase CONSTITUTIVE PHO-
TOMORPHOGENESIS 1 (COP1)"” and the bZIP transcription factors ELONGATED HY-
POCOTYL 5 (HY5),” ' and HY5 HOMOLOG (HYH).?’ The UVRS protein accumulates
in the nucleus in response to UV-B radiation where it binds to chromatin in the region of the
HY5 gene promoter, orchestrating the expression of UV-protective genes®® 2. COP1 is re-
quired for UV-B-stimulated HY5 gene activation in light-grown seedlings.'”” Furthermore,
recent work has demonstrated that UV-B radiation promotes the direct interaction between
the UVR8 and COP1 proteins in the nucleus, and that this interaction is a very early step in
UV-B signaling.48 In experiments carried out in solar simulators, mutants defective in UVRS
or COPI show increased sensitivity to UV-B radiation which is consistent with the idea that
the UVR8-COP1 pathway plays a key role in activating protective mechanisms under natural
conditions.*

Whereas the importance of the UV-B-specific UVR8-COP1 pathway in acclimation to
UV-B radiation is now well-recognized, the photobiological mechanisms that lead to its acti-
vation upon UV-B exposure are unclear. Based on kinetic considerations and the results of
genetic screenings (which have failed to find signaling components acting upstream of
UVRS), Brown et al.*® and Favory et al.*® have advanced the intriguing possibility that
UVRS itself could act as a UV-B photoreceptor. This interesting hypothesis warrants further
investigation.
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Neither of the responses that have received quantitative analysis in this assessment
(namely growth and herbivory inhibition by solar UV-B radiation, Figs. 1A and 2), have so
far been linked explicitly with the UVR8-COP1 pathway. Since the UVRE-COP1 pathway
controls the activation of protection and acclimation responses, such as expression of genes
involved in DNA repair, it could be predicted that variation among genotypes in the activa-
tion of this pathway may lead to differences in their sensitivity to changes in UV-B radiation
(slope of Fig. 3-1A), because UV-B-induced inhibition of growth in the field is often corre-
lated with accumulation of DNA damage.’* '** In fact, recent work showed that the inhibito-
ry effects of UV-B radiation on plant growth were more pronounced in mutants that fail to
activate the UVR8-COP1 pathway, and also revealed that this pathway is involved in the con-
trol of several features that are important for leaf development.'”’ The connections between
UVRS8-COP1 activation and the UV-B-induced changes in plant secondary chemistry that
determine differences in herbivory patterns (Fig. 3-2, and see section on canopy arthropods)
remain to be explored.

Improved understanding of the molecular mechanisms of plant responses to UV-B ra-
diation can be useful in facilitating attempts to enhance UV-B tolerance in crops. Ambient
levels of UV-B radiation can diminish crop yield in sensitive varieties;’' even though these
effects are relatively small, they can be economically significant. Recent work on Arabidop-
sis indicates that it is possible to increase the capacity to repair UV-B-induced DNA damage
by manipulating the expression of UVR2 using biotechnology.”' This technology could be
transferred to sensitive plants of economic interest in order to reduce the negative effects of
solar UV-B radiation. In addition, as discussed in this assessment, solar UV-B radiation in-
duces plants to accumulate secondary metabolites that play important roles as anti-herbivore
defenses (see section on Consumers and decomposers) and alters the levels of chemical com-
pounds that are pharmacologically active or nutritionally valuable (as discussed by Jensen et
al.)®®. Therefore, a better understanding of the mechanisms of UV-B perception and signaling
may be useful for the production of crop varieties that are more resistant to insect pests (and
therefore less dependent on the use of synthetic pesticides) or have improved nutritional val-
ue for human consumption.

Technical issues in conducting and evaluating UV-B radiation research

In this section we very briefly address some technical issues in the implementation of biolog-
ical experiments with UV radiation. Obviously, researchers in the field must make compro-
mises, but appreciation of the limitations of such research is important, as illustrated by the
examples presented below.

The analysis of results of multiple experiments shows sizable variation in plant re-
sponses to UV-B-manipulation treatments. This is indicated by the scatter of data points in
Fig. 3-1A and by the graphically displayed variance in the meta-analysis of Searles et al.'”
Similar broad ranges of responses are seen in experiments with exclusion and/or reduction in
UV radiation.'” '*” While it is clear that different species (or even varieties) of plants have
greatly different sensitivities to UV-B radiation, differences in experimental techniques, as
described below, may also have contributed to the variation observed among experiments.

Methodological issues in UV supplementation and exclusion/reduction experiments
require careful attention. Filtered UV-B lamps do not have a spectral output that matches that
of sunlight, with or without ozone depletion.’" ** Biological Spectral Weighting Functions
(BSWF) are therefore used for calculating “biologically effective” UV and relating this to
depletion of stratospheric ozone (see Fig. 1-7 in Chapter 1). These BSWFs are dimensionless
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factors that represent the relative effectiveness of the different wavelengths in influencing a
particular biological response.*” There are many issues involved in choosing the appropriate
BSWF for a particular experiment, and there are many potential sources of error.’' These po-
tential errors are much greater in greenhouse and controlled-environment studies than in ex-
periments conducted outdoors.’" ' There have been only a few attempts to evaluate the ap-
propriateness of different BSWFs in field environments.”” **- 122

Experiments employing the reduction or removal of solar UV with various filter mate-
rials would appear more straightforward than experiments with UV supplements from lamps,
but there are still many complications that need to be addressed, especially to allow compari-
sons among experiments. Ideally, measurements of solar UV radiation should also be made in
association with these experiments.'”’

Subtle effects caused by small differences in shading can also be problematic. To
suspend filters and/or lamps above plants used in experiments, various structures have been
devised which inevitably cast shade on the plants to various degrees. However, the effect of
even small differences in shading among different UV radiation treatments can be apprecia-
ble.’! Other issues can occur in UV exclusion/reduction experiments such as those due to
small differences in visible radiation and alterations of other environmental conditions, such
as precipitation and wind exposure.”

The measurement of UV radiation in field UV lamp supplementation experiments
presents many challenges, and simple UV dosimeter measurements supply very limited in-
formation. Spectral irradiance data are necessary to calculate BSWF-weighted irradiance.
Furthermore, measurements of UV spectral irradiance in experimental settings need to be
well documented.

Our understanding of biological responses to UV radiation has improved greatly in
the past 5 to 10 years. Similar advances in the physical measurements with appropriate in-
strumentation, calibration and measurement protocols are needed.

General conclusions

In the coming decades, terrestrial ecosystems will be exposed to further changes in UV irra-
diance resulting from changes in stratospheric ozone, climate (e.g., altered cloud cover, snow
cover, etc.), and land use and agricultural practices (e.g., deforestation, afforestation, changes
in crop density, etc.). Predicting the effects of these changes is challenging, given the diversi-
ty of ecosystems that are likely to be affected, the paucity of biological response studies, and
the need for models that integrate biological knowledge to estimate changes in ecosystem
functioning. Also, a number of uncertainties remain regarding the basic mechanisms of plant
responses to UV radiation and the experimental approaches that are most suitable to evaluate
plant and ecosystem responses under field conditions. However, based on the evidence dis-
cussed in this assessment, we can make some inferences on the processes that are more likely
to be affected by changes in solar UV radiation.

(7) Current information derived from field studies indicates that the effects of UV-B
radiation on the aboveground biomass of terrestrial plants are relatively small. A synthesis of
results from a host of comparable studies suggests that, because the Montreal Protocol has
been successful in limiting ozone depletion, the reduction in plant growth caused by in-
creased UV-B radiation in areas affected by ozone decline since 1980 is unlikely to have ex-
ceeded 6% (Fig. 3-1).” 1% ' However, caution must be taken with this generalization be-
cause variation in susceptibility to UV-B radiation among plant species has been documented
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in several studies. In addition, while effects on plant growth may be small, long-term effects
of these reductions may be important, particularly for potential carbon sequestration. Below-
ground changes as a result of UV exposure above the soil surface also may result in complex
interactions for plants, the soil microenvironment and soil microorganisms.

(ii) Sizable effects of changes in UV-B radiation on plant consumption by herbivores
and other organisms may have occurred during the last three decades, and are likely to occur
in the future in response to predicted variation in the levels of UV radiation. This may be in-
ferred from short-term studies showing large effects of UV-B manipulations on plant interac-
tions with herbivores and microorganisms (see, e.g., Fig. 3-2). However, the long-term con-
sequences of these effects have not been explicitly investigated. From a practical point of
view, the knowledge gained on the mechanisms that mediate the effects of UV-B radiation on
plant secondary chemistry and plant-herbivore interactions may be used in the design of
cropping systems that take advantage of natural plant defenses against herbivores and deliver
plant products of increased nutritional value.

(iii) Changes in UV radiation resulting from climate change (e.g., reduced cloud cover
and/or vegetative cover in response to increased aridity) or changes in land use patterns may
have more important consequences on terrestrial ecosystems than those that have resulted
from ozone depletion. This is because the variations in solar radiation caused by climate and
land use change: (a) will affect a greater range of ecosystems than those affected by ozone
depletion; and (b) will not be restricted solely to the UV-B component of solar radiation.
There are several biological and physical processes in terrestrial ecosystems that are not par-
ticularly sensitive to UV-B but which are strongly affected by UV-A radiation. Moreover, as
discussed in this assessment, interactions between multiple global change drivers and UV ra-
diation are not well understood.

iv) One example of a process that is effectively driven by solar UV-A radiation is the
physical degradation of plant litter. Increased photodegradation, in response to reduced
cloudiness or reduced canopy cover, will lead to increased carbon release to the atmosphere.
In addition, because photodegradation primarily affects the lignin fraction of plant litter,
which usually limits microbial decomposition, more photodegradation is also predicted to
facilitate biological degradation, thereby increasing carbon release to the atmosphere.
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Chapter 4. Effects of UV radiation on aquatic ecosystems and in-
teractions with climate change
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Summary

The health of freshwater and marine ecosystems is critical to life on Earth. The impact of so-
lar UV-B radiation is one potential stress factor that can have a negative impact on the health
of certain species within these ecosystems. Although there is a paucity of data and infor-
mation regarding the effect of UV-B radiation on total ecosystem structure and function, sev-
eral recent studies have addressed the effects on various species within each trophic level.
Climate change, acid deposition, and changes in other anthropogenic stressors such as pollu-
tants, alter UV exposure levels in inland and coastal marine waters. These factors potentially
have important consequences for a variety of aquatic organisms including waterborne human
pathogens. Recent results have demonstrated the negative impacts of exposure to UV-B radi-
ation on primary producers, including effects on cyanobacteria, phytoplankton, macroalgae
and aquatic plants. UV-B radiation is an environmental stressor for many aquatic consumers,
including zooplankton, crustaceans, amphibians, fish, and corals. Many aquatic producers
and consumers rely on avoidance strategies, repair mechanisms and the synthesis of UV-
absorbing substances for protection. However, there has been relatively little information
generated regarding the impact of solar UV-B radiation on species composition within natural
ecosystems or on the interaction of organisms between trophic levels within those ecosys-
tems. There remains the question as to whether a decrease in population size of the more sen-
sitive primary producers would be compensated for by an increase in the population size of
more tolerant species, and therefore whether there would be a net negative impact on the ab-
sorption of atmospheric carbon dioxide by these ecosystems. Another question is whether
there would be a significant impact on the quantity and quality of nutrients cycling through
the food web, including the generation of food proteins for humans. Interactive effects of UV
radiation with changes in other stressors, including climate change and pollutants, are likely
to be particularly important.

Introduction

The important scientific results on the effects of solar UV radiation published during the past
four years are assessed for aquatic ecosystems. In total, aquatic ecosystems (1) absorb a simi-
lar amount of atmospheric carbon dioxide as terrestrial ecosystems, (2) produce half of the
biomass on our planet,** (3) are a major source for human food supply and drinking water,
and (4) are economically important for pharmaceutical and chemical industries.? > 1% 136
142, 171, 228, 257, 275. 87 golar UV radiation can damage aquatic organisms and decrease the
productivity of aquatic ecosystems. These effects of UV radiation may reduce the photosyn-
thetic uptake of atmospheric carbon dioxide and affect species diversity, ecosystem stability,
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trophic interactions, and global biogeochemical cycles. The negative effects of UV radiation
may be augmented by other environmental changes,”® '** including global climate change’
and pollution that result in vast “dead zones”,'® which collectively turn “estuaries and even
parts of the oceans into barren wastelands”. % Many bacteria, plants and animals cope with
UV stress with adaptive responses.5 392, 139, 245

We briefly assess current knowledge on factors controlling the penetration of solar
UV radiation into the water column, as well as protective mechanisms of aquatic organisms
against solar UV radiation (Fig. 4-1). This is followed by a more in-depth assessment of the
impacts of UV
radiation on dif- \
ferent compo-
nents of aquatic
ecosystems, in-
cluding bacteria,
cyanobacteria,
phytoplankton,
seaweeds
(macroalgae),
and  consumers e
(zooplankton, o BT N
amphibians, fish, . R v
corals and other

animals). The E . Kinetics of
interactive effects e . exposure

O layper

AT el DO

of UV radiation

m
with  pollutants
and changing
oceanic pH are ""‘
also discussed. Fig. 4-1. Main factors affecting the quantity and quality of UV radiation received by

aquatic organisms. Modified from Gongalves et al.”

UV radiation in the water column and climate-change effects

Transmission into natural waters

The transmission of solar UV radiation into the water column depends on variables in the
atmosphere and in the water that affect the amount of UV radiation and wavelength distribu-
tion.® #*” Water transparency to UV depends on the optical properties of the water itself,”®
dissolved material, phytoplankton concentration, and the density of suspended particles.®" %!
Coloured dissolved organic matter (CDOM) is a major factor controlling optical character-
istics of freshwater and coastal habitats, thus reducing UV exposures of organisms in the
water. It is generated through microbial degradation of organic material from macroalgae and
plankton as well as terrestrial plants.'”” "' Quality and quantity of CDOM thus vary season-
ally due to variations in these aquatic processes and rainfall events.””” *** CDOM plays direct
and indirect roles in biogeochemical cycles (Chapter 5).

Some of the most UV-transparent waters are systems with extremely low CDOM
concentrations such as the hyper-oligotrophic waters of the South Pacific Gyre where diffuse
attenuation coefficients indicate that 1% of incident surface UV radiation (at 325 nm) reaches
as deep as 84 m.>* In some of the clearest lakes 1% of UV (at 320 nm) penetrates as deep as
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27 m (Lake Tahoe, California-Nevada, USA),*”” or 62 m (Crater Lake, Oregon, USA).”” Due
to their high elevation and location above the treeline, alpine lakes have very little CDOM
and also higher levels of incident UV, giving them some of the highest overall UV exposure
levels in the world, with important implications for species composition (Fig. 4-2).2%

Solar UV radiation causes photo-
degradation of CDOM,’® % 2% this be-
ing a key process in the carbon cycle.* ***
The breakdown of larger molecules into
smaller fragments stimulates bacterial
activity and can alter the species compo-
sition of bacterioplankton,'” while deg-
radation of organic matter from several
aquatic plants releases nutrients such as
phosphorus and iron.'” " *'® The photo-
degradation of CDOM increases trans-
mission of solar UV radiation in the wa-
ter column, potentially enhancing delete-
rious effects on aquatic organisms.’® In
freshwater lakes, measurements of
CDOM absorption can be used as a proxy
for UV transmission and prediction of
water quality, as was done in the shallow

Irradiance as % of Surface
1 10 100

.

Lake Taihu, China, an important drinking _ 9

water resource.”*® In Lake Tahoe in Cali- -E-

fornia-Nevada, strong inshore-offshore "‘E_ 10

gradients and seasonal changes in trans- g #

parency to UV-A (380 nm) radiation 15
provide a more sensitive indicator of
environmental change than variations in 20
visible light transparency.””’ Water sam-
ples taken at different locations in the

Bering Sea and exposed to solar UV ra- Fig. 4-2. Profiles of UV-B, UV-A radiation, and visible
diation at controlled temperatures light penetration in Sunlite Lake, an alpine lake in the

. Canadian Rocky Mountains. The high elevation of alpine
0
showed an 18-55% decrease in CDOM at lakes leads to high incident UV radiation, while the low

. 32 .
some stations.” At other stations, up to @ levels of DOM in alpine lakes lead to high UV transpar-
16-fold increase in CDOM absorption  ency of the waters. The result is that aquatic organisms

was observed and attributed to decreases  are exposed to higher levels of damaging UV radiation in
in the ability of microbes to degrade alpine lakes than in any other aquatic ecosystem.
CDOM derived from algal blooms. Ex-

periments with freshwater samples from Antarctica and North America have shown that UV-
induced production of singlet oxygen by CDOM contributes to degradation of dissolved free
amino acids.”’

O Uv-B (305 nm)
A UV-A (380 nm)
O visible (400-800 nm)

Climate change and UV radiation in the water column

Climate change and other stressors have important effects on the underwater UV radiation
through a variety of mechanisms including changes in UV transparency and mixing depth of
the surface waters. The consequent changes in UV exposure have important implications for
processes ranging from UV inactivation of water-borne human pathogens to carbon cycling.
Some of the major consequences of climate change effects on aquatic ecosystems are chang-
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ing temperature, precipitation and ice melting. In some regions warmer air temperatures and
reduced precipitation are predicted by climate models, while in other regions the opposite is
expected.''* Both of these will affect the depth of the surface mixed layer.''® Shallower sur-
face mixing depths have the potential to increase UV exposure of aquatic organisms that live
in the upper layers.

Over the past two decades, concentrations of DOM have doubled in inland waters
across major portions of north-eastern North America and Europe.”* > '® The reasons for
this appear to be related largely to reductions in acid deposition, ** ' but climate may also
play an important role.**" **” One major concern is that increased DOM concentrations will
reduce the natural levels of solar UV that are important for inactivating human pathogens
such as Cryptosporidium™ '*"*"* and Chapter 2.

Optical properties in polar freshwater and marine systems are further modulated by
snow and ice cover as well as by dissolved and particulate material from runoff during melt-
ing.*'® Climate-driven decreases in the duration of ice cover have been observed in polar ma-
rine waters.”® 2** 2% These conditions are predicted to undergo large changes due to climate
change in the future. A model based on several environmental factors, such as concentrations
of DOM, weather conditions, and water acidification, indicated that the dominant effects of
climate change on the organisms of the upper water layers of small lakes operate through
processes that affect water transparency.'*® '** The number of days above freezing is also an
important predictor of concentration of DOM.?*” Very limited information is available on the
balance between the interactive effects of climate-driven changes in temperature, precipita-
tion, and quality and quantity of DOM, information that is necessary to decipher the net ef-
fects of climate change on UV exposure in aquatic ecosystems.

Protective mechanisms of aquatic organisms against UV radiation

All photosynthetic aquatic organisms are restricted to the sunlit upper layers of the water
column where they are simultaneously exposed to solar visible and ultraviolet radiation. But
many of the consumers in aquatic habitats are also found in this zone and will face the same
environmental stresses. In addition to the current elevated levels of solar UV-B radiation in
some regions, several aspects of global climate change may increase the exposure and impose
additional stresses on these organisms.

During evolution, aquatic organisms have developed a variety of protective strategies
against solar UV stress. Motile biomass producers and consumers avoid excessive radiation
by vertical migration. Sessile (attached) organisms rely on selection of habitat to limit solar
exposure. Effective DNA repair systems eliminate DNA lesions encountered during high
solar UV irradiation. Different taxonomic groups have developed a number of photoprotec-
tive substances such as melanins, mycosporines, mycosporine-like amino acids (MAAs),
scytonemin, carotenoids, phycobiliproteins and several other UV-absorbing compounds of
yet unknown chemical structure.'*

Protection by UV-absorbing mycosporine-like amino acids (MAAs)

: : - 223-22
MAAs are the most common UV-sunscreens in many marine and freshwater organisms.*** %

They are small (<400 Dalton), intracellular, water-soluble compounds.® They absorb in the
UV-A and UV-B range (between 309 and 362 nm) and are characterized by high molar ex-
tinction coefficients, photostability and resistance to many abiotic environmental factors.
These substances seem to have evolved in cyanobacteria and are also synthesized by many
phytoplankton groups and seaweeds (macroalgae). They are also found in animals as a result
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of being taken up through their diets. Nonetheless, a recent study identified the genes encod-
ing enzymes for MAA biosynthesis in the starlet sea anemone Nematostella vectensis, indi-
cating that some animals may be capable of MAA synthesis or modification.”® Another op-
tion to obtain UV protection is to host MAA-producing symbionts as found in the marine
algal-bearing ciliate (Maristentor dinoferus) isolated from coral reefs.”* Corals are other
examples which obtain MAAs from their photosynthetic symbionts.’ In most corals, concen-
trations of MAAs vary seasonally and there is a negative correlation between MAA concen-
tration and depth.*" >

While the precise mechanisms of MAA biosynthesis are still not completely under-
stood, recently several groups clarified the early stages of biosynthesis and identified the
genes involved in the pathway in cyanobacteria and green and red algae.'”> > MAA synthe-
sis requires the availability of sufficient nitrogen in the environment.®> Therefore, environ-
mental factors reducing the concentration of nitrogen in water will compromise the capability
of the organisms to protect themselves against solar UV radiation. Recent research has con-
tinued to clarify the biochemical pathway and molecular structure of the important UV-
absorbing pigments.*” ** In addition to their role as UV-absorbing pigments, MAAs have
other physiological functions such as osmotic regulation and scavenging of reactive oxygen
species (ROS), which can contribute to adaptation strategies.** '

Changing environmental conditions due to global climate change (such as osmotic
stress, salt stress, temperature) affect the biosynthesis of MAAs in several groups of aquatic
organisms.”>' Desiccation plays a key role in the economically important Porphyra (nori) in
maintaining high concentrations of MAAs,'"” thus allowing this seaweed to compete in the
intertidal zone exposed to high levels of UV radiation. In diatoms, in contrast to many other
aquatic organisms, MAAs are largely bound to the silica cell wall.'"> Therefore MAAs are
found in sediments and can be used as markers for previous MAA concentrations in marine
organisms.

Protection by other UV-absorbing pigments

The UV-absorbing scytonemin is exclusively synthesized by cyanobacteria.'”® It is a dimeric,
lipid-soluble pigment deposited in the extracellular sheaths of the cells. **°. Like MAAs, syn-
thesis of scytonemin requires the availability of nitrogen.® Periodic desiccation augments its
productivity.®* In Nostoc punctiforme the response of a specific region in the genome associ-
ated with scytonemin synthesis was found to be activated (up-regulated) by exposure to UV
radiation.”* *° Other UV-absorbing/screening compounds in marine organisms include 3-
hydroxykynurenine, sporopollenin, melanin and fluorescent pigments.®

Effects of UV-B radiation on aquatic bacteria

Bacteria, being decomposers, occupy a key position in the microbial loop of aquatic ecosys-
tems, breaking down and mineralizing organic matter of decaying plants and animals. They
form a link to higher trophic levels and are the main users of DOM. Water transparency
strongly depends on the density of bacterial populations, and simultaneously phototransfor-
mation of DOM influences species distribution and bacteria concentrations in both freshwater
and marine waters.” '® Passive screening pigments are not effective in bacteria, because of
their small size, which would require the concentration of these screening compounds to be
excessively high to provide sufficient absorption. Therefore many aquatic bacteria are severe-
ly damaged by solar UV-B radiation at the molecular, cellular and population levels. Surface
samples of heterotrophic bacteria collected during the BIOSCOPE cruise in the South East
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Pacific documented highest inhibition rates in bacterial productivity at noon time correspond-
ing to the highest levels of solar UV-B radiation.”’

Possible strategies to mitigate UV-B radiation damage include high rates of reproduc-
tion and effective repair mechanisms.'”” **° Immunoassay techniques applied to bacterio-
plankton samples collected off the coast of Chile (36° S) during the austral spring showed
damaged DNA evidenced by a high induction of cyclobutane pyrimidine dimers (CPD) after
exposure to surface solar radiation.'’"” '%* Bacteria in surface water samples showed a more
effective photorepair mechanism than subsurface assemblages. Residual, chronic DNA dam-
age was detected at the end of the experiment, and thus CPDs accumulated with time.

Bacteria with the highest UV-B tolerances found to date are from remote, high-
altitude Andean lakes between 4200 and 4600 m above sea level.”" ** Different species have
different sensitivities with respect to UV radiation.* '* For solar (UV-A and UV-B) radiation
and actively growing cells, the Gram-positive Microbacterium maritypicum was three times
more resistant than the Gram-negative Vibrio natriegens.””" These results indicate that in-
creased exposure to solar UV-B radiation may affect bacterial assemblages, which may have
consequences for higher trophic levels in aquatic ecosystems. It may also affect population
densities of human pathogenic bacteria (see Chapter 2).

Consequences for cyanobacteria of elevated solar UV radiation and global climate
change

Photosynthetic cyanobacteria are ubiquitous in freshwater and marine habitats from polar
regions to the equator (Fig. 4-3). They are major biomass producers in the oceans and wet-
lands and responsible for the conversion of atmospheric nitrogen into nitrate and other com-
pounds used by phyto-
plankton. Cyanobacteria
are believed to have been
the first photosynthetic
organisms to produce ox-
ygen 2.5-2.7 billion years
ago. The enrichment of
photosynthetically  pro-
duced oxygen in the at-
mosphere over millions of
years ultimately led to the
development of the ozone
(O3) layer in the strato-
sphere.'” Obviously, ear-
ly ancestors of modern
cyanobacteria were well
adapted to high levels of
solar UV-B and even UV-
C radiation (below 280
nm) before the develop-
ment of the ozone layer"
and this could explain Fig. 4-3. Typical assemblages of cyanobacteria with other algae in aquatic
why some specialized habitats. Cyanobacteria are major biomass producers in freshwater and
cyanobacteria are capable marine habitats. They are also important nitrogen fixers for aquatic habitats.

Even though they synthesize protective pigments and use other mitigating
strategies they are affected by solar UV-B radiation. Courtesy R. P. Sinha.

of surviving in extreme
habitats characterized by
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very high levels of UV-B radiation today.lgg’ 189

In contrast, current solar UV-B radiation inhibits photosynthetic activity in most cya-
nobacteria.”** One main target in photosynthesis is the D1 protein in the photosynthetic elec-
tron transport chain within the reaction center of photosystem IL.>"* The damaged D1 proteins
are replaced by newly synthesized molecules.”® Furthermore, the phycobilin antenna pig-
ments, responsible for collecting solar energy, are dismantled.**®

Solar UV radiation also modifies the morphological structure of filamentous cyano-
bacteria (Arthrospira) which is interpreted as a protection against solar radiation.”> '’ This
morphological alteration is prevented at elevated temperatures.”’ '** In Anabaena, solar UV
radiation also inhibited the development of heterocysts, which are responsible for fixation of
atmospheric nitrogen.’* '*°

Cyanobacteria are protected from solar UV-B radiation by production of a number of
UV-absorbing substances (see section on protective mechanisms above).”® Other mitigating
strategies include avoidance, colony and mat formation, scavenging of reactive oxygen spe-
cies (ROS), and repair of UV-induced damage.”*’ In addition, cyanobacteria regulate their
position in the water column through buoyancy, by producing gas vesicles.””> When grown
only under visible radiation, the filaments of Arthrospira maintained their buoyancy, whereas
they migrated downwards when UV radiation (280 — 400 nm) was added. Higher tempera-
tures caused by global climate change may compromise this avoidance strategy under exces-
sive solar UV-B radiation, e.g. by decreasing the depth of the upper mixed layer.

In addition to direct cellular damage, solar UV-B radiation can impair cyanobacteria
by producing ROS,* against which the organisms protect themselves by the synthesis of an-
tioxidants.” Nodularia are dominant cyanobacteria in massive blooms in the Baltic Sea dur-
ing high levels of solar radiation and stable stratification. The ability to fix nitrogen, tolerance
to phosphorus starvation and increased MAA production, demonstrated in an outdoor exper-
iment, rlr61i1y contribute to the competitive advantage over other phytoplankton during
blooms.

Effects of UV radiation on phytoplankton communities

Phytoplankton are one of the main producers in marine systems, synthesizing organic matter
via photosynthesis and accounting for about half of the production of organic matter on
Earth. They absorb large amounts of atmospheric carbon dioxide, some of which sinks to the
deep sea floor (see discussion of the “biological pump” in Chapter 5). Specific effects of UV
radiation (particularly UV-B) on DNA," carbonic anhydrase,”’® fatty acid composition*”*
and metabolic processes, e.g., photosynthesis,”** and calcification®* of phytoplankton organ-
isms have been reported.

Specificity of UV radiation effects

The responses of phytoplankton to solar UV radiation exposure have an important component
of species-specificity,'* *’* thus having an impact not only on biodiversity but also on the
food web. However, part of the responses and the acclimation potential to light stress, for
both PAR (photosynthetically active radiation, 400-700 nm) and UV radiation, are dependent
on the previous light history regime imposed on the cells. On the one hand, the light history
depends on various climate change factors, such as the changing depth of the upper mixed
layer, the water transparency, etc., while acclimation would also depend on temperature. For
example, some species are photoinhibited under high UV radiation when previously accli-
mated to low light, but are then capable of reaching high photoprotection levels when accli-
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mated to moderate-high light. The acclimation mechanisms include interspecific changes in

the xanthophyll cycle activity,”"” *** in MAAs concentration'®* or in superoxide dismutase
. 115

activity.

When exposed to UV radiation, some diatoms (i.e., Skeletonema costatum) were very
sensitive and did not survive for more than three days, whereas others (e.g., Amphora coffe-
aeformis and Odontella aurita) were able to acclimate to UV stress, although through differ-
ent processes.’* Differential acclimation of species in relation to their habitat can occur dur-
ing the spring bloom in some coastal areas.’’ The acclimation mechanisms, however, are also
affected by UV radiation (e.g. affecting the xanthophyll cycle), thus reducing the photopro-
tective capacity.*® In addition, different species use different mechanisms. For example, while
one species acclimated relatively fast (3—5 days) to solar UV radiation by synthesizing UV-
absorbing compounds,®® another species accelerated or upgraded repair processes for UV-
induced damage.gl The concentration of CO, seems to have a role in conditioning the sensi-
tivity of a diatom (7Thalassiosira pseudonana) as this species was more sensitive to UV radia-
tion when acclimated to high CO, than under atmospheric CO; levels. Previous acclimation
to UV radiation, however, partially counteracted the increased sensitivity observed under
elevated CO, conditions.??% #*°

Comparative studies on the swimming behaviour (avoidance strategy) of some phyto-
plankton species also demonstrated a high variability among species. While some species
were insensitive to UV radiation and accumulated near the surface, others were very sensitive
to UV-B radiation, decreasing the swimming speed and percentage of motile cells after 2—3 h
of exposure to solar radiation. In addition, cells migrate deep in the water column when irra-
diances are high (local noon)."”® " Climate change issues, such as the decreasing depth of
the upper mixed layer may change the swimming behaviour as cells may not be able to mi-
grate deep in the water column thus favouring UV-resistant species.

Effects on natural phytoplankton communities

Working with specific cultures, as mentioned above, is important to understand the differen-
tial sensitivity and underlying mechanisms for the impacts of UV-B radiation. However, the
extrapolation from laboratory results to natural conditions is not direct or simple, and thus
working in situ and with natural assemblages is preferable. Latitudinal studies have high-
lighted the variability of phytoplankton responses to solar UV radiation. Studies conducted in
the Antarctic showed that open-ocean phytoplankton were more sensitive to UV radiation
than coastal assemblages, the latter having higher rates of repair.® The effects of UV radia-
tion were transient and growth of Antarctic benthic diatoms was generally unaffected, sug-
gesting little or no UV radiation impact.’”® One contrasting study, however, suggested that
the effects of ozone depletion on primary production of Antarctic phytoplankton, in ice-
covered and open waters, might not be negative but instead could enhance primary produc-
tion.*” UV radiation induced photoinhibition of natural post-bloom phytoplankton diatom-
dominated assemblages from temperate latitudes of Patagonia. The inhibition, however, de-
creased when samples were dominated by chlorophytes that are potentially a better quality
food for grazers.”** Tropical phytoplankton assemblages from a coastal site of the South Chi-
na Sea were significantly inhibited by UV radiation (mostly by UV-B) during sunny days.
However, during cloudy days, while small cells (pico- and nanoplankton <20 um) were still
inhibited by UV radiation, larger cells (microplankton >20 pm) used UV-A radiation as a
source of energy for photosynthesis.®” Since climate change would affect cloud cover, this
would have a different impact on phytoplankton depending on their size with potential nega-
tive implications for the food web.
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The importance of small-size cell structure was highlighted in studies carried out in
deep ultraoligotrophic lakes in the Andean-Patagonian region where UV-B radiation had a
low contribution to photosynthetic inhibition.’® In temperate and tropical environments, arti-
ficially added UV-B radiation had a greater inhibitory effect on the synthesis of D1 protein
than on the D1 degradation process itself, thus affecting the synthesis/degradation balance. In
addition, the net damage rate of D1 was faster in tropical communities, most likely due to the
effects of high light and water temperature.*’

Estuarine diatoms had a higher and more flexible capacity for photoprotection than
oceanic and coastal species, and when exposed to excess light they had less photoinhibition,
and thus an adaptive advantage.'*' Tidal dynamics and physical forcing had important effects
on the distribution and photosynthesis dynamics of estuarine phytoplankton. Mixing condi-
tions during low tide, together with relatively high concentrations of DOM and particulate
material, result in partial protection for phytoplankton against solar radiation stress.'® Since
both stratification and DOM are affected by climate change (see above), it is not yet clear
how the circulation and thus the response of phytoplankton will be affected in estuaries.

Solar radiation affects stoichiometry causing deviations from the car-
bon:nitrogen:phosphorus (C:N:P) ratio (the Redfield ratio) in phytoplankton, thus changing
food quality in aquatic food-webs, as well as affecting biogeochemical cycling.'™ High levels
of PAR increase C:P ratios in Arctic marine and freshwater phytoplankton species which
would likely lower food quality for herbivores. In contrast, exposure to UV radiation reduced
cellular C:P (and N:P) ratios in phytoplankton.'™ It was suggested that the low C:P ratios in
living and dead particles (seston) in the water column are the outcome of an adaptive strategy
of algae in environments with high UV radiation exposure and extreme nutrient limitation.>’
Natural plankton communities maintained in mesocosm enclosure experiments (initial CO,
concentrations of 350, 700 and 1,050 ppm) consumed up to 39% more dissolved inorganic
carbon at increased CO; levels, whereas nutrient uptake remained the same. The stoichiome-
try of carbon to nitrogen uptake increased from low CO; to high CO,, and this excess carbon
consumption was associated with higher loss of organic carbon from the upper layer of the
stratified mesocosms.'”® While the increase in CO;, concentration would decrease the food
quality available for grazers, exposure to UV radiation would tend to counteract this by re-
ducing carbon fixation. Different regions would be affected differently and the balance be-
tween these two contrasting effects is still unknown.

Effects of vertical mixing

Studies of the combined effects of vertical mixing and UV radiation have gained increased
interest, as mixing affects the radiation field (i.e., it produces a fluctuating radiation regime)
under which cells are exposed. In addition, increased temperature, as a result of climate
change, will affect the stratification of the water column thereby decreasing the upper mixed
layer depth, thus affecting mixing and increasing exposure of cells to solar radiation. Fast
changing exposure experiments showed significant inter-specific differences in photosynthe-
sis when phytoplankton cells circulated within a simulated upper mixed layer. While one
species (Dunaliella salina) was affected by both high and low solar irradiances, another
(Thalassiosira weissflogii) was inhibited only by high solar irradiances. Heterocapsa triquet-
ra showed the least variability and benefited from fluctuating radiation regimes.'® No DNA
damage (as measured by accumulation of cyclobutane pyrimidine dimers) was detected in a
comparison of three dinoflagellate species (Heterocapsa triquetra, Gymnodinium chloropho-
rum and Prorocentrum micans) exposed to solar radiation under static and mixing conditions
during the austral spring.” However, a significant inhibition of photosynthesis was observed
in static samples of the three species. Increasing mixing speed increased UV-induced inhibi-
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tion of carbon fixation in G. chlorophorum and H. triquetra, but not in P. micans. Most of the
loss in carbon fixation in G. chlorophorum was due to UV-B radiation, while in H. triquetra
it was due to UV-A radiation. Simulated vertical mixing resulted in more inhibition of photo-
synthesis by UV radiation as compared to static samples of coastal phytoplankton from the
English Channel.'"” Studies carried out with phytoplankton from a tropical, shallow lake in
southern China, showed that cells had lower photosynthetic quantum yields under static con-
ditions than under in situ conditions in the lake at the same time of the day. During stratified
conditions, no impact of UV radiation could be detected in situ as compared with the static
samples. Increasing vertical mixing not only counteracted the impact of UV radiation but also
stimulated photosynthesis.”®' Growth of subpolar phytoplankton under static and mixed con-
ditions was inhibited by UV-B radiation at the beginning of the experiment (flagellate domi-
nated assemblages) but not after several days of exposure (diatom dominated assemblages).
While synthesis of MAAs was the strategy of cells to cope with UV radiation in the fixed-
depth experiments, changes in species composition towards more tolerant ones was observed
under mixing conditions.'” Variable mixing conditions together with grazing greatly influ-
enced the algal losses in a freshwater lake.>’

Long-term effects - mesocosm studies

As opposed to short-term experiments (<1 day), long-term experiments using large volumes
of samples (mesocosms) provide insight into processes (e.g., acclimation, changes in species
composition, etc.) that need several days to take effect and are often not observed in short-
term experiments. Overall, long-term studies point to differential selection of species and
food quality, towards UV-tolerant cells. These changes play a critical role that might affect
the food chain, although the impact depends on the particular environment considered, thus
varying geographically.

Mesocosm studies with phytoplankton from the Gulf of St. Lawrence (Canada), using
solar and enhanced UV-B radiation, did not find any effect on phytoplankton biomass or cell
concentrations. Bacterial abundances, on the other hand, increased in the enhanced UV-B
radiation treatment, due to a reduction of grazing ciliates (Strombidinium sp., Prorodon ovum
and Tintinnopsis sp.).”’ Similarly, Antarctic phytoplankton biomass was not reduced by UV
radiation, but the species composition was modulated by grazers in the absence of UV radia-
tion.”** At two markedly different sites, a temperate (Canada) and a tropical (Brazil) site,
there was no effect of increases in UV-B radiation on phytoplankton. Attenuation of solar
radiation, vertical mixing, and nutrient concentration were the main factors that determined
the photoprotection strategies used by the phytoplankton assemblages in these coastal envi-
ronments.'®® Experiments carried out with phytoplankton from temperate, tropical, and sub-
antarctic sites showed minor changes in phytoplankton biomass due to the UV-B radiation;
however, changes were significant in UV-B enhanced treatments corresponding to 30%
ozone depletion.?'" With high nutrient concentration, phytoplankton photosynthesis was not
inhibited by enhanced UV-B radiation, but when nutrients became limiting the sensitivity
increased (i.e., resulting in net photodamage of photosynthesis reaction centres). Supple-
mental UV-B radiation also resulted in low abundance of 1,5-bisphosphate carbox-
ylase/oxygenase (RUBISCO, an enzyme involved in carbon fixation during photosynthesis),
and increased photoinhibition as compared to the phytoplankton exposed to surface ambient
irradiance.” In temperate regions of the South Atlantic the observed changes in species com-
position were mainly due to nutrient availability, and to a lesser extent to solar UV
radiation.'” Studies conducted in a high-mountain lake in the Sierra Nevada (Spain) suggest-
ed that the UV radiation and total phosphorus interactive effect would favour a few UV-
tolerant rapidly-growing species.*® Significant interactive effects of UV radiation and nutri-
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ents and UV radiation and DOM were found on phytoplankton when working with natural
assemblages from Lake Giles (USA). The differential sensitivity to UV radiation of some
species (Synura sp. and Chroomonas sp.) suggests that changing environmental factors be-
tween spring and summer promoted differences in the relative importance of UV radiation in
changing phytoplankton community structure.”’’” Arctic fjord mesocosm studies suggested
that UV-B radiation had the effect of changing the relative biomass proportions of flagellates
(i.e., nanoflagellates and choanoflagellates).**°

Productivity of seaweeds under elevated UV radiation levels and global climate change

Seaweeds (macroalgae) are major biomass producers in all oceans from the tropics to polar
marine habitats. They provide shelter and food for fish, crustaceans and many other animals,
and perform other vital ecosystem functions.** In addition, they are exploited for a wide range
of products for industry, such as gelling agents, as human foods and a source for vitamins,
minerals and phytopharmaca, e.g. as antioxidants.*” ' *”° Sargassum is a potent source of
CDOM since it floats on the ocean surface which maximizes its exposure to solar UV.

Even though not immediately endangered by current levels of solar UV-B radiation,
the combination with other stress factors such as global warming, increased storm frequen-
cies and pollution, may impact macroalgal canopies, with far-reaching consequences for
aquatic grazers and other members of these habitats.

In contrast to phytoplankton, macroalgae are attached to the substratum and therefore
cannot escape excessive UV radiation by vertical migration. PAR, and especially UV-B radi-
ation, is major factors in determining the depth of growth, thus controlling the vertical zona-
tion. In the intertidal zone UV-tolerant macroalgae are exposed to extreme variations in tem-
perature, salinity and exposure to solar radiation.” Sensitive species are generally limited to
greater depths or shaded habitats. Transplantation experiments showed that deep-water, UV-
sensitive species do not tolerate being exposed at or close to the water surface.”’ In intertidal
species, DNA damage by UV radiation is lower and repair of DNA damage more efficient
than in deep water species.”” 2°* 2’ Field experiments on macroalgal communities on King
George Island, Antarctica, demonstrated that increased solar UV-B radiation due to strato-
spheric ozone depletion may affect the zonation, composition and diversity of Antarctic inter-
tidal seaweeds.”™ Vertical zonation is also determined by species-specific sensitivity of early
life stages to solar UV-B radiation.

Most macroalgae undergo life cycles with delicate juvenile developmental stages,
which are specifically prone to damage by solar UV-B radiation.”’" Spore germination and
attachment of young plants of Laminaria japonica were found to be impaired by even low
UV-B radiation doses.'** Also, the early developmental stages of commercially important red
and green algae were found to be affected by high levels of solar UV-B radiation.''” '
Higher temperatures, such as those expected to result from global climate change, augment
UV-B-related damage of early developmental stages.®

One of the major targets of solar UV radiation is the photosynthetic apparatus. Oxy-
gen production, electron transport and quantum yield are affected in red, green and brown
algae.*” "% 2% In seaweeds, the photosynthetic complexes are reorganized for adaptation to
the diurnally changing UV stress.” ™*

DNA is another target of solar UV-B radiation.*”” DNA damage is a function of geo-

graphical position, depth of growth, water transparency, UV-absorbing pigments and thallus
thickness.”**
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Macroalgae have developed a number of protective strategies against solar UV-B ra-
diation. In addition to habitat selection, they produce a range of UV-absorbing pigments.
While many red algae synthesize MAAs,'* ™ in brown algae, alginates and phenolic com-
pounds such as phlorotannins provide protection from solar UV radiation.”*> *'* The brown
alga, Sargassum, uses the carotenoid fucoxanthin for protection from UV-B radiation. **' In
addition, these organisms use repair mechanisms to mitigate DNA damage.>”’

Responses of aquatic plants and mosses in freshwater ecosystems to enhanced solar UV -
B radiation

Aquatic higher plants and mosses are major biomass producers in freshwater ecosystems and
are exposed to UV-B radiation stress. Solar UV radiation impairs photosynthesis as well as
respiration in some aquatic plants (e.g., Ceratophyllum).”” Experiments with simulated solar
UV radiation on aquatic plants, collected in New Zealand from different South Island lakes
with different transparencies, indicated that photosynthetic yield was decreased by UV-B
radiation stress.”” However, surprisingly, in some species the photosynthetic yield was de-
creased more when UV-B radiation was filtered out of the spectrum. This observation was
confirmed by field studies. One possible explanation is that short wavelength radiation may
induce recovery processes.

UV-absorption spectra of extracts from a number of mosses and liverworts were ana-
lysed from Tierra del Fuego (Argentina).'”® The detected substances were identified as phe-
nolic derivatives, which may be either screening pigments or antioxidants. Those in liver-
worts were more pronounced that those in mosses.

Physiological responses to solar UV-B radiation have been studied over three years in
the aquatic liverwort, Jungermannia, growing in mountain streams in Northern Spain.
Among the variables measured, the photosynthetic quantum yield (decreased) and the level of
UV-absorbing compounds (increased) seemed to be the most responsive to enhanced UV-B
radiation.””® In autumn, newly developed shoots produce significantly higher concentrations
of the UV-absorbing pigments than in winter or spring. The best correlation was found be-
tween the main UV-absorbing substance (p-coumaroylmalic acid) and UV-B radiation stress,
reflecting seasonal changes. Because of the high concentrations of the UV-absorbing pig-
ments, hardly any UV damage was detected on vitality, photosynthetic quantum efficiency or
chlorophyll concentration, indicating that this liverwort is tolerant to UV radiation.” Re-
searchers also tried to correlate the concentration of the UV-absorbing hydroxycinnamic acid
derivatives with historic UV radiation levels from 1850 to 2006 using 135 herbarium samples
of Jungermannia from Northern Europe.'”® Both UV absorbance and UV irradiance were
positively correlated with the collection year. Because of this high correlation, hy-
droxycinnamic acid derivatives in this aquatic liverwort have been suggested as potential
bioindicators of enhanced solar UV radiation.’

Effects on aquatic consumers of UV radiation and interactions with climate
change

The important role of UV radiation as an environmental stressor has been demonstrated in
many aquatic animals with a particular focus on zooplankton, amphibians, fish, and corals. A
recent meta-analysis revealed negative effects of ambient UV-B radiation on growth and sur-
vival of a wide range of aquatic organisms (not just animals) and concluded that synergisms
among multiple stressors are particularly important in the face of global environmental
change."® There is also some evidence that although UV radiation is generally perceived as
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damaging, certain levels of solar UV radiation exposure may be beneficial to some consum-
ers.”’”* Here we assess results from recent work on UV radiation effects on animals with a
particular emphasis on the sublethal and interactive effects of UV with other environmental

variables.

Zooplankton

Zooplankton provide a key link in aquatic food webs in lakes and oceans. Their feeding on
phytoplankton can alter the transparency of water and simultaneously acts as a conduit of
primary productivity to higher levels in the food web including most fish. Some zooplankton
such as copepods are also important vectors of human parasites and pathogens.'”* With ozone
depletion still a persistent problem at higher latitudes for the coming decades, (see Chapter 1)
the potentially damaging effects of UV radiation on zooplankton remain a central concern. A
recent paper reviews the different strategies that zooplankton use to cope with UV radiation
including photoprotection, photorepair, and behavioural avoidance, and suggests that in gen-
eral zooplankton are well adapted to existing UV radiation levels.”> '>* Most of the recent UV
work with zooplankton has been on freshwater species, but there have been several studies on
marine species as well. The primary findings suggest that UV radiation has the potential to
cause damage to some zooplankton through both direct and indirect effects, but many species
have effective defences, and a few UV- tolerant copepods may even benefit from moderate
UV radiation exposure. This makes it unlikely that the levels of UV radiation predicted for
the coming decades will have direct, large-scale negative impacts on zooplankton in natural
waters. The interactive effects of UV radiation with other stressors, including climate change,
leave greater cause for concern as they are poorly understood and may have important effects
on the role of zooplankton in aquatic ecosystems.

Direct effects of UV on marine zooplankton include reduced survival of UV-exposed
larval krill and copepods from Antarctic waters.'? Indirect effects of UV include production
of fewer eggs and more deformed larvae in marine copepods when they are fed UV-exposed
versus unexposed diatoms."** Freshwater zooplankton are similarly susceptible to UV radia-
tion damage, and sensitivity varies with species, life history stage, and temperature. Field
experiments in alpine lakes at 8° and 12°C found a significant negative effect of ambient UV
radiation on juvenile survival and the reproductive state of female copepods at the colder
temperature only.*> Adult survival was not influenced by UV at either temperature. Laborato-
ry experiments with the widespread and abundant freshwater (cladoceran) Daphnia also
demonstrated a greater sensitivity of juveniles as well as lower reproduction of UV-exposed
survivors later in life'” and cumulative multigenerational effects.'® This is an important
result: rather than prior, sublethal exposure to UV-B radiation conferring an adaptive ad-
vantage to Daphnia, it actually magnified the negative effects of UV-B radiation over time.
Variable responses to UV radiation by different Daphnia species may contribute to the con-
trasting results. Other sublethal effects of UV radiation include significant changes in respira-
tion rates,” decreased susceptibility to metal toxicity, increased sensitivity to flouroanthene
(a polycyclic aromatic hydrocarbon, PAH) and the antibiotic sulfathiazole in Daphnia,"*
inhibition of acetylcholinesterases” and increased production of constitutive heat shock
(stress) proteins in copepods.®*® In some of the more UV-tolerant copepods, low levels of UV
exposure may actually be beneficial, enhancing survival and reproduction,™ a result con-
sistent with the positive association of diaptomid copepods with high UV environments in
alpine lakes.'*’

Freshwater zooplankton can also reduce the threat of UV radiation damage through
behavioural avoidance, which is generally stronger in cladocerans such as Daphnia than in
copepods.®" > 12 The behavioural response of Daphnia to UV radiation, however, is uninflu-
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enced by prior exposure to the radiation.” Field studies in lakes with'*’ and without™ visual
predators suggest that UV radiation plays a role in the daytime vertical distribution of some,
but not all zooplankton. While cladocerans show stronger behavioural avoidance of UV, co-
pepods use photoprotection to a greater extent.”* Some freshwater protozoans'™' and the lar-
vae of coral > depend heavily on photorepair of their DNA damage.

Zooplankton also reduce UV radiation damage with photoprotective compounds in-
cluding carotenoids, MAAs, and the antioxidant enzymes catalase (CAT) and glutathione-S-
transferase (GST). MAAs have been reported in krill,*® rotifers'” and freshwater”* and ma-
rine™” ciliates that contain endosymbiotic algae. Symbiotic Chlorella in the ciliate Parame-
cium bursaria contain no MAAs, but still confer some UV protection to this ciliate.** Sever-
al factors have been found to influence the concentrations of photoprotective compounds in
zooplankton including ambient UV radiation exposure levels,''- **’ temperature,” and visual
predators.''"* ?*” UV radiation exposure levels in the field were not related to the activity of
CAT and GST in two freshwater crustaceans,”’ but low ratios of phosphorus to carbon in

algal food and UV exposure in laboratory experiments reduce levels of these antioxidant en-
11
Zymes.

UV influences the interactions of zooplankton with other components of aquatic eco-
systems. For example, seasonal increases in UV transparency (UV “clear-water phases”)
appear to be induced by photobleaching of DOM by UV radiation and to a lesser extent by
zooplankton grazing.*’' UV radiation can also increase feeding rates of planktivorous fish on
zooplankton,'** increase degradation rates of chemicals released by predators that induce
defences in their zooplankton prey,”** and contribute to photosensitization of toxic com-
poygzds.265 Susceptibility to UV radiation of some insect larvae (Chaoborus) is species specif-
ic.

One of the most striking relationships recently observed between UV radiation and
zooplankton is the strong reduction in the species diversity of zooplankton in shallower lakes
with high UV transparency in Patagonia. Only a single species of highly UV- tolerant cope-
pod persists in fishless lakes with high UV radiation (on average the water column has of UV
levels over 10% of incident sunlight measured at 320 nm UV).">* The interactive effects of
climate, as well as pH-driven changes in DOM and hence UV transparency of aquatic ecosys-
tems, may be particularly important to the reproduction, survival, and development of early
life history stages of even more UV-tolerant copepod species.”> Modelling suggests that pho-
toinhibition by UV radiation can contribute to destabilization of plankton communities.'"

Amphibians

In recent years there has been an active debate as to the relative importance of UV radiation
in widespread declines and malformations in amphibians. The most recent data suggest that a
combination of behavioural responses by egg-laying females, physiological tolerance of em-
bryos, reduced water clarity related to DOM concentrations, and timing of oviposition make
it unlikely that UV radiation is an important factor for lethal effects in nature.'*™ '¥! A recent
review of the effects of UV-B radiation on amphibian development and metamorphosis em-
phasizes the importance of looking at sub-lethal effects rather than just mortality.*” These
sublethal effects may in turn lead to ecologically important trade-offs in the growth and re-
production of amphibians due to reductions in the ability to exploit optimal thermal habitats
or food resources, or minimize exposure to predation. In other cases exposure to UV radiation
may increase resistance to some toxic compounds. Complex interactions between UV radia-
tion and other environmental variables seem to be the rule rather than the exception.
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One of the sublethal effects is the behavioural avoidance of UV radiation. Field sur-
veys and experiments revealed no avoidance of UV-B radiation by three species of anuran
tadpoles,'> but some behavioural avoidance of UV-B in poison dart frogs.* Laboratory ex-
periments show that prior exposure to UV radiation increases UV tolerance in larval and ju-
venile salamanders and that there is high resistance to damage by natural levels of UV radia-
tion.”> Similarly, a combination of low water transparency to UV radiation as well as to UV-
protective compounds in the jelly of egg masses suggest several species of amphibian embry-
os in Patagonia are not susceptible to UV damage in nature.'® This same study reported no
significant effect of UV radiation on survival, but an elevated incidence of malformations
with UV-B exposure when comparing natural and elevated levels of UV-B radiation. Labora-
tory experiments comparing UV-B tolerance of frog eggs from populations at different eleva-
tions (333-2450 m) revealed that UV-B induced a shorter larval body length, with the effect
being strongest in eggs collected from low elevations.'*® Field studies of the boreal toad in
Glacier National Park, Montana, USA indicate that UV-B exposure does not limit distribu-
tion, and breeding was actually higher in high UV radiation habitats.'*

UV radiation has important interactive effects with other environmental stressors, in-
cluding delayed development rates in frog tadpoles when exposed to UV-B radiation and
environmentally realistic concentrations of 4-fert-octylphenol, an estrogenic microbial de-
composition product of widely used industrial surfactants,*® and a seven-fold increase in le-
thality of UV-B radiation when toad tadpoles were exposed in the presence of nitrite.'
There is also some evidence that prior exposure to UV radiation may confer resistance to the
interactive effects of UV radiation and toxic compounds, a phenomenon known as co-
tolerance. For example, higher levels of UV-B tolerance of tadpoles may confer resistance to
the PAH benzo[a]pyrene due to similar genotoxic defences against these two stressors.'”’
Higher genetic diversity was also found to confer increased resistance to UV-B-induced mor-
tality and deformity in larvae of wood frogs exposed to natural sunlight with and without
UV-B.*® Frog larvae exposed to artificial UV-B radiation in the laboratory had lower growth
rates and more deformities than unexposed larvae, and there was some evidence that they
were more susceptible to predation.””® No synergistic effects of UV-B radiation were ob-
served when three species of anurans were exposed to UV-B radiation and the fungus, Batra-
chochytrium dendrobatidi, which causes chytridiomycosis (an infectious disease).’® Simulta-
neous exposure of frog tadpoles (prey) to UV-B radiation from fluorescent lamps and preda-
tory chemical cues significantly increased mortality, and suppressed the predator-induced
phenotypic changes that protect against predation.

Fish

As with many animals, the early life history stages of fish tend to be the most sensitive to UV
radiation damage. Enhanced UV-B radiation can reduce growth rates and immune function in
juvenile Atlantic salmon,'?” and increase cataract-causing trematodes (parasitic flatworms) in
juvenile rainbow trout.'> The ability to detect and avoid UV radiation exhibited by some
juvenile fish such as Coho salmon in outdoor flumes'®® as well as juvenile black sea bream in
laboratory experiments®’ suggest avoidance of UV radiation may reduce the negative effects
of UV radiation in nature. Similarly, though the potential for UV radiation damage in the
shallow-nesting bluegill sunfish is high, nest locations under the shade of trees or other struc-
tures or at deeper depths reduce the actual impact of UV radiation at the population level.'”
Larval mortality of bluegill is highest early in the spawning season with >10% mortality in
over a third of the nests.'”> Adult fish may also be sensitive to UV radiation damage as indi-
cated by laboratory exposures of adult African catfish to UV-A (366 nm) that resulted in a
wide array of biochemical and tissue damages.*'> This study is of particular interest because
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UV-A radiation may also be beneficial in causing repair of DNA damage through photoen-
zymatic repair (PER), and the importance and extent of PER differs among freshwater fish
species and with UV radiation exposure level.'® '™ In clear cold-water lakes high UV radia-
tion transparency may reduce invasions by exotic warm water fish species.*>*

Corals

A recent review of the effects of solar UV radiation on corals suggests that solar UV is, and
has been an important ecological and evolutionary force in coral reefs for a long time, that
UV radiation effects are limited to shallower reefs, and that the interactive effects of UV ra-
diation and other stressors need consideration.'’ UV radiation damage in the coral-algal sym-
biosis can include persistent decreases in photosynthetic efficiency after several days of ex-
posure to UV radiation from lamps in the laboratory,™ and decreases in growth rates in field
experiments.”” Corals have several key defences to reduce UV-radiation damage. Some re-
cent experiments demonstrated that the UV-absorbing properties of coral skeletons can sig-
nificantly reduce DNA damage in overlying tissues.'> Advances have also been made in
assessing the factors that control UV radiation exposure levels in coral reefs. Spatial and
temporal variations in CDOM have been demonstrated to be important in regulating the UV
radiation exposure levels of corals in the Florida Keys (USA) and Dry Tortugas (USA).”* A
combination of remote sensing and radiative transfer modelling has also been used to esti-
mate UV radiation exposure in coral reefs to help assess the role of UV radiation in coral
bleaching.'®

Other Aquatic Animals

Recent laboratory studies on the effects of UV radiation on several species of sea urchins
have demonstrated structural and DNA damage to spermatozoa,'’’ developmental abnormali-
ties,”® and reduced PER rates in embryos at lower temperatures.138 The lack of temperature
compensation in PER may in part explain the results of a recent in situ experiment that found
that embryos of an Antarctic urchin were more sensitive to DNA damage and developmental
abnormalities than three other species from lower latitudes."’

Other animals for which UV radiation effects have been examined include amphi-
pods, gastropods, and biological control agents, some of which are relevant to human disease
ecology. When some amphipods are exposed to elevated levels of UV radiation they show an
increase in antioxidant capacity'> and respiration rates.'® UV radiation exposure in experi-
mental field studies led to reduced survival of two intertidal mudflat snails.*® Laboratory
studies of juveniles of the snail that is the intermediate host of the human parasite Shistosoma
mansoni showed that UV-B radiation from fluorescent lamps with an emission peak of 315
nm inhibited feeding behaviour, led to abnormal growths on the headfoot, and increased mor-
tality.”'* UV-B radiation from artificial lamps with an emission peak of 315 nm inhibited the
effectiveness of two strains of Bacillus sphaericus used in biological control of mosquito
larvae, suggesting that these bacteria need to be used with a photoprotectant, to be maximally
effective in the field where solar radiation is high.* Human pathogens such as the oocysts of
Cryptosporidium parvum may be susceptible to UV radiation damage, suggesting that de-
creases in UV transparency of surface drinking water supplies may favor persistence of this
parasite.* Recent doubling of DOM concentrations in aquatic ecosystems in many parts of
Europe and eastern North America®® > '® may thus reduce UV radiation exposure levels and
create surface water environments more favourable to UV-sensitive human pathogens such as
Cryptosporidum.*™
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Interactions with pollutants and pH

Organisms in freshwater and coastal habitats are exposed to a number of environmental stress
factors including anthropogenic contaminants from terrestrial drainage, ice melting and mari-
time traffic (see related discussions in Chapter 5). These stresses may have additive or syn-
ergistic effects with enhanced solar UV-B radiation challenging growth, reproduction and
physiological functions of key members of these aquatic habitats.'®* While many toxicologi-
cal studies have been conducted in the laboratory, field experiments demonstrated the com-
plexit%4and the difficulty in determining the impact of multiple stressors on aquatic ecosys-
tems.

Interactive reactions with pollutants

Heavy metals, such as cadmium (Cd), are major stress factors for cyanobacteria, phytoplank-
ton and consumers.'” ** Simultaneous application of Cd and UV-B radiation caused a more
than 10-fold increase in a-tocopherol, which functions as an antioxidant in cyanobacteria.”
In an aquatic liverwort, DNA damage, caused by UV-B radiation, was augmented in the
presence of Cd."”” This was attributed to the inhibition of DNA enzymatic repair mechanisms
by the heavy metal. Also benthic communities in a natural stream in the Rocky Mountains
(USA) are affected by heavy metal pollution; UV-B radiation had greater impact on the met-
al-polluted sites than on non-polluted ones.'** In freshwater habitats, copper (Cu) and other
transition metals are often complexed with DOM. Since the latter is photochemically unsta-
ble, solar UV radiation has indirect effects on Cu complexation.® Irradiation at intensities
similar to sunlight decreased Cu complexation in a river, suggesting that increased UV radia-
tion might result in higher Cu toxicity. Increasing Cu concentrations due to photooxidation of
DOM resulted in increased mortality of larval fathead minnows.** Benthic communities from
a metal-polluted stream were tolerant of metals, but were more sensitive to UV-B radiation
than communities from a reference stream.” Experiments with freshwater periphyton indi-
cated that cyanobacteria dominated under high-UV radiation, while diatoms dominated in
low-UV radiation treatment. Although the high-UV community had higher tolerance to UV
radiation and co-tolerance to cadmium (Cd), they had a fivefold reduction in the pigment,
chlorophyll a, suggesting that acclimatisation had high metabolic costs.'®

Photodemethylation by solar radiation is regarded as the most important biogeochem-
ical sink of methylmercury.'* Dissolved gaseous mercury is released from mercury com-
pounds in the water under photolytic action driven by solar radiation. Removal of UV from
the radiation reduced the process by an order of magnitude. In Juam Reservoir, Korea, dis-
solved gaseous mercury concentrations correlated with UV-A and UV-B irradiances and con-
sequently were higher in spring and summer than in fall and winter.'** In a temperate lake in
Eastern Pennsylvania (USA) emission of gaseous mercury increased during periods of mix-
ing in spring and autumn and was triggered by solar radiation.””

Degradation products of petroleum compounds were shown to be toxic for a number
of test organisms including bacterioplankton.'?' Simultaneously, UV irradiation inhibits mi-
crobial degradation of petroleum products. Water-soluble crude oil fractions and UV-B radia-
tion were found to have synergistic detrimental effects on a field-collected microplankton
assemblage from Ushuaia Bay, Southern Argentina.'® Picoplankton appeared to be more
affected than nanoplankton, which is attributed to their smaller size. The combination of the
water-soluble fraction of crude oil and enhanced UV-B radiation exposure resulted in an ex-
acerbation of these individual effects, demonstrating a synergistic effect of both stresses. In
Arctic shallow-water marine habitats, phototoxic effects affect algae and bacteria due to the
presence of pyrene, a component of crude oil in the sediments.'®” The water-soluble fraction
of crude oil is not toxic and may even be beneficial by increasing bacterial activity, but be-
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comes highly toxic under exposure to solar UV-B radiation.”'* Toxicity of polycyclic aro-
matic hydrocarbons to a broad range of invertebrates, marine and freshwater fish may in-
crease by a factor between 2 and 1000 when sediments are exposed to UV radiation."’

Interactions with increasing CO; concentrations

Acidification of lakes and marine habitats is a major stress factor closely related to climate
change and augments exposure of aquatic organisms to solar UV-B radiation.'*’ In the north-
eastern Ontario lakes acid deposition is linked with atmospheric sulphur and metal emis-
sions.'?® Experimental acidification and recovery of a small lake confirmed the changes in
benthic algal communities.'®* > The increasingly important role of inland aquatic ecosys-
tems as a reservoir of organic carbon and thus an important link in the carbon cycle have
been further strengthened by new studies® and see Chapter 5)

Decreasing pH of marine waters due to increased atmospheric CO; concentrations
affects carbonate incorporation in many calcified marine organisms and makes them more
vulnerable to solar UV-B radiation. Before industrialization the CO, concentration in the
atmosphere was about 280 ppm. This corresponded to an average pH in the oceans of about
8.2. The current 380 ppm has resulted in a decrease in pH by about 0.1, which corresponds to
a 30% increase in acidity.** A pH decrease of 0.3 — 0.4 units is expected by the year 2100.
This acidification compromises calcification in molluscs, phytoplankton (coccolithophoridae)
and some macroalgae (e.g. Corallina and the Conchocelis stage of the Rhodophyte Porphy-
ra). Calcium carbonate encrustations efficiently absorb UV radiation. At lower pH values
increased transmission has been measured, exposing the organisms to higher levels of solar
UV-B radiation.”’” UV radiation significantly inhibited growth, photosynthetic oxygen evolu-
tion and calcification rates in Corallina at high CO7 concentrations (1000 ppm as compared

to 380 ppm).

These results indicate the synergistic effects of lower pH and enhanced solar UV-B
radiation in coralline algae. In the coccolithophore, Emiliania huxleyi, calcification rates are
diminished at lowered pH levels, which result in thinned coccoliths.”' The transmission of
detrimental UV radiation was found to be significantly enhanced in enclosure experiments
(mesocosms) by acidification by 0.1 pH units.

Interactive effects of UV radiation and climate change at the ecosystem lev-
el

As stated in a previous report, = ... the ecosystem level [is] where assessments of anthropo-
genic climate change and UV-related effects are interrelated and where much recent research
has been directed. Several studies suggest that the influence of UV-B radiation at the ecosys-
tem level may be more pronounced on community and trophic level structure, and hence on
subsequent biogeochemical cycles, than on biomass levels per se” (see related discussions in
Chapter 5). These effects not only have implications for marine and freshwater ecosystems,
but for the economic and social systems that depend on them. Studies have investigated the
effects of solar UV radiation, climate change and their possible interactions, on scales rang-
ing from whole communities to individual organisms at the cellular, biochemical and genetic
level. However, there is a paucity of data and information regarding the effects of UV-B radi-
ation on total ecosystem structure and function. Covering new geographical locations and
species, most recent studies largely confirm previous findings.

84 «

As an example, the rapid warming of surface waters by 5—-6 °C around the Antarctic
Peninsula since 1950%® has resulted in a shift in species composition that is attributed to
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deeper migration by organisms in the water column and thus further from exposure to surface
UV radiation. These higher surface temperatures have led to later advance and earlier retreat
of sea-ice and consequently a shorter sea-ice season.”* ** The resulting potentially higher
phytoplankton productivity in the area of the Antarctic Peninsula could augment carbon se-
questering from the atmosphere through a shift from the invertebrates, such as krill, to an
increased population of salps (free-swimming marine chordates of the subphylum Tunicata,
having a translucent, somewhat flattened saclike body).*' Besides krill and copepods (crus-
taceans), salps are the most important metazoans in that area involved in sequestering carbon
from the atmosphere.”* >*° In the sequestration process, phytoplankton absorb carbon dioxide
from the atmosphere via photosynthesis. Zooplankton graze on the phytoplankton, and the
organic material is packaged into large fecal pellets. These pellets sink to the deep sea floor,
and the embedded carbon is removed from circulation for tens of thousands of years, making
the area around the Antarctic Peninsula one of the world's most important carbon sinks. In
addition, due to the deep migration of the salps in the water column, they are less affected by
surface UV radiation. In contrast, other studies demonstrated that any increase in UV-B irra-
diance would have a negative impact on Antarctic krill because of the relatively shallow de-
scent-ascent migration pattern of their embryos and larvae.'

Conclusions

Numerous publications show that solar UV radiation can adversely affect aquatic organisms.
The majority of these studies document significant negative impacts on individual species;
yet considerable uncertainty remains with respect to assessing effects on whole ecosystems.
With respect to assessing UV radiation-related effects, the influence of climate variability is
often more important via indirect effects such as reduction in sea ice, changes in water col-
umn bio-optical characteristics and shifts in limnological or oceanographic biogeochemical
conditions than through direct effects. Were it to occur, decreases in primary production
would result in reduced sink capacity for atmospheric carbon dioxide, with its related effects
on climate change.

Recent studies have strengthened evidence that the impact of UV-B radiation on phy-
toplankton is species specific. Acclimation capacity defines the species sensitivity. However,
increased stratification (via thermal heating or tidal dynamics), together with changes in
cloud cover, strongly modifies the light regime and response of phytoplankton. Previous ac-
climation also counteracts the higher sensitivity of phytoplankton observed when they grow
under high CO,; levels. The carbon uptake is higher at high CO; levels, but with the same
nutrient uptake, thus increasing the C:N ratio and decreasing the food quality for herbivores.
In contrast, exposure to UV radiation reduces cellular C:P ratios (and N:P) in phytoplankton.
Therefore, exposure to CO; and UV radiation are causing opposite effects on food quality
(i.e., phytoplankton C:N ratios). While an increase in CO, means a low quality food due to an
increase in C uptake, exposure to UV radiation means a better quality food due to a decrease
in C uptake.

While zooplankton and many other aquatic animals are often protected from the lethal
effects of UV radiation by both their own defences and environmental shielding by UV-
absorbing DOM, many recent studies demonstrate the importance of sublethal UV radiation
effects and interactive effects of this radiation with other environmental stressors. In lakes
with high UV transparency, zooplankton communities may be reduced to a single UV-
tolerant species,'>* amphibians may be more susceptible to toxic compounds,*® '** and fish
spawning may be limited to shaded or otherwise low UV radiation exposure habitats.'’> '
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Summary

Solar UV radiation, climate and other drivers of global change are undergoing significant
changes and models forecast that these changes will continue for the remainder of this centu-
ry. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interac-
tions of these effects with climate change, including feedbacks on climate. Such interactions
occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the
quantification of these effects, they could accelerate the rate of atmospheric CO, increase and
subsequent climate change beyond current predictions. The effects of predicted changes in
climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are
expected to vary significantly between regions. The balance of positive and negative effects
on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and
climate change are likely to contribute to decreasing sink strength in many oceanic regions.
Interactions between climate and solar UV radiation will affect cycling of elements other than
carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For
example, increases in oxygen-deficient regions of the ocean caused by climate change are
projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-
depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial con-
taminants could have both beneficial and adverse effects. Taken in total, it is clear that the
future changes in UV radiation coupled with human-caused global change will have large
impacts on biogeochemical cycles at local, regional and global scales.

Introduction

The transport and transformation of substances in the environment, through living organisms,
water, land, and the atmosphere are known collectively as biogeochemical cycles. The
elements that participate in these cycles exist in a range of forms that can be altered not only
by Earth*s chemical, physical and geological processes but also by the activities of living
organisms. In turn, biogeochemical cycles control the availability of chemical elements to
organisms, whether as nutrients or toxins, and so exert major effects on life on Earth. There
are extensive feedbacks and interactions between biogeochemical cycles, UV radiation and
various elements of climate change. These effects involve both the UV-A part of solar UV
radiation (315-400 nm), which is weakly affected by stratospheric ozone, as well as the UV-B
(280-315 nm) spectral region, which is strongly affected by ozone. Thus, discussions here
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include the biogeochemical effects that are influenced by the entire solar UV spectrum (280-
400 nm). UV radiation interacts with a myriad of processes that influence the emission,
exchange, transport and removal of trace gases and particulates in the atmosphere and ocean.
The overall aim of the Environmental Effects Assessment Panel is to consider the effects of
changes in stratospheric ozone and their interaction with climate change. Biogeochemical
cycling is clearly at the heart of such interactions in both terrestrial and aquatic ecosystems,
largely because carbon cycling drives many of the feedbacks within the climate system. The
wide extent of these interactions is summarized in Table 5-1, which is based on results
presented in this and previous UNEP reports.”"" ** Biogeochemical cycles in terrestrial and
aquatic ecosystems play a significant role in determining the rate and extent of changes in
atmospheric CO,, other trace gases and particulates. Changes in exposure of ecosystems to
UV radiation influence their ability to remove some fraction of the human-derived CO, that is
emitted into the atmosphere.

Table 5-1. Summary of selected direct and indirect effects of solar UV radiation on biogeochemical
cycles, based on this and previous reports.”" *** Several of these direct and indirect effects may oper-
ate concurrently on the biogeochemical system.

Element Environmental Impact on biogeochemical cycling
compartment

Carbon Terrestrial Eco- 1. Impact on plant growth, morphology and photosynthesis, and
systems interactions between species, and community composition

2. Enhances emissions of CH, and CO
3. Impacts on litter composition and decomposition and organic
matter decomposition
Aquatic ecosys- 1. Impact on photosynthesis and organic carbon production, in-
tems cluding coloured dissolved organic matter (CDOM).
2. Impact on organic matter degradation and turnover with effects
on CO, and CO production and microbial lability of DOM
3. Impact on spectral properties of water column
Atmosphere 1. Impact on ecosystem-atmosphere exchange of trace C gases, e.g.
CO,, CO, CHy
2. Effects on atmospheric chemistry, e.g. on reactions involving
OH and ozone

Nitrogen Terrestrial Eco- 1. Effects on nitrogen fixation
systems 2. Impacts on nitrification, N,O and NO, emissions
3. Effects on litter composition and decomposition
4. Release of inorganic N through degradation of organic matter
with resulting impacts on soil fertility, CH, /CO sinks
Aquatic ecosys- 1. Impact on ammonification of dissolved organic N
tems 2. Effects on nitrogen fixation
3. Increased hypoxia with increased nitrous oxide emissions from
ocean
4. Effects on CDOM production and UV attenuation
Atmosphere 1. Impact on ecosystem-atmosphere exchange of trace N gases.

2. Effects on atmospheric chemistry, e.g. on reactions involving
OH and ozone.
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Element Environmental Impact on biogeochemical cycling
compartment
Sulfur Terrestrial Eco- 1. Uptake and release of DMS and COS by vegetation.
systems
Aquatic ecosys- 1. Uptake and release of DMS, DMSO, COS and S precursors by
tems aquatic organisms
2. Effect on biological production and consumption of DMSP
3. Photooxidation of DMS and organosulfur compounds to COS.
Atmosphere 1. Impact on ecosystem-atmosphere exchange of S gases, e.g.
DMS, COS
2. Impact on conversion of DMS and other S compounds to aero-
sols/cloud condensation nuclei
Phosphorus and  Terrestrial eco- 1. Perturbation of P cycling in plant rhizosphere
metals systems 2. Degradation of organic matter and with resulting impacts on soil
fertility.
Aquatic ecosys- 1. Effects on biological availability of metal nutrients, e.g. Fe. Cu,
tems Mn, and metal pollutants, e.g. Hg
2. Formation of ROS by Fe reactions
Atmosphere 1. Indirect impacts on ecosystem-atmosphere exchange of trace
gases via changes in nutrient availability
Oxygen Terrestrial Eco- 1. Effects on O, uptake during litter decomposition
systems
Aquatic ecosys- 1. Effects on O, production by photosynthesis of and O2 consump-
tems tion by DOC oxidation
2. Effects on formation and degradation of H,O, and other ROS,
e.g. HO, and OH
Atmosphere 1. Effects on ecosystem-atmosphere exchange and chemical oxida-
tion processes
Halogens Terrestrial eco- 1. Production of organohalogens

systems
Aquatic ecosys-
tems
Atmosphere

Effects on biogenic production and consumption of organohalo-
gens
Decomposition of methyl halides, sea salt derived particles and

CFC substitutes

It is clear that many factors will lead to changes in solar UV radiation reaching
Earth*s surface (Chapter 1). To briefly summarize, after a period of several decades when
depletion of stratospheric ozone led to increases in UV-B radiation, the remainder of this
century is expected to be a period of ozone recovery with the concentration of ozone in some
regions greater than present in 1980. As a result, by the end of the century UV-B irradiances
likely will be at or below those measured prior to the onset of ozone depletion, by around 5-
15% in the mid-latitudes and perhaps up to 20% at high and polar latitudes. The tropics will
be little affected by these changes in ozone. In addition, UV exposure in the biosphere will
be affected by changes in cloud and aerosols. The current assessment of the effects of
climate change on cloudiness highlights the large variation in change in different locations
(Chapter 1). At low latitudes, cloud cover is predicted to decrease, which should result in
increases in UV radiation compared to the present. At high latitudes, cloud cover is predicted
to increase substantially (up to 4% compared with the 1950-2000 mean see Chapter 1), which
will further enhance the decrease in UV-B radiation due to increases in stratospheric ozone.
The projected decreases in UV-B radiation are larger in high latitude regions of the southern
hemisphere than in the northern hemisphere.

This Chapter assesses the state of knowledge of the responses of global biogeochemi-
cal cycles to interactions between changes in UV radiation and other co-occurring environ-
mental changes in climate, land use, and atmospheric CO,. These interactions are varied and
complex. Many interactions occur through the effects of different elements of environmental
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change on living organisms. These effects and their consequences for biodiversity and the
functioning of terrestrial and aquatic ecosystems, have been assessed by others (see Chapters
3 and 4). Here we will consider how the changes in individual organisms and ecosystems
considered by these other authors affect biogeochemical cycling, and also how changes in
cycling may feed back to the biology of organisms and ecosystems. We will also consider
interactions of element cycling with environmental changes that are mediated through chemi-
cal, photochemical and physical processes in aquatic and terrestrial ecosystems. One focus
will be the assessment of effects of these changes in aquatic and terrestrial biogeochemistry
on the atmospheric concentrations of trace gases and aerosols that influence the radiative bal-
ance and chemistry of the atmosphere. Particular emphasis is put on the advances in under-
standing of these interactions that have occurred since the last quadrennial assessment.””
Later in this assessment we address future changes in biogeochemical cycles that may occur
in response to projected changes in climate and stratospheric ozone.

The key role of carbon in regulating climate through the atmospheric concentration of
carbon dioxide (CO;) places the carbon cycle at the heart of any consideration of biogeo-
chemical cycles in the context of environmental change. The degree to which any factor in-
fluences the energy balance of the Earth-atmosphere system, and hence climate, can be ex-
pressed in terms of radiative forcing (RF).”° The increasing concentration of CO, in the at-
mosphere is a major driver for human-induced climate change, with the most recent [IPCC
report’° estimating its RF as 1.66 £0.17 W m 2, far higher than any other factor (Table 5-2).
Radiative forcing can also be used to assess the effect of other changes affected by altered
biogeochemical cycling. For example, methane is also a potent greenhouse gas (Table 5-2)
and carbon monoxide and volatile organic compounds exert indirect effects on radiative forc-
ing through their effects on chemical processes that influence ozone, aerosol and cloud prop-
erties in the troposphere (Table 5-2). There is increasing evidence that aerosols and clouds
play a multi-faceted role in the interactions of biogeochemical cycles with changes in climate
and ozone. Changes in the properties and distribution of clouds and aerosols are likely to re-
sult in changes in UV radiation reaching the Earth®s surface that for many parts of the globe
are at least as great as those caused by ozone recovery (Chapter 1). However, the effects of
such changes in UV radiation on the components of biogeochemical cycling remain poorly
understood.

Table 5-2. Links between biogeochemical cycling, climate and stratospheric ozone changes, ex-
pressed as the radiative forcing of different factors. Radiative forcing is the degree to which any fac-
tor influences the energy balance of the Earth-atmosphere system, and hence climate and the values
here are derived from the most recent IPCC report.”” Note that the inherent time scales of the different
links vary significantly.

Element of change  IPCC”’ estimate Links with stratospheric ozone change and changing UV
of radiative forc-  radiation
ing (W m?)
Carbon dioxide +1.66+0.17 Directly affected by the effects of changing UV radiation on the
(COy) balance of carbon uptake and loss from terrestrial and aquatic
ecosystems
Methane (CHy) +0.48 £ 0.05 Production from plants may be driven by exposure to UV radia-

tion and main sink in troposphere involves reaction with OH
radicals that are produced by UV-induced reactions

Tropospheric ozone  +0.35 Tropospheric chemistry influenced directly by UV radiation,

(0y) and by concentrations of VOCs and NOx, which are affected
by UV radiation (Chapter 6).

Montreal Protocol +0.32 £0.03 Now declining due to implementation of the Montreal Protocol

gases (Chapter 1). Naturally-produced halogen compounds from ter-
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Element of change  IPCC” estimate Links with stratospheric ozone change and changing UV
of radiative forc-  radiation
ing (W m?)
restrial and aquatic ecosystems may be affected by climate
change.

Nitrous oxide (N,0)  +0.16 £0.02 Both a greenhouse gas and precursor to N species that deplete
stratospheric ozone.

Carbon monoxide +0.04 Indirectly affects climate by modulating the OH concentrations
in the atmosphere and thus concentrations of methane, ozone
and other GHGs

Stratospheric ozone ~ —0.05+0.10 See Chapter 1.

(03)

Total aerosols -0.5+04 Affected indirectly by changing UV radiation through effects

on volatile organic compounds (VOCs), dimethylsulphide
(DMS) and other trace gases (see Chapter 1).

Clouds -0.7 Affected indirectly by changing UV radiation through effects
on volatile organic compounds (VOCs), dimethylsulphide
(DMS) and other trace gases (see Chapter 1).

Solar UV radiation may also affect the nitrogen and sulphur cycles that can directly
affect climate through changes in concentrations of atmospheric trace gases such as nitrous
oxide, NOx (NO plus NO;) and dimethylsulphide (DMS). NOx and DMS influence atmos-
pheric chemistry and cloud formation, and hence radiative forcing (See Table 5-2). Changes
in the concentration of NOy and halogenated compounds have a specific relevance to this as-
sessment, since these compounds have the potential to deplete atmospheric ozone, and their
production by both terrestrial and aquatic systems is influenced by climate change and by UV
radiation itself (Chapter 1). Nitrous oxide is not only an important greenhouse gas but it also
plays a dominant role in chemical reactions that deplete stratospheric ozone.'®® The cycles of
many metals have widespread biological importance as they can act as essential nutrients or
significant toxins depending on their chemical form and availability, and are affected by UV
radiation.

This Chapter specifically addresses and highlights the emerging understanding of the
complex interplay between the physical, biological and chemical ramifications of climate
change, with co-occurring increases in greenhouse gases, shifting patterns of atmospheric
ozone concentrations and UV radiation changes in the atmosphere and Earth®s surface.

Combined effects of changes in solar UV radiation and climate on the car-
bon cycle

Of the ~10 petagrams (Pg) of carbon per year (number based on 2008, 1 Pg = 10" g) that are
emitted into the atmosphere by human activities (fossil fuel burning, land-use change), ca
30% are taken up by terrestrial ecosystems, 25% by the ocean, and the remaining 45% (often
referred to as the “airborne fraction”) accumulates in the atmosphere.“’ 70,107, 112 Ecosystems
are net CO; sinks on a global average but some regions are net CO, sinks and others net
sources.” ®* 162 A recent analysis indicates that the airborne fraction has likely increased
from 40% to 45% during the past 50 years''? due to reductions in terrestrial and oceanic sinks
caused by climate change, stratospheric ozone depletion and other environmental changes.*"
113, 160. 201, 202 pyecreasing sink strengths of terrestrial and aquatic ecosystems cause positive
feedbacks that amplify the growth of atmospheric CO, and accelerate future climate
warming.*!" 7> 12+ 125 35 por example, fire was found to be a primary disturbance that
changes terrestrial ecosystems from carbon sinks to sources.’
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Terrestrial ecosystems

In terrestrial ecosystems, carbon fixed by plants may be sequestered in timber or long-lived
soil components such as peat. Such carbon sequestration is a significant element of the global
carbon budget, and may be affected by various elements of climate change, and by direct
interventions to mitigate climate change, such as afforestation. UV-B radiation has the
potential to affect many aspects of the growth, development and function of terrestrial
ecosystems. The magnitude of such effects varies between species, and these variable effects
have been shown to cause local changes in the species-composition of terrestrial ecosystems,
especially at high latitudes.’® *** UV radiation can also affect the decomposer organisms that
control carbon release from plant litter (dead organic material that falls to the ground) and
soils. Decomposition is controlled by many climate-sensitive physical and biological
parameters. Among the most important are temperature, soil moisture and the chemistry of
the plant litter. UV-B exposure affects the chemistry of living leaves and these changes are
often inherited by litter, although effects are highly species specific and this is reflected in
changes in decomposition. However, given (i) the expected slow recovery in stratospheric
ozone (Chapter 1) and magnitude of the effects of increases in UV-B radiation even in high
latitude terrestrial ecosystems and (ii) the contribution of these high latitude terrestrial
ecosystems to global carbon uptake, it is unlikely that these direct effects of stratospheric
ozone recovery will have a significant effect on global carbon fixation. However, changes in
UV exposure mediated by responses to climate change may result in far more widespread
effects. For example, UV-induced photodegradation of above-ground plant litter is important
in arid terrestrial ecosystems (see Chapter 3 and refs™ *> °"* %) and is likely to become a
much more significant global pathway for terrestrial organic matter decomposition in the
future. Photochemical production of trace gases such as methane and carbon monoxide may
also increase in such systems.

Stratospheric ozone, cloud, and factors such as aerosols and surface albedo (Chapter
1) affect UV irradiance incident on terrestrial ecosystems, but changes in ecosystems due to
climate change and altered land use will further affect penetration of UV radiation into
vegetation and to the soil surface. The balance of evidence from climate models is that soil
moisture will decline in most parts of the globe as a result of changes in both precipitation
and evaporation.”® The effects of these future changes in climate on the vegetation cover of
specific regions remains somewhat controversial. However, for most low-mid latitude
systems, the most likely changes in plant communities, such as declines in woodland or
reduced vegetation cover (Fig. 5-1), are expected to result in increased penetration of solar
UV radiation into and through the canopy. Changes in land use and management can also
lead to increased UV penetration to the ground, for example, increased grazing,” felling of
woodland,” and shrub invasion in arid systems.”” More open ecosystems can also enhance
soil surface temperatures and this enhancement can stimulate soil to atmosphere movement of
nitrogen and presumably loss of productivity in the affected ecosystems.'”’ In addition, the
prediction of increased aridity over large areas at low latitudes is expected to enhance the
contribution of direct photochemical effects of UV radiation to carbon and nutrient cycling
(see above). By contrast, at northern high latitudes, projected gains in forest, woodland and
shrub communities (Fig. 5-1) will reduce UV penetration into and through the canopy.

A further factor that will alter UV exposure in terrestrial ecosystems is the changing
geographical distribution of those ecosystems that will result from climate change. Current
models project major changes in global ecosystems in response to climatic and social
changes,” *> *** 2% 17 and one such change is that vegetation zones will move towards the
poles as temperatures increase. As vegetation zones shift from their current range of
distribution towards the poles, they will experience the lower mean annual UV doses
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associated with lower solar elevation. This latitudinal shift, like that of ozone depletion, is
more pronounced at shorter wavelengths and as a result, the effect of changes towards the
poles will be greater for responses with action spectra that are more strongly biased towards
shorter wavelengths (Chapter 1).

In summary, at low-
mid latitudes in terrestrial
systems, projected changes
in stratospheric ozone are
small, but predicted de-
creases in cloud, increased
aridity and reduced cover
are all expected to lead to
increased UV irradiances
within canopies and at the
soil surface. By contrast, at
high latitudes recovery of
stratospheric  ozone, de- . [ Sun———

2 T - bertace SO Qe

creased albedo, increased [ [ e pe———
cloud, increased vegetation SN et
cover and shifts in biomes
towards the poles will all
lead to negative trends in
UV irradiances for organ-

1 - Foresl oower e

B e wsaes e
T Fomet type charge

Fig. 5-1. Projected appreciable changes in terrestrial ecosystems by 2100
relative to 2000 as simulated by the Dynamic Global Vegetation / Lund-
Potsdam-Jena Model (DGVM LPJ) for two Special Report Emission

isms within canopies and at
the soil surface. Changes in
UV-B radiation both posi-
tive and negative can result
in significant changes in

Scenarios forcing two climate models: (a) Hadley Centre Coupled Model-
Version 3 (HadCM3 A2), (b) 5™ generation ECAM general circulation
model from the Max Planck Institute for Meteorology (ECHAMS B1).
LPJ is a dynamic global simulation model of vegetation biogeography
and vegetation/soil biogeochemistry. The simulations assume continued
greenhouse gas emissions and land-use change trends at or above current

terrestrial ecosystems, in-
cluding direct effects on
plant growth and biomass
(Chapter 3). Current climate
change models predict increases in carbon sequestration by terrestrial ecosystems at northern
high latitudes and decreases at low latitudes, and our assessment is that the combined effects
of multiple environmental changes on solar UV radiation would be to amplify these predicted
changes. However, the magnitude of these changes remains uncertain.

rates. Changes are considered appreciable and are only shown if they ex-
ceed 20% of the area of a simulated grid cell (Figure 4.3 of Fischlin et
al.%®).

Aquatic ecosystems

Carbon capture by primary producers in the ocean followed by downward flux of the
resulting dead algal material provides an important route for carbon sequestration in the
oceans referred to as the biological pump.'”> The effects of exposure to UV radiation on
primary producers in lakes and the ocean interact with climate-induced damage of primary
producers' 73 86 13- 115, 133, 185233 4, requce CO, uptake by the ocean. The exposure of
primary producers to the damaging solar UV-B radiation depends on the penetration depth of
UV-B radiation into water bodies, which is mainly controlled by the concentration and
optical properties of coloured dissolved organic matter (CDOM). ¢ 21232233

CDOM is the sunlight-absorbing component of dissolved organic matter (DOM). The
presence of CDOM alters the spectrum of radiation penetrating into the water column, in
effect decreasing the radiation amplification factor for DNA damage with increasing depth
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37, 38, 44, 45, 82, 89, 90, 139, 140, 148, 155, 161,

(Fig. 5-2). However, CDOM is subject to photobleaching,
37, 44,

171 177,199, 210, 221, 233, 234 5 rocess that occurs particularly efficiently in stratified systems.
148, 199, 232. 235 The increase in CDOM concentrations with increasing latitude (Fig. 5-3) is
consistent with decreased rates of photobleaching as surface UV irradiance decreases.'*® '’
Moreover, the observed vertical distributions of CDOM in the open ocean result from a
balance between biogeochemical processes (autochthonous production and solar bleaching)
and the overturning circulation.'*™ CDOM can be used as a unique tracer for evaluating
changes in biogeochemistry and the overturning circulation, similar to dissolved oxygen, with
the additional feature that it can be quantified from satellite observation.'*®

Analyses of contemporary
net fluxes of CO, in the ocean indi-
cate that the tropics are net sources
of CO; to the atmosphere, and both
the temperate and circumpolar re-
gions, especially the Southern
Ocean, are net sinks.®* There is a
small net CO, sink in the Southern
Ocean (south of 44 °S) where a sub-
stantial outgassing of natural CO,
almost completely offsets a strong
uptake of anthropogenic CO,. These e . . -
patterns are in part due to latitudinal -25 -20 -13 -10 -5 0
changes in net primary productivity.

bR

sarface - RAF = 1.1
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DNA damage (% change)
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The patterns of CO, fluxes
are influenced by interactions be-
tween upper ocean mixing dynam-
ics and climate.'* Vertical stratifi-
cation of the ocean, which is ac-
companied by increases in sea sur-
face temperature (SST), results in
decreased net primary productivity

Fig. 5-2. Computed dependence of DNA damage and the
associated radiation amplification factors on depletion of total
ozone at different depths at Looe Key Reef in Florida,
USA.? The action spectrum of Setlow'™®was used in the
computation of DNA damage. Dose and radiation amplifica-
tion factor (RAF) are defined in McKenzie et al.”*' When
changes in total column ozone are small, the RAF corre-
sponds to the relative fractional change in effective UV irra-
diance with fractional change in ozone The estimated under-
water changes in RAF are attributable to depth-dependent

(Fig. 5-4)." The vertical stratifica-
tion of marine systems is caused by
various factors including SST.'> **
1% For example, the seasonal strati-
fication in a small marine basin is
primarily determined by temperature,''® whereas at the annual scale, stratification is deter-
mined by salinity rather than temperature, increasing with decreasing salinity. Hence, increas-
ing freshwater discharge into coastal areas due to climate change may increase the extent of
stratification in marine systems

changes in absorption of short wavelength solar radiation by
CDOM in the water column. [Fig. 10 from Zepp et al.”’
Copyright (2008) by the American Society of Limnology and
Oceanography, Inc., reproduced with permission].

Furthermore, ocean stratification has been reported to increase with climate-related
increasing strength of El Nifio-Southern Ocean Oscillation (ENSO) cycles.'"* Extensive
declines in marine phytoplankton concentrations have occurred during the past century and
these declines have been attributed in part to increases in oceanic stratification.” Increased
stratification and sea surface temperatures likely will move towards to poles in the temperate
regions during the upcoming century with resulting decreases in marine productivity and
oxygen concentrations'* *” % and concurrent adverse effects on life in the ocean.”” The
projected decreases in productivity will be driven by (1) reduced transport of nutrients from
deeper in the ocean to the surface zone where photosynthesis occurs; (2) increased ocean

158 The Environmental Effects Assessment Panel Report for 2010



Effects of solar UV radiation and climate change on biogeochemical cycling

E Longitude

Fig. 5-3. Distribution of CDOM absorption coefficients at 443 nm from satellite ocean colour observations
derived from Global System for Mobile Communications (GSM) satellite retrieval of merged SeaWiFS and
MODIS Aquadata.'*® " Field observations collected on meridional transects showed that UV absorption co-
efficients at 325 nm were approximately 10-fold greater than absorption coefficients at 443 nm, The increase
in CDOM concentrations towards the poles reflects, in part, decreased photobleaching as surface UV irradi-
ance decreases (Fig. 1 from Nelson et al.'*®).

acidification caused by continued increases in CO,; and (3) increased photodegradation of the
UV-protective CDOM coupled with reduced inputs of CDOM from deeper in the ocean to the
surface zone. Because CDOM is derived from biological degradation of the detritus from
sinking dead phytoplankton, reduced productivity will drive further decreases in CDOM
production, thus reinforcing penetration of UV radiation into the ocean. The negative effects
of stratification on marine production should be offset somewhat by the reduction in UV-B
radiation caused by increases in stratospheric ozone, which will be particularly pronounced in
circumpolar regions of Earth. Increased stratification is expected to enhance the
photobleaching of CDOM, so increasing the exposure of surface-dwelling organisms to UV-
B radiation (see Chapter 4 and refs” **"» %),

Increases in verti-
cal stratification also are
occurring in freshwater
ecosystems. It has been
known for some time that
seasonal changes in verti-
cal stratification of lakes
leads to  pronounced
changes in CDOM distri-

butions and UV penetra-
. 231
tion. Fig. 5-4. Relationships between changes in sea surface temperatures (SST)

. and net primary productivity (NPP) in the ocean for the warming period
The detrimental ef- from 1999 to 2004. Yellow, increase in SST, decrease in NPP. Light blue,
fects of UV-B exposure on  gecrease in SST, and increase in NPP. Dark blue, decreases in SST and
marine organisms might be ~ NPP. Dark red, increases in SST and NPP (adapted from Figure 3(c) in
partially offset by CO, fer- Behrenfeld et al., 2006'*; Copyright 2010 by Nature Publishing Group
tilization  effects!’ and  license no. 2531680927098, reproduced with permission).

ocean warming,'"  alt-
hough increasing CO; concentration has been shown to enhance the sensitivity of some algal
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species to UV-B radiation.'” ' The effects of CO, may be a result of its effects on pH in

aquatic systems, rather than on direct effects of CO; itself.

Ocean acidification (caused by the increasing absorption of human-derived CO; by
seawater " """ and to a smaller extent by atmospheric deposition of acidity'' and increased
vertical stratification’’) also attenuates oceanic CO, uptake by reducing the ability of
calcifying marine organisms, including corals, to produce calcareous skeletal structures.”” *
61.64.76.87.94 Evidence exists that acidification may enhance the damaging effect of solar UV
radiation on both photosynthesis and calcification.”® Corals are also vulnerable to ocean
warming,” ** °* 7% and the adverse effects of solar UV radiation on corals are related to their
increased susceptibility to UV damage with warming.®” These changes combine to decrease
the CO, buffer capacity of marine systems.”> >® - 189202 230" pyyrthermore, ocean acidification
has been shown to decrease the availability of dissolved iron to phytoplankton as a result of
decreasing efficiency of the enzymatic reduction of strongly bound Fe(Ill) species with
decreasing pH."®" Since iron is an essential micronutrient, a decrease in iron bioavailability
may decrease the uptake of CO, by oceanic phytoplankton. This negative effect of ocean
acidification on iron bioavailability may be compensated in part by UV-induced reactions
involving strongly bound iron species.'””

The combined effects of stratospheric ozone depletion and climate change affect the
CO; sink strength of the oceans also via changing winds and ocean circulation changes.** '
18, 203, 235 This effect is particularly pronounced in the Southern Ocean where increased
greenhouse gas concentrations in conjunction with stratospheric ozone depletion results in an
increased shift of the westerly winds toward the poles, i.e., an upward trend of the Southern
Annular Mode (SAM)'"* '"'® As a consequence, enhanced wind-driven ventilation of carbon-
rich deep water occurs in this region resulting in a reduced atmosphere-ocean gradient of
CO,.% ' ¥ 1y addition to this effect, inhibition of photosynthesis caused by enhanced solar
UV-B radiation associated with stratospheric ozone depletion (Chapter 1) also contributes to
reduced CO, uptake in this region.”” A decrease in the CO, sink strength of the Southern
Ocean is serious, since CO, uptake by the Southern Ocean accounts for >40% of the total
annual oceanic CO, uptake.84’ 113, 118

The CO; source strength
of aquatic systems may, on the
other hand, increase, due to
combined effects of solar UV
radiation and climate change on .
carbon cycling. Climate-related
changes in continental
hydrological cycles, for exam-
ple, amplification of precipi-

tation extremes®, as well as B s
land-use changes,''” are likely S

to increase the input of organic B | | [ r_-;mm day ")

carbon into streams, rivers and 05-04-03-02-01 0 0102030405
lakes (Fig. 5-5),1’ 6, 81,93, 114, 211, pjg_ 5.5, Multi-model mean changes in runoff (mm day ') for the
218 cDOM concentrations in IPCC Special Report Emission Scenarios A1B (balanced) for the
. . period 2080 to 2099 relative to 1980 to 1999 (see
high ~ latitude . lakes —of the http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf). ~ Changes
Northern Hemisphere may be are annual means for this scenario. Runoff changes are shown at
enhanced by this increased land points with valid data from at least 10 models (Figure 10.12(c)
runoff of CDOM into lakes and  in Meehl et al."*).

rivers from surrounding areas
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caused by warming, melting of ice and snow cover, and precipitation changes. Enhanced
export of organic carbon from terrestrial to marine systems is a likely consequence of these
changes.'® '8 213- 218 Runoff is projected to be particularly pronounced in the circumpolar
regions of the Northern Hemisphere where large stocks of organic carbon are stored (Fig. 5-
5). The net result will be increased release of soil organic carbon, including CDOM, in
circumpolar regions into streams and rivers and increased continental runoff of the CDOM
will occur. Thus mobilized, the CDOM will be much more susceptible to UV-induced
photodegradation to CO, and other trace gases.

The organic carbon that runs off into aquatic systems likely will be substantially de-
composed by several processes, including those initiated by solar UV radiation. Terrestrially
derived DOM exhibits a higher photoreactivity than DOM derived from aquatic microbial
sources because of differences in chemical composition. ' % 80 99- 139, 140, 154,135, 171, 191, 194, 208
Photochemically reactive DOM is subject to UV-induced transformations®! % 1% 210 212pa¢
enhance DOM bioavailability to heterotrophic bacteria®" * 1" 21% 2% and_ in turn, microbial
respiration with production of CO, and consumption of 0,.'>?!"* Mineralization of DOM
also occurs as a purely abiotic, UV-induced process.'® 127 13 140. 171.212.227. 229 ppy 540 reactions
driven by solar UV radiation also release DOM from sediments.'”® '® The rate of UV-
induced DOM transformations and mineralization is likely to increase as a consequence of
enhanced stratification and acidification of aquatic systems.’’: #4212 232233

Effects involving interactions between solar UV radiation and climate
change on nutrient cycling

The combined effects of solar UV radiation and climate change can affect the concentration
and biological availability of major nutrients and of essential metals, which determine, in
part, the rate of photosynthesis by terrestrial plants and phytoplankton. We focus on nitrogen
in its various chemical forms since nitrogen is one of the key nutrients in terrestrial and
aquatic ecosystems.”” With regard to essential metals, we concentrate on the effects of solar
UV radiation and climate change on iron bioavailability, since iron is required for biological
photosynthesis and N, fixation by phytoplankton.**

Nitrogen inputs

In the case of terrestrial ecosystems, the effects of UV-B radiation on biological nitrogen fix-
ation are variable, both for fixation by free-living microbes and for those in symbiosis with
higher plants, such as legumes.”> There is evidence that UV-B radiation can affect nitrogen-
fixation in legumes and by cyanobacteria (free living or in symbiotic relationships with plants
such as algae and lichens),”" °* #** but we are unaware of any recent research into this effect.
Anthropogenic nitrogen inputs are increasingly important in many terrestrial systems as ferti-
lizers in managed ecosystems, * and more generally from nitrogenous air pollutants. Howev-
er, interactions between these changing nitrogen inputs and changing solar UV radiation re-
main poorly understood (Chapter 3).

A substantial part of the ocean (67% - 75%) has been estimated to be limited by
nitrogen>, particularly by nitrate (NO3)."” However, limitation of phytoplankton
photosynthesis by nitrate is predicted to increase because of climate-related increase in low-
and mid-latitude regions in bacterial denitrification and increases in thermal stratification of
marine systems that reduce delivery of nutrients from deeper water layers into the surface
layer where photosynthesis occurs.”” ** ''® As a result, the ability of phytoplankton to take up
N, may become increasingly important.” '** Nitrogen fixation in the ocean is inhibited by
exposure to UV radiation through damage to N,-fixing organisms.*® Therefore, atmospheric
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changes that affect solar UV radiation and changes in upper ocean CDOM (discussed earlier)
that affect UV penetration into the ocean are likely to be linked to changes in oceanic N,
fixation. Nitrogen derived from riverine inputs and atmospheric deposition is an important
and increasing source of nitrogen for organisms in the ocean.”” ™

Some oceanic areas, the so-called high-nutrient, low-chlorophyll regions, are co-
limited by trace metals, particularly iron, which is required for N, fixation by
phy‘[oplankton.228 PrecipitationB’ 105, 219 and deposition of continental dust'”® are important
natural sources of iron to the ocean that are sensitive to climate change. However, not all
chemical forms of iron are available to phytoplankton. It is likely that weakly bound,
dissolved Fe(IlI) is highly bioavailable.'*® For the formation of weakly bound Fe(III) under
seawater conditions, Fe(Il) is a key intermediate species. Important pathways of Fe(Il)
formation are UV-induced reactions of iron oxides®" ™ and of dissolved Fe(III) species.'* **
101219 1 addition, strongly bound Fe(IIl) species can be reduced to Fe(I) by enzymatic
reactions, the efficiency of which has been shown to decrease with decreasing pH .>*° Hence,
while solar UV radiation generally increases iron bioavailability, effects of climate change
such as ocean acidification may have the opposite effect.

Nutrient release by decomposition

The effects of UV-B radiation on litter decomposition in terrestrial ecosystems are complex,
involving direct effects of photochemical degradation and indirect biological effects on
decomposer organisms (Chapter 4). Extending this to the release of nutrients from
decomposing litter is difficult, as there are very few studies that have directly evaluated the
effects of UV radiation on litter nutrient release. However, several recent studies on
photodegradation in semi-arid ecosystems have shown that litter exposed to UV radiation
demonstrated reduced N immobilization®” '®* or no N immobilization in semi-arid
ecosystems independent of direct UV effects.*” '°® It is currently not clear whether these
effects are biotically or abiotically driven, but the effects do suggest that the lack of
immobilization of nitrogen may result in increased N losses over the longer term, affecting
carbon-nitrogen interactions in these ecosystems. As climate change may lead to increases in
arid zones which could increase the relative importance of photodegradation, it appears that
there may be an impact on nitrogen dynamics as well as on the demonstrated effects on
carbon litter quality.”

In contrast, dissolved organic nitrogen (DON) is one of the important constituents of
N from continental runoff and atmospheric deposition, and UV-induced photoammonification
of this DON can be an important and increasing source of biologically available N.2% *** As
discussed earlier, there is substantial evidence that productivity has been decreasing in the
mid-latitudes and has been very low in the tropics for some time. Thus, although inputs of
nitrogen, including DON, from land can stimulate productivity and release of important
greenhouse gases such as nitrous oxide in coastal regions of the ocean (Fig. 5-7 and related
discussion below), it is clear that reduction of nutrient upwelling in the open ocean has had
and will continue to have a much larger effect on reducing productivity on a global basis.

Loss of nutrients

Biological processes convert the reactive nitrogen in terrestrial systems into gases such as
ammonium, nitric oxide and nitrous oxide. Ecosystem-atmosphere exchange of these gases is
discussed in more detail later in the assessment.

Abiotic processes that are affected by climate change also contribute to nutrient loss.
In arid ecosystems, such as deserts, abiotic processes accelerate the flux of nitrogen from the
land surface to the atmosphere.'”” The high soil-surface temperatures (greater than 50°C),
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driven by solar radiation in open ecosystems, were a significant cause of abiotic nitrogen loss
in Mojave Desert soils. Other studies that were assessed in our last quadrennial report™ ***
indicated that solar UV radiation was involved in the decomposition of plant litter in other
arid ecosystems and thus UV radiation also may play a role in nitrogen loss under such con-
ditions (see above). Photodegradation of the lignin content of litter may enhance its biological
lability for decomposers (Chapter 3). Fires, leaching and runoff are other important pathways
for nutrient loss from terrestrial ecosystems that are affected by climate change.’

Combined effects of solar UV radiation and climate change on the biogeo-
chemistry of trace gases and aerosols

In addition to carbon dioxide, terrestrial and aquatic ecosystems are sources and sinks of aer-
osols and trace gases such as methane, nitrogen oxides, nitrous oxide, halogens, and sulphur
compounds (Tables 5-1 and 5-2). Climate change affects the emissions of trace gases from
terrestrial and aquatic ecosystems and the formation of aerosols, but also the removal of aero-
sols by rainfall. These effects of climate change will interact with those of solar UV radiation
to alter the spatial distribution and net exchange of trace gases and aerosols, which in turn
affect solar UV radiation and climate.

Methane

Of the long-lived greenhouse gases, methane (CH4) produces the second highest radiative
forcing after CO, (Table 5-2).70 As with CO,, the atmospheric concentration of methane in
recent decades is the highest ever''’ and these increases can be attributed to a number of hu-
man activities.”” However, unlike the continuing, well-defined and well-understood increase
in COs, the processes driving changes in methane concentrations remain relatively poorly un-
derstood. For example the known sources of methane appear to underestimate methane pro-
duced in the tropics.'”>* *® The influence of UV-B radiation on methane budgets has been
the subject of considerable research since our last assessment, due to the discovery of a new
source of methane production from terrestrial plants.'*

Terrestrial ecosystems have long been known to be a major natural source of methane,
but production was thought to be confined to wetlands where plants were growing in poorly-
aerated, water-saturated soils with very low oxygen concentrations. We reported previously
that increased UV-B irradiance could reduce emissions of methane from peatland ecosys-
tems and paddy fields, and this was partly explained by changes in plant morphology that af-
fected the movement of methane from the soil to the atmosphere.'*” However, the observa-
tion of Keppler and colleagues'® that methane could be produced by plants growing in well-
aerated soils ( i.e. aerobic conditions), and that the rate of production was much greater in
sunlight than in the dark, has led to considerable discussion of both the contribution of terres-
trial vegetation to global methane production and the role of UV-B radiation.

The observation of methane production from plants grown in aerobic conditions has
proved to be highly controversial,®> © - %6 10617317 sart]y because not all studies have been
able to detect acrobic methane production under laboratory conditions.'>® However, there
is now good evidence that this is a photochemical process brought about by previously unde-
fined chemical reactions occurring in plant cell walls.'” * ' Despite the improved under-
standing of the underlying processes, the contribution of aerobic methane production from
terrestrial vegetation to global methane remains unclear. Measurements of the exchange of
methane between the atmosphere and terrestrial ecosystems other than wetlands are variable
and some are sinks of methane rather than sources.”” *> '** Calculations to scale-up from la-
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boratory measurements of aerobic methane production to estimate its contribution to global
methane budgets are also extremely variable, and while early estimates suggested a substan-
tial role,'”” the current balance of evidence suggests a rather minor contribution compared
with other sources.”” % '°* For example, a recent study concluded that aerobic emissions of
methane from UV irradiation of plants corresponded to <0.2% of total global methane
sources (Fig. 5-6).%° This conclusion was based on modelled estimates that used an action
spectrum for photoproduction of methane from pectin,'** a common component of plant
leaves. We agree with the recent review'*" that quantification of all sources of methane is
important in setting global methane inventories, and this should include assessment of the
roles of terrestrial plants.

Carbon monoxide

The carbon monoxide (CO)
concentration in the
troposphere has important
effects on atmospheric com-
position through its effects on
hydroxyl radical (*OH)
concentration (Chapter 6).
CO makes a small direct
contribution to radiative forc-

ing (Table 5-2) but calcu- p—— .

lations taking into account its | _—

interactions with  aerosols . _
result in substantial increases 0 5 10 15 20 CHymgm™*yr'

in its estimated role in
radiative forcing. 182 Natural Fig. 5-6. Estimated total annual aerobic methane production indlzlged by
sources have been estimated solar UV irradiation of plant foliage (adopted from Bloom et al.”). The
action spectrum for methane production used for this modelling simula-
to account for up t070half of tion was obtained from McLeod et al.'** The global distribution for me-
global CO emissions, ™ and of  thane production from this source was estimated based on spectrally
these, wildfires, especially  weighted global UV irradiance, Moderate Resolution Image Spectrora-
their smouldering phase, are diometer (MODIS) leaf area index (LAI), and air temperature at 2 m (©
2010 by John Wiley and Sons, Inc.; license no. 2523120844682, repro-

an important source that is duced with permission).

increasing ~ with  climate
change. Carbon monoxide is one of the main trace gases derived from UV-induced
photochemical reactions of living and non-living organic matter in terrestrial and aquatic
ecosystems. The projected global increases in open, arid ecosystems also will likely enhance
this terrestrial source of CO. It is well-established that plant litter from a variety of species
can photochemically produce CO.*> A number of recent studies have confirmed that the
photoproduction of carbon monoxide in the ocean and freshwaters is primarily linked to
CDOM photoreactions, although particulate organic matter also can photoproduce CO.** ?’
Several recent studies have indicated that CO photoproduction in the ocean is approximately
balanced by microbial consumption,'** "% 193226 22% a1though microbial uptake is somewhat
less important in northern waters”*® and can be photoinhibited during daytime.*”® CO is a
reactive gas that has important effects on chemical reactions in the marine boundary layer and
photoproduction of CO from CDOM may be its dominant source in remote areas of the

ocean.232
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Nitrogen compounds

Ecosystem-atmosphere exchange of reactive nitrogen (ammonium and nitrogen oxide gases)
is influenced by UV-B radiation and climate change.’™ ® **? A number of human activities
introduce reactive nitrogen into ecosystems’* and direct uptake by terrestrial vegetation is one
important sink for these compounds.'®® Nitrogen oxides (NOx = NO + NO,) ) are a class of
reactive trace gases that strongly influence atmospheric chemistry including the formation of
ozone and aerosols. An earlier study had shown that solar UV-B radiation could directly
cause the release of NOy from plant shoots by photodegrading nitrate or nitric acid on the leaf
surface.'® A recent report has provided additional evidence that there is an exchange of NOj
between the plants and the atmosphere that depends on UV irradiance and climatic factors
such as periods of drought.'®*

Nitrous oxide (N;O) is an important greenhouse and ozone-depleting gas (Table 5-2)
and its atmospheric concentration is rising. The bulk of emissions come from natural sources
and the remainder from human activities, especially agricultural practices.””> Nitrous oxide
and other greenhouse gases could be an unintended by-product of the agricultural production
of biofuels.** '*> The oceans are another important source of nitrous oxide to the atmosphere
and increasing inputs of reactive N into the oceans likely will enhance marine nitrous oxide
emissions.”” Oxygen depletion in the ocean, coupled with increased inputs of reactive nitro-
gen from rivers and the atmosphere, will lead to changes in nitrogen cycling that will result
in increased production and release of nitrous oxide that will further increase global warming
as well as stratospheric ozone depletion (Fig. 5-7).*° As CFC emissions drop in response to
compliance to the Montreal Protocol, the importance of nitrous oxide as an ozone depleting
substance (ODS) will escalate throughout the 21 century.'®® Thus, although changes in UV
radiation at the Earth®s surface may not directly affect processes that influence nitrous oxide
emissions, nitrous oxide production likely will be affected by perturbations of other biogeo-
chemical cycles that are linked to nitrogen cycling.

Halogen compounds PRESEN

Naturally-produced -
halogen compounds
((ZI{I3r3, (3I{2I3r2, (:Iigl,
CH;Cl, and CH;3Br) influ-
ence atmospheric ozone
depletion. South Ameri-
can forests are the major
global source of methyl

chloride (CH;Cl) but not

methyl bromide Fig. 5-7. Conceptualization of future changes in hypoxic regions of the
(CH3Br),77 while temper- ~ ocean that may lead to enhanced nitrous oxide emissions to the atmosphere,
especially from coastal regions. Climate changes are forecasted to increase

gt i

Dtars e Froe whore ibmi Dvidmng e brome whaee fam]

T pea—— - w0 e (G i b

ate woodland ecosystems hypoxia in the upper layers of the coastal ocean. The resulting oxygen-

are a net source of depleted waters have favourable conditions for high production of nitrous
CH3BI‘.57 The Arctic tun-  oxide (From L. A. Codispoti, Interesting times for marine N20, Science,
dra is a regional sink for 2010, 327, 1339-1340. Reprinted with permission from AAAS).

both CH;Br and

CH;CL** Coastal vegetation may be net sources of methyl halides, or net
sinks.”'* 2" Even within individual ecosystems, methyl halide fluxes vary depending, for
example, on weather, the extent of flooding, and the removal of vegetation,”® 2> 1¢7- 214 215
Soil fungi have been confirmed as potential sources of methyl halides.® Climate change may
affect halocarbon budgets from terrestrial systems through warming and decreasing soil

58, 121, 122, 167

The Environmental Effects Assessment Panel Report for 2010 165



Effects of solar UV radiation and climate change on biogeochemical cycling

moisture.’”” ** Also agriculture and horticulture remain significant sources of methyl
bromide, which has been used as a soil fumigant, but recent research has demonstrated the

efficacy of a number of alternative technologies that may ultimately replace methyl
bromide. 1 78 97 172

Marine ecosystems, particularly tropical oceanic regions, are also important sources
of halogen compounds, above all bromoform (CHBr;), that are released from
phytoplankton.?® 3* 19 57 Ty polar marine regions, e.g. the Southern Ocean, emissions of
halocarbons are in part due to halocarbon production by ice algae liberated from the sea ice,**
a process that may be enhanced over the short term by accelerated sea-ice melting. Methyl
chloride (CH3Cl) has been increasing over the South Pole in response to climate change””
and possibly to UV-induced photoreactions involving chloride and CDOM.'*  Increased
stratification may reduce outgassing of bromoform by limiting mixing between the surface
and the subsurface layer where maximum concentrations are located.”” Climate change-
related increased emissions of halocarbons from terrestrial and aquatic ecosystems and
reactions of chlorine- and bromine- monoxide radicals, formed in UV-induced processes,
with stratospheric ozone and trace gases such as DMS? could contribute to UV-mediated,
positive feedbacks to climate change.

Aerosols

Atmospheric aerosols play a major role in local air quality and the global radiation budget.'*”

82 An interesting link between climate change and UV radiation is the interactions of the
physical climate system with aerosols, for example, due to rainfall and other precipitation that
removes aerosols from the atmosphere. A newly identified feedback is the interactions be-
tween the physical climate system and biogeochemistry. An excellent example is that as CO,
increases, there are changes in the hydrologic cycle (i.e. the regional distribution and timing
of precipitation) that alters the distributions of aerosols and gases. The attenuation of sunlight
by aerosols and clouds represents another mostly overlooked interaction between climate
change, stratospheric ozone depletion and UV radiation, since light attenuation by these sub-
stances affects UV radiation as well as longer wavelengths. As a result, changes in clouds
and aerosols are likely to result in changes in UV radiation reaching Earth*s surface that for
many parts of the globe are at least as great as those caused by ozone depletion (Chapter 1).

Changes in UV radiation may affect phytoplankton emissions of sulphur compounds
and hydrocarbons that form aerosols that, in turn, affect clouds over the ocean. DMS is the
major source of volatile sulphur to the marine atmosphere. UV-B radiation plays a major role
in the cycling of DMS and related compounds both in polar™® and temperate oceans.'”® DMS
concentrations in the sub-polar and sub-tropical North Pacific have increased linearly be-
tween 1970 and 2000 with a concomitant increase of the DMS flux from sea to air.*'® Melting
sea ice can release substantial quantities of DMS, leading to elevated concentration of DMS
in seawater,””’” and this input would be expected to increase due to climate change. The ef-
fects of changing UV radiation on DMS are likely to be complex. Both UV radiation and ni-
trogen limitation have enhanced the algal metabolism that produces DMS.'** 7 On the other
hand, UV exposure can reduce nitrogen limitation in surface waters,'®* 2 and this process
may decrease algal DMS production. Furthermore, photolysis of DMS is an important sink of
DMS in the upper ocean.'** >

Volatile organic compounds (VOCs) produced by terrestrial plants can contribute to
aerosol production.''” '*® The effects of UV-B radiation on these emissions appear to vary
between different types of plant VOC,'"2** #*? but new evidence has shown that compounds
produced by plants in response to UV exposure can form a major element of VOC emission
and aerosol production from desert ecosystems.' >’
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Combined effects of solar UV radiation and climate change on contami-
nants in aquatic and terrestrial ecosystems

The effects of solar UV radiation on atmospheric pollutants have been recently assessed
(Chapter 1). In addition, the future projected changes in solar UV radiation (Chapter 1) could
affect the quality of surface freshwaters by reducing UV-induced degradation of organic and
inorganic contaminants and permitting longer range transport of these contaminants through
the atmosphere. These changes may increase or decrease the toxicity of pollutants, depend-
ing on the toxicity of photoproducts relative to the initial pollutant in the case of organic pol-
lutants. With regard to inorganic pollutants, we focus on two metals (mercury and copper)
that are global pollutants that affect the health of ecosystems as well as human health, and the
toxicity of which is likely to increase upon UV-induced transformations.

Inorganic contaminants

Mercury. Mercury is known as a global pollutant that is widespread in the environment, e.g.,
in the North Pacific Ocean.'”® In the troposphere, mercury in its elemental form (Gaseous El-
emental Mercury, GEM) is transported over long distances and eventually deposited, e.g., in
Antarctic ice and snow.”** BrO and Br produced by UV-induced chemistry (see above under
,Halogen compounds®) rapidly remove GEM from the atmosphere by oxidizing it.** Mercury
isotopic composition in the Arctic is strongly influenced by sunlight-induced photoreactions
of mercury in the snow.'® In aquatic systems the oxidation of dissolved gaseous mercury
(DGM) to divalent mercury (Hg(Il)) is induced by solar UV radiation.® '#!- 192 13%: 217 Bj,_
logical processes then convert Hg(Il) to methyl mercury,'®® '** 2°2 which is the biologically
available, and thus harmful form of mercury that accumulates in the aquatic food web.*® '’
Fish and other seafood are important sources of mercury in the human diet.'> Overall, rates
of bioaccumulation and transfer through the aquatic food web are susceptible to ecological,
biogeochemical and climatic influences.'”® Although poorly understood, it is likely that cli-
mate change related shifts in atmospheric circulation and precipitation patterns, coupled with
shifts in the global distribution of UV-B radiation, will strongly alter the distribution and bio-
logical impacts of mercury-containing compounds.

Copper. UV-B-mediated degradation of DOM may enhance the toxicity of copper. The
complexation of copper (Cu) by DOM regulates Cu toxicity by decreasing the concentration
of the bioavailable form of copper, which is Cu®*".*® UV-mediated degradation of DOM
compounds that form strong complexes with copper has been shown to increase the concen-
tration of the bioavailable and hence toxic form of Cu.?® "' '* This phenomenon may be
especially critical in freshwater aquatic ecosystems that receive sewage discharges with high
concentrations of copper.

Organic contaminants

Many synthetic organic chemicals accumulate in organisms and hence in food chains, includ-
ing the human food chain.'” The environmental fate of these organic pollutants depends on
many factors,'”” and will be subject to the effects of various elements of climate change.'®
UV radiation also affects the environmental chemistry of organic pollutants such as pesti-
cides, accelerating the rate of degradation in water, ice and snow, 2% °1- 165 poth through di-
rect and indirect photodegradation mediated by reactive oxygen species.® These processes
may remove the original pollutant, but the degradation products may also be toxic to organ-
isms and damaging to human health.
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Concluding remarks

As this assessment makes clear, the interactions between changing solar UV radiation,
climate change and other drivers of global change are diverse and complex, but while there is
still great uncertainty in many aspects of these interactions, in our view it is now possible to
make an initial assessment of the direction of change for a range of interactions and their
relative magnitude. Table 5-3 summarizes the results of the more detailed considerations
provided in this assessment.

There is no doubt that interactions between climate change and UV radiation will act
concurrently on the environment throughout the 21st century. Looking ahead over that time-
period, climate models are taking into account carbon cycle-climate feedbacks.*! ¥ 13- 18- 124,
123, 168, 174. 235 These models rarely include the interactions between solar UV radiation and
climate on biogeochemical cycling, but as indicated above, the understanding of the effects of
solar UV radiation on biogeochemical cycling that has come from research driven by
concerns over stratospheric ozone depletion, provides clear indications that such interactions
may be wide-ranging and substantial. Should UV-related impacts on the carbon cycle alter
the predictive ability of projecting atmospheric CO, concentrations in the future, this will
increase the cascading levels of uncertainty in the upcoming Fifth Assessment Report of the
IPCC (AR5) simulations of climate change (http://www.ipcc.ch/activities/activities.htm).*®
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Summary

Air pollution will be directly influenced by future changes in emissions of pollutants, climate,
and stratospheric ozone, and will have significant consequences for human health and the en-
vironment. UV radiation is one of the controlling factors for the formation of photochemical
smog, which includes tropospheric ozone (O3) and aerosols; it also initiates the production of
hydroxyl radicals (-OH), which control the amount of many climate- and ozone-relevant gas-
es (e.g., methane and HCFCs) in the atmosphere. Numerical models predict that future
changes in UV radiation and climate will modify the trends and geographic distribution of
‘OH, thus affecting the formation of photochemical smog in many urban and regional areas.
Concentrations of ‘OH are predicted to decrease globally by an average of 20% by 2100, with
local concentrations varying by as much as a factor of two above and below current values.
However, significant differences between modelled and measured values in a limited number
of case studies show that chemistry of hydroxyl radicals in the atmosphere is not fully under-
stood. Photochemically produced tropospheric ozone is projected to increase. If emissions
of anthropogenic air pollutants from combustion of fossil fuels, burning of biomass, and agri-
cultural activities continue to increase, concentrations of tropospheric O3 will tend to increase
over the next 20-40 years in certain regions of low and middle latitudes because of interac-
tions of emissions, chemical processes, and climate change. Climate-driven increases in
temperature and humidity will also increase production of tropospheric O3 in polluted re-
gions, but reduce it in more pristine regions. Higher temperatures tend to increase emissions
of nitrogen oxides (NOx) from some soils and release of biogenic volatile organic com-
pounds (VOCs) from vegetation, leading to greater background concentrations of ozone in
the troposphere. The net effects of future changes in UV radiation, meteorological conditions,
and anthropogenic emissions may be large, thus posing challenges for prediction and man-
agement of air quality. Aerosols composed of organic substances have a major role in both
climate and air quality, and contribute a large uncertainty to the energy budget of the atmos-
phere. These aerosols are mostly formed via the UV-initiated oxidation of VOCs from an-
thropogenic and biogenic sources, although the details of the chemistry are still poorly under-
stood and current models under-predict their abundance. A better understanding of their for-
mation, chemical composition, and optical properties is required to assess their significance
for air quality and to better quantify their direct and indirect radiative forcing of climate.
Emissions of compounds containing fluorine will continue to have effects on the chemistry of
the atmosphere and on climate change. The HCFCs and HFCs used as substitutes for ozone-
depleting CFCs can break down into trifluoroacetic acid (TFA), which will accumulate in the
oceans, salt lakes, and playas. Based on historical use and projections of future uses, includ-
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ing new products entering the market, such as the fluoro-olefins, increased loadings of TFA
in these environmental sinks will be small. Even when added to existing amounts from natu-
ral sources, risks to humans or the environment from the historical use of CFCs or continued
use of their replacements is judged to be negligible.

Introduction

Poor air quality (from the presence of pollutants in the atmosphere) plays a significant role in
both human and environmental health. Globally, outdoor air pollution is estimated to lead to
850,000 premature deaths each year, mostly from respiratory and cardiovascular diseases.”™
% The cost of crop damage in the U.S. was estimated between 3.5 and 6.1 billion dollars
annually.”’ These problems are expected to continue well into the future: Predictions based
on numerical models indicate that annual deaths due to ground-level oxidants alone could
reach 2 million in 2050,* while the annual cost of crop damage is predicted to be of the order
of US$20 billion by 2030.”® Variations in stratospheric ozone and climate change are im-
portant drivers of changes in the production and fate of air pollutants.

Solar UV-B radiation (280 — 315 nm) and UV-A (315 — 400 nm) provide the energy
for many of the chemical transformations that occur in the atmosphere. These wavelengths
photo-dissociate (break down via photolysis) a number of important atmospheric gases, €.g.
nitrogen dioxide (NO;), formaldehyde (HCHO), and ozone (Os). These processes will be al-
tered by anything that changes the amount of UV radiation, including the elevation of the sun
and attenuation by clouds and some air pollutants. Decreases in stratospheric ozone lead to
enhanced UV-B radiation in the lower atmosphere (troposphere), and increase the rate of the
photolytic processes.'” Increasing temperature from climate change also increases the rates
of many reactions, leading to higher concentrations of surface O3 in polluted regions, and
causing increments in mortality that could exceed those resulting from climate-related in-
crease in storminess.” As a result, there is a direct link between stratospheric ozone deple-
tion, climate change, and air quality.

The replacements for the original ozone-depleting chemicals (chlorofluorocarbons
(CFCs)), such as the hydrochlorofluorocarbons (HCFCs) and the hydrofluorocarbons (HFCs),
decompose primarily in the lower atmosphere. This decomposition can produce breakdown
products, such as trifluoracetic acid, that need to be considered for their impacts on humans
and the environment.'®

Here we present an assessment of recent work on our understanding of the impacts of
ozone depletion, ozone depleting chemicals and their replacements on atmospheric composi-
tion and how these may interact with climate change to adversely affect the environment and
human health. This is an update of the information in the previous report.'®

Photochemistry in the troposphere

Solar UV radiation is a major driver of tropospheric chemistry, causing photo-dissociation of
various relatively stable molecules into more reactive fragments. These fragments initiate a
series of chemical reactions that fundamentally change the composition of the atmosphere at
all scales, from urban to regional to global, and affect many environmental issues including
air quality, visibility, formation of particles and clouds, acidification of precipitation, and life-
times of removal from the atmosphere of gases including sulfur and nitrogen oxides, me-
thane, and other volatile organic compounds (VOCs), as well as HFCs and HCFCs that affect
the ozone layer and climate.
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A simplified schematic of tropospheric chemistry is given in Fig. 6-1. The key initiating re-
action is the interaction of tropospheric O3 with UV photons (shown as hv in Fig. 6-1) lead-
ing to the photo-dissociation, or photolysis, of O3 to produce electronically excited oxygen
atoms, O('D), and molecular oxygen O, (Fig. 6-1, reaction 1). A fraction of O('D) atoms can
react with atmospheric water vapour, H,O, to form hydroxyl radicals, -OH (Fig. 6-1, reaction
2).

As shown in Table
1-1 in Chapter 1, for each ~ ©g+ hv(A <320 nm) = O('D) + O, (1)
percent decrease in the
ozone column amount, the O('D) + H,O = “OH + “OH  (2)
rate coefficient for reaction
1 (Fig. 6-1) increases by ca  “OH+ NO, - HNO, (nitric acid) (3)
1.5%. This non-linear re-
sponse means that tropo- ~ ‘OH+ S0, .. 2 HO, + H,SO, (sulfuric acid) (4)
spheric chemistry is very
sensitive to the amounts of ~ “OH+ hydrocarbons - HO, + partly oxidized organics (5)
stratospheric ozone. This
has been a clear stress point ~ HOz + NO = “OH + NO, (6)
for change in stratospheric
ozone as changes in concen- ~ NO, + hv (A <420 nm) > NO + O (7)
tration of -OH, globally av-
eraged, could have signifi- ‘O+0,2>0y (8)
cant impacts on the chemi-
cal composition of the at-
mosphere.

Fig. 6-1. Key reactions in the chemistry of air pollutants in the tropo-
sphere.

The hydroxyl radical is widely regarded as the cleaning agent of the atmosphere be-
cause it converts many atmospheric chemicals, including major air pollutants, into forms that
are more water-soluble and therefore more easily removed from the atmosphere in precipita-
tion. For example, -‘OH reacts with nitrogen and sulphur dioxides to make the corresponding
nitric and sulfuric acids, and with hydrocarbons and other VOCs to make a variety of partly
oxidized organics (aldehydes, alcohols, ketones, etc.) (Fig. 6-1, reactions 3-5). Many of the
reactions involve multiple steps including catalytic cycles.”’

Some of these gaseous products tend to have low vapour pressures and thus can con-
dense to form air-borne particles (solid and liquid aerosols), with associated reductions in
transparency of the atmosphere and damage to human health, especially in highly polluted
urban areas. The hydroperoxy radical (HO;) and its organic analogues, produced in the
above reactions, are also the major source of tropospheric ozone, via the sequence shown in
Fig. 6-1, reactions 6-8.

UV-B radiation is important for the initial production of -OH radicals (reaction 1 fol-
lowed by reaction 2, Fig. 6-1), while UV-A radiation is important for the formation of ambi-
ent ozone (reaction 7 followed by reaction 8, Fig. 6-1). Although not shown in the simplified
scheme of Fig. 6-1, the UV photolysis of several other molecules also can be important in
specific environments, e.g., formaldehyde and nitrous acid in urban areas, peroxides in more
pristine areas, and ketones in the upper troposphere.

In addition to UV radiation, other factors also influence the amounts of -OH, O3, and
aerosols in the atmosphere. These include emission of nitrogen oxides (NOx = NO + NO,)
and VOCs, temperature, water vapour, and meteorological transport and mixing processes,
some of which are also influenced by changes in climate.
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Hydroxyl radicals in the atmosphere — a product of photolysis by UV

The UV-generated hydroxyl radical, -OH, is central to the chemistry of the troposphere, as
discussed above; yet accurate measurements of its amounts in the atmosphere are extremely
challenging both to perform and to interpret. The measurement difficulty arises because -OH
is highly reactive and therefore present in very small amounts, typically less than one part per
trillion (ppt, equal to one ‘OH molecule for every trillion air molecules). Several techniques
for -OH measurement have been developed and refined in recent years, and comparisons
among them show that they are highly correlated, but calibration of such measurements re-
mains an issue® causing considerable uncertainty in absolute measurements of concentrations
of -OH.

The very short lifetime (< 1 s) also means that the concentration of -OH is very varia-
ble, both in space and in time. This makes the interpretation of measurements difficult be-
cause amounts of ‘OH measured at any location or time are unlikely to be representative of
large geographic scales (e.g. regional, continental, hemispheric, or global), of vertical distri-
butions (near-surface vs. middle and upper troposphere), or of temporal variations (daytime
vs. night-time, seasonal cycles, etc.). Thus, even if the uncertainty of direct -OH measure-
ments were reduced, such measurements would not be useful for assessing global changes in
‘OH concentrations (and the associated long-term changes in the global atmospheric self-
cleaning ability), as a result of trends in UV radiation due to depletion of O3, climate change,
or increased global pollution.

Alternative less direct methods for inferring globally averaged concentrations of -OH
rely on observations of long-term changes in the concentrations of compounds whose life-
times are determined by ‘OH radicals. A compound frequently used for this purpose is me-
thyl chloroform, an industrial solvent present in the atmosphere. Methyl chloroform is an-
thropogenically produced and is removed from the atmosphere mainly by reaction with -OH.
In principle, the measurement of the amount of methyl chloroform in the atmosphere, cou-
pled with self-reported estimates of the amount emitted by industry into the atmosphere
should allow the global average concentration of ‘OH and any changes to be estimated.
However, such estimates have differed, depending on details of the analysis (e.g., > ). A
recent assessment of the global concentration of -OH'” determined from methyl chloroform
warns that the uncertainties in quantifying the transport of compounds through the atmos-
phere could limit the ability of this method to detect changes in ‘OH. New developments in
modelling a range of chemicals simultaneously in the atmosphere’® and the addition of long-
term records of volatile organic compounds®” offer opportunities to reduce some of these
modelling limitations in the future.

Possible changes in -OH since pre-industrial times have been summarized recently.*®
% No reliable observational proxies are known for such long-term changes, requiring reli-
ance on atmospheric chemistry-transport models and assumptions about historical emissions
of the compounds that affect -OH, especially nitrogen oxides (which tend to increase -OH)
and VOCs (which tend to decrease -OH). The production of ‘OH in the atmosphere is esti-
mated to have increased by 60 to 70% in the last century, approximately compensating for
increases in the rate of removal.”™* '  Depending on the model and assumptions used, con-
centrations of ‘OH may have decreased by less than 10% or as much as 33% since pre-
industrial times.

More recent changes in ‘OH in the last few decades have been influenced by varying
emissions of precursors, changes in tropospheric UV radiation associated with stratospheric
O3 depletion, as well as interannual variability. The global concentration of ‘OH due to
changes in atmospheric composition has been calculated to have decreased”' (0.8% per dec-
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ade over 1890 — 1990) and to have increased'® (0.8% per decade over 1990 — 2001), with a
high degree of uncertainty.* From a UV perspective, ‘OH has been calculated to have in-
creased by 3.5% due solely to depletion of stratospheric ozone®, although this trend is ex-
pected to reverse in future decades as stratospheric O3 returns to pre-1980 levels (see Chapter

).

The future of ‘OH in the atmosphere depends on a wide range of factors. As an ex-
ample of possible changes, Wild and Palmer'® have taken a scenario (SRES A2p)”" where, in
2100, the emission of VOCs, NOx, CO, and methane has approximately doubled over 2000
levels. However, the meteorology and stratospheric ozone is held constant so that the results
can isolate the impact of emissions. Under these conditions, the photochemically generated
ozone increases also by a factor closer to two. The ‘OH concentration, as shown in Fig. 6-2,
varies also by a factor of two, but with both significant increases and decreases. The net
change in ‘OH is a 20% reduction of its global concentration. However, this change is likely
to be reduced by climate change (increases in temperature and humidity). Isaksen et al.*
similarly conclude that the competing nature of the effects makes the overall trend of -OH in
the future unclear. Future changes in UV-B radiation will modify both the trends and distri-
bution of -OH in the troposphere. Global-scale reductions in ‘OH would have considerable
implications for the concentrations of many climate- and ozone-relevant gases in the atmos-
phere, e.g., if ‘OH is reduced by 20%, methane and HCFCs concentrations would increase by
about 20% even if their emissions were held constant.

Direct measurements of
‘OH can be useful for testing
current understanding of photo-
chemistry on short time scales,
especially when ancillary obser-
vations (e.g., of UV radiation,
temperature, humidity, O3, NOx,
carbon monoxide, and VOCs)
are available. Over the past sev-
eral decades, a general under-
standing has been developed of
the processes that control for-
mation of ‘OH and its destruc-

tion (e.g., 7. 224281y However, .
and due in part to the more ad- 08 075 09 11 125 16 2
vanced techniques for measuring Ratio of concentration of -OH (2100/1900)

OH and related species (esp e,_ Fig. 6-2. Ratio of the concentration of *OH in 2100 to that calcu-
cially the closely coupled radi-  j4req in1900 at the surface (from'”).
cals HO, and RO,), several re-

cent studies have shown that, while some aspects of ‘OH chemistry are well understood, other
aspects remain unexplained. Measurements in both polluted regions® and in unpolluted rain-
forest™ show concentrations of -OH that are several times higher than those expected using
accepted chemical pathways — see red and green (upper and middle) arrows in Fig. 6-3. The
higher concentration of ‘OH is suspected to stem from enhanced regeneration of -OH by cur-
rently unidentified atmospheric compounds indicated by the yellow (lower) arrows in Fig. 6-
3. Direct measurements of the total reactivity of -OH radicals also suggest a faster loss of -OH
than would be computed from the sum of all individually measured compounds known to re-
act with -OH.""®" Similar problems exist with the hydroperoxyl radical HO,, which, in urban
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environments with high concentrations of NOx, is observed at much higher concentrations
than predicted by models (e.g.,').

These recently dis-

covered discrepancies re- Oxidation of VOCs and CO
main largely unexplained oy
. i ¢ UV-B radiation
and are not yet considered % & yaes
n global chemistry- Ozone | OH | { HO, | | RO, |

transport models (e.g., HmWﬂ&raﬂan

those reviewed by IPCC ] ]
200739) used to estimate 7\ Addilional transformations implied by /
past, current, and future . . R e
trends of -OH. It is un-

clear to what extent the Fig. 6-3. Proposed changes in the chemistry of *OH- in the atmosphere.
new chemical pathways, The red (upper) and green (middle) arrows summarize the accepted reac-
when finally unravelled tions in a polluted atmosphere®® and the yellow (lower) arrows show the
and quantified, will change additional transformations, implied by measurements, for regenerating

. ’ *OH-. VOC = volatile organic compounds, CO = carbon monoxide, -OH =
these estimates, and fur-  pydroxyl radical, HO, = hydroperoxy radical, RO, = organic peroxy radi-
ther studies will clearly be  cals.

needed to re-evaluate how
tropospheric ‘OH is responding to changes in stratospheric O3, climate, and emissions of air
pollutants.

Tropospheric ozone

Tropospheric O3 is one of the most important regional-scale air pollutants, causing adverse
effects on respiratory health of humans,”" 7> % and decreases in crop production.”>*’ About
5-10% of the total atmospheric ozone column resides in the troposphere. Stratospheric ozone
can affect the quality of air at ground level directly by transport from the stratosphere and in-
directly via changes in photochemical processes.*’ The transport of stratospheric ozone and
photochemistry within the troposphere can be significantly modified by increased tempera-
tures and humidity resulting from climate change, through changes in atmospheric circulation
(including changes in stratosphere-troposphere exchange), changes in the hydrological cycle,
and changes in emissions of precursors of air pollutants.

The environmental impact of increases in ozone at ground level is widely acknowl-
edged.”® The World Health Organization (WHO) recommended air quality guideline for pro-
tection of human health was reduced in 2005 to an 8-h time-weighted mean concentration of
50 parts per billion by volume (ppbv). WHO notes that O3 from “natural causes” could occa-
sionally exceed the guideline.'”™ As a result, relatively small changes in ozone at ground lev-
el may have significant effects on measures of air quality through more frequent exceedences
of the guideline.

Pre-industrial values of tropospheric O3 were probably much lower than current val-
ues, especially in populated regions of the Northern Hemisphere.'” Since the mid-1980s,
concentrations of tropospheric Oz in a number of locations have increased at rates of 0.3 to
0.5 ppbv per year, mostly as a result of anthropogenic activity.'>?”*” Such estimates are log-
ically limited to sites where ground measurements exist. It would be better if more global
estimates based on measurements from satellites were possible. These have been attempted
using a number of satellites (e.g.,>°®), although this process is difficult as it involves measur-
ing the relatively small amount of Oj that lies below stratospheric O;. New satellite-borne
instrumentation and analyses are making significant advances in this area.*” '’ While the
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satellite observations are most sensitive to Osz in the mid troposphere (5 — 10 km above the
surface), this method has the potential to provide significant information about ground level
ozone levels.** Such information will be important in assessing the role of international im-
pacts on regional air quality, an area of significant on-going research.®

An analysis of air masses in the mid-troposphere (3—8 km above sea level) over west-
ern North America for the period 1995-2008, found significant increases in concentrations of
O3 (0.63 + 0.34 ppbv per year) during the spring months."> During spring, intercontinental
transport of O3 is most efficient, particularly in the prevailing westerlies between Asia and
North America. Even greater increases in concentrations of O3 (0.80 + 0.34 ppb per year)
were observed in air masses of Asian origin. This suggests that the rise in anthropogenic
emissions of precursors to O3 over Asia may be partly responsible for increases in tropo-
spheric O3 over western North America. This has significant implications for human and en-
vironmental health as well as for the impacts of climate change, either where the O3 forms, or
in regions to which O3 might be transported.

UV radiation exerts a strong influence on the formation and destruction of tropospher-
ic ozone, through the system of photochemical reactions shown in Fig. 6-1. Increases in UV
radiation are expected to decrease concentrations of tropospheric O3 in clean environments,
but increase concentrations of Os in polluted, NOx-rich environments.”> Recent work has
examined changes in UV radiation due to particulate pollutants (aerosols). Reduction of UV
radiation in urban areas due to the presence of aerosols has been observed, and this has been
found to reduce the rate of formation of ozone.'®

Predicting future changes presents significant technical challenges, as there is a need
to understand both global and small scale effects at the interface between the stratosphere and
troposphere and at ground level. Models have been improved to limit the tendencies to simu-
late too rapid transport of ozone from the stratosphere to ground level.”” " Similarly, the im-
pact of biases in temperature and humidity on modelled estimates of concentration of ozone
has been estimated.”* This work should improve confidence in performance of the models,
although the importance of quantifying stratosphere-troposphere exchange reliably remains a
challenge. In a number of regions in the northern hemisphere, an increase in temperature was
found to be correlated with higher concentrations of ozone.!” While very useful as an indica-
tor of likely atmospheric behaviour in a warming climate, such observations do not allow the
assessment of the relative importance of other contributing factors.

Detailed numerical models based on projections to 2050 (Fig. 6-4) and beyond, pre-
dict concentrations of tropospheric O3 to further increase up to 4 ppbv in the mid-latitudes
because of climate change and interactions of climate change with atmospheric chemistry.?
The drivers for this are a doubling of CO,, an assumed 50% increase in emissions of isoprene
from plant-cover, and a doubling of emissions of soil-derived NOx in conjunction with re-
leases from human activity,'"” plants (see Chapter 3) and from the ocean.”” However, other
models predict different geographical and temporal distributions of the changes in tropo-
spheric Os. For example, another study** shows maximum increases in O3 occurring by 2030
in the Middle East and Europe, in contrast to the more widespread changes shown in Fig. 6-
4C.

Predictions of changes in tropospheric O3 at a regional scale depend on the interplay
of several factors. Rising global emissions of anthropogenic air pollutants will tend to in-
crease Os3. However, climatic factors resulting in greater humidity will lead to greater rates of
destruction of Os in the tropics but not in the mid-latitudes, which are predicted to be drier.”’
Changes in precipitation and local circulation can also be significant.'’ Increased tempera-
tures of some soils can increase NOx emissions, leading to increases in Os.'” Climate-
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induced changes in atmospheric circulation may increase the stratosphere-to-troposphere O3
flux, leading to long-term changes in both stratospheric and tropospheric O;. In addition, bi-
ogenic emissions are sensitive to other climate variables including temperature, CO, and so-
lar radiation™® ''* and may affect future budgets of Os. As there is uncertainty in these pre-
dictions as well as in the interactions between O3 and factors related to climate change, the
final effects on O3 in the troposphere and stratosphere are unclear and additional information

will be needed to address this issue.

Changes in cloudiness could have

a profound effect on both O; and -OH, ~ Max_ season AO; (20502000 AClim) -
and atmospheric photochemistry in gen- A e B e e 10
eral. Numerical models indicate that S - A *r,:..'r""' 14 ¥ 6
clouds currently have only a modest im- ~ e, .J' ‘31,
pact on global O; averaged over the rad e x“‘i‘ ‘[.'; =14
tropqsphere, due to the offse‘F bptween - .1_7_- o Do | 19,
shading below cloud and radiation en- p \ /! . , :%
hancement above cloud (Fig. 6-5).'%" 2 Vo - -3
Regionally, however, the impact can be " :: £
large, and climate variations could lead " rEe . -38
to both an increase or decrease in cloudi-
ness. Changes in the vertical distribu- 25
tions of Oz and -‘OH can also be large.54 En
The impact on ground-level ;}
ozone of increased downward transport = a
of stratospheric ozone due to the control —0 &
of ozone-depleting substances under the -l
Montreal Protocol and climate change j,
has been estimated, assuming that there 3
is no change in emissions into the atmos- - ;g
phere other than an assumed increase in 7
greenhouse gases.''*  For simplicity, 25
photolysis has also been assumed to be 8
unaffected by stratospheric  ozone 3
change. While there is a large increase in # =y 3

transport of ozone into the troposphere
(43%), the climate model predicts little

change in O3 in the northern hemisphere ' g

. ; ;|
at ground level. However, in the southern ¢
hemisphere winter, an increase of 8 ppbv i) et

of Os, which represents an increase of ca

50%, and little change in summer are

. ST . Fig. 6-4. Predicted changes in surface ozone between
predicted. This highlights the importance 2000 and 2050.”° Panel A shows changes predicted for

9f inc}uding return of str.atosph.eric 0ZONC  4dditional emissions of precursors. Panel B shows the
in estimates of future air quality. HOw-  change in ozone predicted to result from changes in cli-
ever, the magnitude of the overall chang-  mate. Panel C shows the result for the combined impact

es will depend on the interplay of all the of increased emissions of precursors of O; and increases
factors discussed here resulting from climate change (reproduced with permis-

sion from the Royal Society).
In contrast to the adverse direct
effects of tropospheric O3 on human health, in plants the physiological responses to future
climate change (increased dryness and CO,) will decrease uptake of O3, mitigating the impact
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of increases in O3 on crop production in these regions. In areas with greater warming and
less drying, such as in northern
latitudes, risks of ozone dam-

age to crops have been project- 200
ed to increase because of in-
creasing hemispheric transport
of pollution leading to greater
concentrations of ozone in the
growing season when plants
are more sensitive.”” Drying as
a result of climate change
could also have an impact on
the frequency and extent of
fires, and thus affect the re- 1000
gional atmospheric burdens of 60 30 0 30 60
aerosols and other pollutants. Latitude

These different regional vul- Fig. 6-5. Prediction of the change in the rate of photolysis of NO,
nerabilities will need to be  from calculations that include and exclude clouds.'®! At low altitudes,
considered in future control photolysis is decreased by the presence of clouds. At higher altitudes,

strategies for sources of air  the photolysis rates are increased due to the reflection from the cloud
tops.
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Aerosols in the troposphere

Aerosols (small air-borne particles) have a significant impact on human health through ef-
fects on respiratory and cardiovascular systems,'® and can have a large impact on the physics
and chemistry of the atmosphere. As noted previously,'*® aerosols scatter and absorb incom-
ing solar radiation, changing the atmospheric energy balance and the rate of photochemical
reactions. They also affect the formation of clouds, modifying their optical properties, their
precipitation efficiency, and lifetimes. The IPCC™ has recognized the effects of aerosols as
the highest uncertainty in the radiative forcing budget of the atmosphere.

Aerosols can be generated from a wide range of sources and can be primary (directly
emitted) or secondary (generated in the atmosphere). While sea-salt and dust are major
sources by mass, both biogenic sources (such as emissions from plants) and anthropogenic
activities represent significant sources of organic material. Soot and primary organic aerosols
(POAs) are emitted during burning of fossil fuels and biomass. For example, a recent study
found that, in Beijing, concentrations of POAs were due mostly to biomass burning, cooking,
vehicular exhaust, and coal burning.'® Secondary aerosols include sulfate, produced from the
oxidation of SO, in the gas phase by ‘OH radicals and in the aqueous phase by peroxides, ni-
trates, and secondary organic aerosols (SOAs) from the photo-oxidation of hydrocarbons (re-
actions 3-4, Fig. 6-1).%

The formation of SOAs has received much attention in the past few years, following
the realizations that (i) traditional models fall short of explaining the observed concentrations
of SOA, with discrepancies ranging from a factor of three to two orders of magnitude,” and
(i1) the atmospheric concentrations of SOAs are frequently as large as, or larger than, those of
other aerosols including sulfate.''® While many of these studies took place in urban areas,
SOAs from forested regions were also identified as important,”® and even the ubiquitous bio-
genic hydrocarbon isoprene was shown to produce significant yields of SOAs.'* In urban
areas, a likely source for the previously unexplained SOAs may be the evaporation of prima-
ry organic aerosols (POAs) followed by the gas phase reaction with -OH radicals and conden-
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sation of the reaction products as SOAs.”® Other studies have shown that the anthropogen-
ic and natural sources of aerosols may be linked intrinsically through the gas phase photo-
chemistry, e.g., with anthropogenic NOx accelerating the production of SOAs from biogenic
(non-anthropogenic) hydrocarbons.”® Analysis of the ratios of carbon isotopes ('*C/*C)
shows that, even in polluted urban areas, a significant fraction of the particulate carbon is not
from fossil fuels but is rather from biogenic emissions and burning of biomass, e.g., 30% in
Los Angeles,> 30-50% in Beijing,''' 30-40% in Tokyo,''* and 30-60% in Mexico City.*>®

Neither anthropogenic nor biogenic organic aerosols are well simulated by current
numerical models, although it is clear that UV radiation initiates the cascade of chemical re-
actions resulting in the formation, via photo-generation of OH radicals and their reactions
with VOCs to yield condensable organic compounds. Wet and dry deposition is believed to
be the major removal process, although there is increasing evidence that UV radiation may
have a role in the destruction of SOA, by the photolysis of surface-bound carbonyl com-
pounds and the subsequent release of gases such as carbon monoxide, formaldehyde, and
formic acid®® ' (see action spectra in Fig. 1-6 in Chapter 1).

Some models for studying the evolution of organic aerosols in specific, relatively
simple environments are in early stages of development. For example, a numerical model has
been developed that reproduces observed aerosol production over a conifer forest, using ob-
served changes in the environment including temperature and UV-B radiation.* This model
has then been applied to predicting particle formation in future climate scenarios. Changes in
O3, temperature and water vapour were considered. Temperature is the independent variable,
with changes in O3 assumed to be driven by increased release of volatile organic compounds
from trees. Unfortunately, due to the uncertainties, the impact of changes in UV-B radiation
has not been estimated. Another model of changes in aerosol production over the U.S. in-
cludes changes in cloudiness but does not explicitly include UV-B radiation.'"’

Even for inorganic aerosols, future changes are difficult to calculate because they de-
pend not only on stratospheric ozone, but also on tropospheric chemical processes and on
climate change. For example, numerical models show that future concentrations of sulfate
and nitrate aerosols will depend sensitively on -OH radical concentrations, which in turn de-
pend on emissions of NOx, methane, and other VOCs.* Wind is also a major factor deter-
mining dust and sea spray emissions, size distributions, and transport,” > and higher wind
speeds over oceans and land will increase their concentrations. Mulcahy et al.*” found a
strong increase of the optical depths of sea spray with wind speed, leading to reductions in
direct solar radiation equivalent to or greater than that seen in significant pollution events.

Some advances have been made in the past few years in determining the optical prop-
erties of aerosols at UV wavelengths. One previously unexpected result was that the absorp-
tion of these short wavelengths by aerosols is quite large, and cannot be explained by their
known chemical composition.” > '* % A possible explanation is that this absorption is due to
organic compounds contained within the SOA particles, but which are not yet fully under-
stood as discussed above.> '* These UV properties of the aerosols can provide a significant
feedback on to the photochemistry: absorbing aerosols tend to reduce the available UV radia-
tion and thus slow the production of tropospheric O3,'® while scattering aerosols can increase
the effective path-length of UV photons and lead to more rapid production of O3."®

Halogens in the troposphere

As both measurement techniques and the understanding of possible chemical processes are
improving, new information shows that the roles that halogens play in the lower atmosphere
are more diverse than previously thought. Knowledge of the impacts of these halogens on

196 The Environmental Effects Assessment Panel Report for 2010



Changes in air quality due to depletion of stratospheric ozone and interactions with climate

tropospheric ozone and how they interact with changes in UV-B radiation will be important
for a more accurate prediction of risks from tropospheric ozone in the future.

Bromine and brominated substances. Bromine-containing compounds, such as bromoform
(CHBr3), are a well-known source of reactive halogen with relevance to both tropospheric
and stratospheric ozone. Recent studies have further highlighted the likely significance and
variety of oceanic sources.”” ' Ocean surveys of bromine oxide (BrO), produced by the ox-
idation of compounds such as bromoform, have shown that coastal regions®* and passively
venting ggolcanoes] can be significant sources likely to affect concentrations of ozone in these
regions.

Studies of the atmosphere around the Dead Sea have reported events of unexpectedly
large depletions of surface concentrations of O3 (up to 93% loss). The co-occurrence of sig-
nificant amounts (176 pmol mol™) of BrO in the surface boundary layer did not fully explain
the loss of ozone.”’ A partial explanation may be provided by newly identified reaction
mechanisms of halogen-containing compounds and aerosols.*® While these studies have fo-
cused on polluted atmospheres, the particle-based reactions may also explain observations of
reactive halogen species in the upper troposphere.”” In the future, increasing surface tem-
peratures of tropical seas are expected to increase the movement of these reactive species
from the troposphere to the stratosphere'® and contribute to depletion of stratospheric ozone,
through changes in atmospheric circulation.

Iodine and iodinated substances. The species of iodine equivalent to those of bromine (dis-
cussed above) have been detected in marine coastal atmospheres at similar concentrations to
the bromine compounds,’® although the concentrations of precursors appear to be less than
those of the bromine species*® and it is not clear how widespread the sources of these com-
pounds are. The significance of iodinated substances in terms of air quality is unclear at this
time.

Chlorine and chlorinated substances. In contrast to other halogens, chlorine-containing
species have been considered relatively unimportant for ozone in the troposphere even though
there are a few pathways that were known to produce CI atoms.”’ Any Cl atoms will react
rapidly to form HCI, which is then washed out of the atmosphere. However, studies on the
surface chemistry of hydrochloric acid (HCI) and oxides of nitrogen (NOx) have shown that
when HCI and NOx are adsorbed on surfaces (formerly thought of as a removal mechanism),
they react to generate gaseous nitrosyl chloride (CINO) and nitryl chloride (CINO,).*® When
these absorb UV- and visible-radiation, they break down to form highly reactive chlorine at-
oms that react with VOCs and result in increases in the concentrations of O3 in the tropo-
sphere. In modelling this process in the South Coast Air Basin of California, the addition of
the interaction between HCI from sea salt, NOx, and solar radiation increased concentrations
of O3 by 40 ppbv (20%) at peak periods. Evidence from atmospheric observations is needed
to assess the environmental importance of this mechanism.*’

Anthropogenic emissions of halocarbons, e.g., methyl chloroform (C,H3Cl3)* contin-
ue and also will contribute to depletion of stratospheric ozone. A study of emissions of
HCFC-22 inferred from atmospheric observations indicated that the storage time was signifi-
cant, delaying emissions and therefore delaying the impact of the production and release of
these substances and the final recovery of stratospheric O3.”

Fluorinated substances in the troposphere

Historically, the fluorinated substances, such as the chlorofluorocarbons (CFCs) had a major
impact on stratospheric O;. For this reason, there is still strong interest in this class of com-
pounds, new products, their replacements, and their degradation products. Sulfuryl fluoride
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(SOyF,) is an industrial chemical released into the atmosphere in significant quantities (kilo-
tonne (kt) per year). Sulfuryl fluoride has been suggested as a substitute for methyl bromide,
a depletor of stratospheric ozone, in fumigation of crops and soils.”” Global production in
2006 and 2007 was 3.5 and 2.3 kt, respectively but has increased steadily since 1960 when it
was only 57 t and will likely increase into the future, especially if used more widely. The po-
tential impact of sulfuryl fluoride in the atmosphere is now becoming clearer. Estimates of
atmospheric lifetimes are >300, >5000, and >10’ years for removal processes driven by -OH,
‘Cl and Os, respectively.”  Although SO,F, is relatively soluble in water,” at this time the
significance of other potential removal processes such as partitioning to cloud water (fol-
lowed by deposition) is not known. The rate of hydrolysis in water with pH similar to cloud
water (5.9) is small (2.6 x 10 s™),¥ which is consistent with lack of observed hydrolysis in
the atmosphere.”” The rate under alkaline conditions (pH 8.3) is 100 times faster, suggesting
that it will not accumulate in surface waters unless these have pH <6. The ultimate hydroly-
sis products (inorganic sulfate and fluoride) are judged to present negligible risks to the envi-
ronment. Recently published measurements of SO,F; in current and archived atmospheric
samples show that the global tropospheric background concentration is smaller in the south-
ern than in the northern hemisphere but has increased by 5 = 1% per year from 1978 to
2007.°® Models have predicted global atmospheric lifetimes of 36 to 40 years with a major
sink in the oceans. Modelled emissions underestimated production by 33%, suggesting that,
during use as a fumigant, about one third is destroyed and does not enter the atmosphere.®®
Based on uncertain data, the GWP for SO,F; (i.e., its global warming potential relative to
CO,) is estimated to range from 120-7600 for a 100-year time horizon.” This, and likely in-
creases in use of SO,F; in the future, suggest that monitoring concentrations in the atmos-
phere needs to be continued.

As has been discussed previously,'” several of the hydrochlorofluorocarbons
(HCFCs) and hydrofluorocarbons (HFCs) used as substitutes for ozone-depleting CFCs, can
break down into trifluoroacetic acid (TFA). Two new fluorinated olefins (HFOs) that are en-
tering the market may also break down into TFA.*>" HFO-1234yf (2,3,3,3-tetrafluoro-1-
propene, Fig. 6-6) is a refrigerant, particularly for air-conditioning in vehicles.*”> >’ HFO-
1234ze (1,3,3,3-tetrafluoroprop-1-ene, Fig. 6-6) is a new agent used for blowing of insulating
and structural foams. An analysis of emissions and subsequent production of TFA from
HFO-1234yf, based on penetration in the US domestic market up to 2050, was combined
with three-dimensional air quality modelling to estimate the concentrations of TFA in rainwa-
ter and to predict the potential increase in ground level
03" This analysis concluded that the projected maxi- é -
mum concentration of TFA in rainwater should not result ch-:'f ~c7 F e F
in a significant risk of adverse effects in the environment / | F & CF
and that production of Os, resulting from emissions of H F H F
HFO-1234yf, is unlikely to be a major concern for local HFO-1234yf HFO-1234ze
air quality in most locations. A similar analysis of HFO-
1234ze concluded that little or no TFA would be pro-  Fig. 6-6. Structures of the refrigerant
duced, because of structural differences between the two HFO-1234yf and blowing agent HFO-

. 1234ze.
molecules that would prevent the formation of TFA from
HFO-1 92734ze (Fig 6-6). However, there are no experimental data in the literature to test this
theory.

F H

The final environmental sink for TFA is in the oceans, playas, and landlocked lakes.
Concentrations of TFA in rainwater range from <0.5 to 350 ng L', depending on location and
proximity to human activity*® and this source is predominantly anthropogenic. As TFA is
very stable and very water soluble, it accumulates in the oceans where concentrations, largely
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from natural sources, are ca 200 ng L"'.*® Based on historical production of HFCs and

HCFCs as potential sources of TFA, as well as projections of future uses, a worst-case esti-
mate of release of TFA from complete conversion of HFCs and HCFCs yielded a global in-
crease of 22,000 kt of TFA by the time of planned phase-out of the HFCs and HCFCs (2030-
2045). Assuming release of 50 — 100 kt HFO-1234yf per year for 100 years from 2015,
complete conversion to TFA (50 — 100 kt/year, as they have the same molecular weight)
would increase concentrations in the oceans by 3.7 — 7.4 ng L', a small increase above the
background concentration of 200 ng L™ as estimated by Frank et al.*

Because of high water solubility, low octanol-water (Kow), and octanol-air (Koa) par-
tition coefficients, TFA does not accumulate in aquatic or terrestrial organisms and does not
bioaccumulate in food chains. As TFA is a strong acid (dissociation constant, pKa, = 0.3), it
is completely ionised at normal environmental pH and is present as a salt form in the soils,
surface water, and oceans. No adverse effects of salts of TFA in mammals or humans were
identified in earlier reviews’ or in the peer reviewed literature up to August 2010. Concen-
trations of salts of TFA causing measurable effects in organisms in the environment are large
(222,000 to 10,000,000 ng L™)**** and provide an estimated 10,000-fold margin of safety for
worst-case scenarios. Projected future increased loadings to playas, land-locked lakes, and
the oceans (via precipitation and inflow of fresh water) due to climate change and continued
use of HCFCs, HFCs, and replacement products,”” ' are still judged to present negligible
risks for aquatic organisms and humans.

Some questions have been raised about the formation of monofluoracetic acid (MFA).
MFA is a naturally occurring compound that is a toxic constituent of the poisonous South Af-
rican plant Dichapetalus cymosum, also known as gifblaar, and several other poisonous plant
species.” MFA is highly toxic to animals because it inhibits the energy-producing Krebs (cit-
ric acid) cycle by blocking the action of a key enzyme, aconitase. MFA is not formed from
TFA except in very unusual situations where dehalogenation could occur, such as in anaero-
bic sediments.® Small amounts of MFA are produced from the heating of Teflon (600°C)*
but there is no evidence to suggest that it is formed from CFCs or their replacement HFCs. If
it were formed, MFA would be degraded rapidly by microorganisms and, in soil, has a short
half-life, and no potential for accumulation in the environment.’

Conclusions

The impacts of air pollution on human health and the environment will be influenced directly
by future changes in emissions of pollutants, climate, and stratospheric ozone. UV radiation
is one of the controlling factors for the formation of photochemical smog, which includes
tropospheric O3 and aerosols; it also initiates the production of -‘OH, which controls the
amount of many climate- and ozone-relevant gases, such as methane and HCFCs in the at-
mosphere. Uncertainties still exist in quantifying the chemical processes and wind-driven
transport of pollutants. The net effects of future changes in UV radiation, meteorological
conditions, and anthropogenic emissions may be large but will depend on local conditions,
thus posing challenges for prediction and management of air quality. Numerical models pre-
dict that future changes in UV radiation and climate will modify the trends and geographic
distribution of -OH, thus affecting the formation of photochemical smog in urban areas and
regions with greater concentrations of precursors. This will also affect concentrations of
greenhouse gasses in the atmosphere. Concentrations of ‘OH are predicted to decrease glob-
ally by an average of 20% by 2100, with local concentrations varying by as much as a factor
of two above and below current values. However, significant differences between modelled
and measured values in a limited number of case studies show that chemistry of -OH radicals
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in the atmosphere is not fully understood. Therefore, consequences for human health and the
environment are uncertain.

Photochemically produced tropospheric O3 is projected to increase. If emissions of
anthropogenic air pollutants from combustion of fossil fuels, burning of biomass, and agricul-
tural activities continue to increase, concentrations of tropospheric Oz will increase over the
next 20-40 years in certain regions of low and mid-latitudes because of interactions of emis-
sions, chemical processes, and climate change. Climate-driven increases in temperature and
humidity will also increase production of tropospheric O3 in polluted regions, but reduce it in
more pristine regions. Higher temperatures will tend to increase emissions of NOx from
some soils and release of biogenic VOCs from plants, leading to greater background concen-
trations of Oj; in the troposphere. For the future protection of human health and the environ-
ment, more effective controls will need to be considered for emissions of NOx and VOC:s re-
lated to human activities. In addition, the development of ozone-tolerant crops will amelio-
rate the effects of O3 on the production of food and fibre.

Aerosols composed of organic substances have a major role in both climate and air
quality, and contribute a large uncertainty to the energy budget of the atmosphere. Aerosols
are mostly formed via the UV-initiated oxidation of VOCs from anthropogenic and biogenic
sources, although the details of the chemistry are still poorly known and current models un-
der-predict their abundance. A better understanding of their formation, chemical composition,
and optical properties is required to assess their significance for air quality and to better quan-
tify their direct and indirect radiative forcing of climate.

Emissions of compounds containing fluorine will continue to have effects on the
chemistry of the atmosphere and on climate change. Models predict global atmospheric life-
times of 36 to 40 years for sulfuryl fluoride (SO,F,), a substitute for the fumigant, methyl
bromide. Based on the estimated GWP for SO,F, and likely increased use in the future, there
is a potential for adverse effects that should be considered in the future. The hydrochloro-
fluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) used as substitutes for ozone-
depleting CFCs, can break down into trifluoroacetic acid (TFA), which is very stable and will
accumulate in the oceans, salt lakes, and playas. Based on historical use and projections of
future uses, including new products entering the market such as the fluoro-olefins, increased
loadings of TFA in these environmental sinks will be small. Even when added to existing
amounts from natural sources, risks from TFA to humans and organisms in the aquatic envi-
ronment are judged to be negligible. There is no indication that the highly toxic chemical,
monofluoracetic acid would be produced in toxicologically significant amounts by degrada-
tion of trifluoroacetic acid or directly from hydrochlorofluorocarbons and hydrofluorocarbons
used as substitutes for ozone-depleting chlorofluorocarbons (CFCs). The resulting risk to
humans or the environment from the historical use of CFCs or continued use of their re-
placements is judged to be negligible.
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Summary

Increased solar ultraviolet radiation (UV) reaches the surface of the Earth as a consequence of
a depleted stratospheric ozone layer and changes in factors such as cloud cover, land-use pat-
terns and aerosols. Climate change is expected to result in a 1.1-6.4°C increase in average
temperature by the end of this century, depending on location. Increased levels of UV radia-
tion, especially at high ambient temperatures, are well-known to accelerate the degradation of
plastics, rubber and wood materials thereby reducing their useful lifetimes in outdoor applica-
tions. Plastics used routinely outdoors are generally light-stabilized using chemical additives
to ensure their useful lifetimes. Wood products are coated for resistance to UV radiation,
since photodamage results in enhanced water-susceptibility and their consequent biodegrada-
tion under outdoor exposure. The increased damage to materials due to an increased UV-B
(280-315 nm) component in solar radiation reaching the Earth likely can be countered using
light-stabilization technologies, surface coatings or, in most instances, by substituting the ma-
terials in question with greater UV radiation-resistant materials. However, even if these op-
tions could be used with all common materials affected, they will invariably result in higher
costs. Reliable estimates of the incremental costs involved depend on the anticipated damage
and the effectiveness of mitigation strategies employed. We summarize and assess recent
findings on light-induced damage to plastic materials, including wood-plastics composites
and nanocomposites. The combined effect of increased UV-B radiation and ambient temper-
ature is of special interest, since these two factors represent particularly harsh environmental
conditions for most materials. Advances in approaches to light stabilization of materials are
also assessed.

Introduction

As wood and plastics in building and other products routinely used outdoors are ultraviolet
(UV)-susceptible, their useful lifetimes outdoors will tend to decrease under exposure to sun-
light with a high content of UV radiation. Experimentally, the effectiveness of different types
of light-induced damage increases exponentially as the wavelength of radiation it is exposed
to decreases. Therefore a small increment in solar UV radiation, particularly the UV-B com-
ponent (280 nm- 315 nm), can significantly reduce the useful lifetimes of wood and plastic
materials used in outdoor applications. Climate change is expected to result in an increase in
the average temperature of 1.1-6.4°C by the end of the century, further exacerbating the situa-
tion, as materials degrade even faster at the higher temperatures. Oxidative reactions that
cause the degradation in both wood and plastics can be initiated by UV radiation as well as
thermal oxidation.

Building construction, furniture industry, agriculture and a variety of other applica-
tions rely on extensive use of materials made from wood, plastic and natural fibre. The annu-
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al demand for industrial round-wood in the world is 1700 million cubic meters (2005 data),”'
while that of plastics is 245 million tonnes.” Plastics in particular are used in building mate-
rials, outdoor furniture, protective coatings, marine vessel hulls, aeronautics and agricultural
greenhouse applications. They are a class of especially versatile and relatively inexpensive
materials that is increasingly replacing conventional materials of construction in a variety of
applications. Being light and strong, they are the materials of choice for numerous outdoor
uses including even the fabrication of automobiles and modern aircraft. Recently, plastic-
wood composites, especially those based on recycled plastic materials, have also received
wider acceptance as a building material.”® In the US, about a quarter of residential decks are
now being made of wood-plastic composites. A fraction of all plastics and wood products
manufactured are routinely exposed to solar radiation during use and undergo slow light-
induced oxidative degradation. Common polymers are photolabile and tend to be easily af-
fected by UV-B radiation in sunlight, high ambient temperatures® and high humidity levels.*®
It 1s the resulting loss in aesthetic, physical and mechanical properties that limit the useful
outdoor lifetimes of plastics products. Of the 21 million metric tons of rubber used globally;
about half is used in tires. While tires are protected against UV and thermal degradation, sur-
face cracking due to ambient (tropospheric) ozone is well-known.*’

Additives that slow down degradation (i.e., UV-stabilizers) are generally used in plas-
tics formulations. As with polymers, moisture and the UV-B component of sunlight are also
the main agents responsible for weathering of wood.”> With either class of material, it is the
higher-energy, shorter wavelength ultraviolet (UV-B) radiation (280 nm to 315 nm) in sun-
light that is relatively most effective in causing degradation. Some degradation is attributed
to the solar UV-A radiation component that will also be affected by climate change-induced
variations in UV radiation.

However, unlike for biota where the only mitigation strategy is slow adaptation, the
effects of increased UV-B radiation on materials can be countered actively either by increas-
ing the concentration of UV stabilizers used in their formulations or by selecting more UV-
resistant types of plastics for outdoor applications. With wood, protective surface coatings,
such as clear polyurethane coatings, that block the UV-B radiation reaching the bulk of the
material'? can provide some measure of protection from effects of solar UV radiation. While
these different mitigating strategies are reasonable and appear to be feasible, they will also
result in increased cost of materials used under conditions where the protective role of the
stratospheric ozone layer is partially compromised.

This Chapter assesses the recent research findings that allow a better quantification of
light-induced damage to wood and plastics materials and which contribute to unravelling the
chemical mechanisms of UV-induced damage. In assessing such damage it is important to
consider the total life cycle of a plastic or wood product and investigate the impact of UV and
climate change on the entire life of the product. Promising novel mitigation strategies for
UV-induced degradation of plastics and wood materials are also addressed.

Susceptibility of plastics and wood to solar UV-B radiation

Of the estimated 245 million metric tons of plastic resin estimated to be produced worldwide
in 2010, 42% will be used in the Asia Pacific and 21-23% in each of North America and Eu-
rope. While about a third of this volume is typically used in construction and building appli-
cations, the fraction that is in outdoor use has not been reliably estimated. The classes of
plastic resins commonly used in the fabrication of products employed outdoors are summa-
rized in Table 7-1 below. Poly(vinyl chloride) (PVC), polyethylene (PE), polypropylene
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(PP), polycarbonate (PC) and unsaturated polyester materials are most frequently encoun-
tered in products used outdoors.”” These are generally compounded with light-stabilizer ad-
ditives to retard their rate of deterioration on exposure to solar UV-B radiation. However, in
most instances, the useful lifetimes of relevant products are invariably limited by the loss of
either their aesthetic or mechanical properties due to photoinitiated degradation in sunlight.
Light stabilizers themselves, as well as other additives such as flame retardants compounded
into polymers, can be photodegraded on exposure to solar UV radiation, further reducing the
lifetime of the product.®’

Table 7-1. Major outdoor applications of common varieties of plastics

Application area Examples of products Types of plastics used
Building Construction Window and door frames. Siding, fascia, Rigid and plasticized formula-
pipe, conduits and rainwater goods. tions of poly(vinyl chloride),
wood-plastic composites.
Membrane roofing and geomembranes. Synthetic rubber (EPDM).
Agriculture Irrigation pipes, greenhouse film, water stor-  Polyethylene, poly(vinyl chloride)

age tanks, produce crates, agricultural netting and unsaturated polyester
and mulch films
Transportation Automobile, aircraft, marine vessel and rail- ~ Unsaturated polyester, polyure-
car construction. Pallets. thane, composites.
Glazing, coatings and mouldings used in ve-  Polycarbonates
hicles and in traffic signals.

Other Outdoor furniture, playground equipment and Polyethylene, polypropylene and
artificial turf rigid poly(vinyl chloride)
Rigid and flexible solar photovoltaic and Poly(ethylene vinyl acetate) as
panels. Solar water heaters. encapsulant. Acrylic plastic glaz-

ing. Polyimide and polyester.

The developed nations use about 70 % of the world round-wood that is produced™
with half of this volume being used as lumber in the building and furniture industry. In
wood, as with filled, opaque, plastics, the zone of degradation due to exposure to solar UV-B
radiation is limited to the depth of penetration of the radiation into the material. In opaque
plastics, the degradative changes (usually discoloration and micro-cracking) are localized at
the surface where the shorter wavelength UV-B radiation is absorbed.”® Similar results are
also reported for wood. In fir wood, the UV-induced degradation can occur to a depth of 70-
140 pm.*® The relative efficiency of different wavelengths of light in causing a specific type
of degradation in material is quantified in an action spectrum of the material. These are plots
of damage per incident photon (or moles of photons) versus the wavelength of radiation, and
in the case of polymers, generally show an exponential increase in efficiency of degradation
with decreasing wavelength. These differ from a plot of wavelength-dependent quantum effi-
ciency in that it is the incident rather than the absorbed radiation that is used in generating
action spectra. The extent of degradation in materials depends on the dose of solar radiation
absorbed and therefore on that incident on the material.

Table 7-2 shows the wavelength ranges over which photo-damage by monochromatic
radiation has been reported in common polymers. The related action spectra (of Log. [dam-
age] versus wavelength (nm)) typically display negative gradients that vary between 0.01 and
0.06 either for the virgin polymer or for specific formulations of the polymer.”* The magni-
tude of these gradients are smaller compared to those for biological processes (see Chapter
1); but significant changes in useful lifetimes of plastics can be associated with relatively
small increases in UV- radiation damage. Exposure to UV wavelengths clearly causes signif-
icant damage (and reduced lifetimes) to plastics. The action spectra are different for different
modes of damage and the presence of additives such as UV-stabilizers can dramatically
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change them. The published action spectra strictly reflect the wavelength sensitivity of spe-
cific formulations of the polymers for a given type of damage. They serve only as a guideline

for the behaviour of the class of polymers in question exposed to solar radiation.

Table 7-2. Wavelength sensitivity spectra of materials reported in the literature

Polymer/material Type of damage Wavelength range* Refer-
ence

Poly(vinyl chloride) [PVC] Yellowing 280-340 nm 6

PVC (5%TiO, filled) Yellowing 280-340 nm

Polycarbonate Yellowing 260-300 nm 4
Decrease in molecular weight ~ 260-300 nm ?

Polystyrene [PS] Change in absorbance 260-320 nm 7

PS (with flame retardant additive ) Decrease in molecular weight ~ 260-320 nm 7

Linear Low Density Polyethylene Change in absorbance and 260-280 nm 7

[LLDPE] decrease in molecular weight

LLDPE (with flame retardant) Change in absorbance and 260-320 nm 7
decrease in molecular weight

High density polyethylene [HDPE] Change in absorbance and 260-280 nm 7
decrease in molecular weight

HDPE (with flame retardant) Change in absorbance and 260-320 nm 7
decrease in molecular weight

Lignocellulose (mechanical pulp) Yellowing 280-340 nm >

*The wavelength ranges over which light-induced damage was obtained from Hamid**.

Additives (e.g., transition metal compounds that catalyse hydroperoxide decomposi-
tion) are sometimes used, especially in plastic packaging products, to enhance the solar UV-
induced breakdown. In packaging plastics that tend to end up as litter causing an urban aes-
thetic problem the use of such additives deteriorate the plastic faster, disintegrating it to small
fragments. Increased solar UV radiation and ambient temperatures will tend to disintegrate
these at a slightly faster rate.

Natural fibres, such as wool, as well as synthetic fibres discolour on exposure to solar
UV radiation. While naturally white in colour, these fibres are commonly dyed for use in
fabric, apparel, or carpet applications and it is the breakdown of the dye (rather than polymer)
that leads to discoloration. Thus, it is the action spectra of the dye that determines the UV-
induced fading rates in such instances. The action spectrum for fading Disperse Blue dye
was recently reported and showed a maximum colour difference (AE) in the wavelength 262
nm or 310 nm depending on the substrate fibre.”” However, action spectra for textile dyes
are sparse in the literature.

Light-induced degradation of materials

Polymer nanocomposites and UV stability

Reinforcing fillers are commonly used in polymer formulations to improve their stiffness
(moduli) and other key mechanical properties. Interaction of the surface of filler particles
with the plastic matrix defines an interfacial layer that contributes to these improvements in
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properties of the composite. Therefore, a decrease in the average particle size of fillers (i.e.,
with high specific surface area) is generally desirable in designing composites. Commercial
availability of bulk nanoscale fillers with average primary particle sizes in the hundreds of
nanometres (nanoclays) to tens of nanometres (fumed silica, titania, and carbon nanofillers)
has resulted in increased attention to nanocomposites. However, nanofillers generally exist
as agglomerates that need to be broken down and dispersed to sizes that approach their pri-
mary particle size for best reinforcing performance. Promising results using nanofillers to
improve the mechanical properties of composites have encouraged their use. In 2008, global
use of polymer nanocomposites was 36 million kg with an annual growth rate of 20%.°
Therefore, it is important to establish the effect of solar UV radiation on the lifetime of this
new class of composite materials that will find application in construction. A recent valid
concern is the potential for nanocomposites to release nanoparticles into the environment as
the polymer matrix degrades due exposure to UV-B radiation outdoors.”” Recent research
suggests that inhalation of nanoparticles dispersed in air can result in negative health
effects.’” Whether the nanoscale filler in composites can over time be released as nanoparti-
cles into the environment is not known.*’

The most cost-effective nanoscale fillers are the smectite clays such as montmorillo-
nite (MMT). Dispersing clay nanoparticle agglomerates in melt processing of the polymers
has been a challenge® but commercial master-batches with the MMT concentrate pre-
dispersed in plastic are available on the market. However, recent studies on the UV-induced
degradability of polymer composites based on MMT have been disappointing. Work on pol-
ypropylene/MMT'"* ** " and EPDM/MMT clay nanocomposites® > show that, on exposure
to UV radiation, the useful properties of the composites deteriorate faster than for the unfilled
polymer. These results confirm similar findings reported earlier for polyethylene (PE) and
polypropylene (PP) nanocomposites with MMT.* This is likely due to the effect of iron
(Fe’) impurities present in the clay and their role in catalysing oxidation reactions. Hydrop-
eroxides formed during the oxidation of the polymer, generate additional free radical species
that promote further degradation. Also, the efficacy of light stabilizer additives was found to
be greatly reduced in MMT-based composites, possibly due to adsorption of the stabilizer
compound on the clay particle surface. An increase in photodegradability was reported for
composites of polycarbonate/MMT (PC/MMT) and in Nylo/MMT.*® The damage indica-
tors used were yellowing and chemical degradation in the infra-red (IR) spectrum of the pol-
ymer, respectively. Other clay-like minerals such as talc (hydrated magnesium silicate) also
catalysed the oxidative degradation in PP.* To benefit from the advantages of clay-based
plastic composite technologies in outdoor applications, better stabilization approaches need to
be explored.

Composites based on oxide nanofillers in polymers show better promise.®™ ** Most
recent studies have been on titanium dioxide (Ti0;), a material already used as an opacifier in
rigid formulations of PVC intended for outdoor use. Commercial conventional grades of the
pigment have surface modifications that optimize their UV absorbance. However, TiO; ex-
ists in three crystalline forms, brookite, rutile, and anatase. Only the rutile form, an excellent
absorber of UV radiation, is able to protect polymer matrices from UV-induced damage. Ru-
tile is commonly used in formulation of rigid PVC profiles (such as siding) to control light-
induced degradation outdoors. Anatase, however, is a potent catalyst that promotes oxidation
as opposed to being a stabilizer. Results from studies on photodegradation of composites
therefore depend on the particular crystalline form of TiO, used in the experiments. Earlier
results from solar-simulated radiation had already established that polypropylene/TiO; (ru-
tile) composites™ and PMMA/ TiO, (rutile)® show better UV-stability compared to the pol-
ymer alone. The TiO, pigment transferred inadvertently from certain sunscreens used by

The Environmental Effects Assessment Panel Report for 2010 215



Effects of solar UV and climate change on materials

construction workers on to coatings on steel plates (by contact) has been reported to acceler-
ate the deterioration of the surface characteristics of the product by as much as 100 fold.’

Zan et al.*® recently studied nanocomposites based on either 98% anataseTiO, or a
mixed oxide of TiO, (with 75% anatase and 25% rutile) grafted on to polystyrene [PS]®.
These were found to be highly photodegradable when exposed to UV radiation from a 30 W
mercury vapour lamp. However, irradiation with wavelength of ca 254 nm UV radiation em-
ployed in the study is absent in terrestrial solar radiation. Accelerated photodegradability of
anatase-filled nanocomposites under solar radiation occurred in nanocomposites of both
epoxy/ Ti0,* as well as LDPE/TiO,*. Polyurethane nanocomposites compounded with ru-
tile and anatase grades of TiO; resulted in either photostability or photosensitivity in the
nanocomposites exposed to solar-simulated radiation, respectively.'

Zinc oxide (ZnO), another potent UV radiation absorber, has been evaluated for use
as a nanoscale filler as well as in textile treatment.”> Under solar-simulated UV-B radiation
the photodegradation of nanocomposites of polypropylene/ZnO was markedly slower than
that for the unfilled polymer.*®® Not only did the tensile properties deteriorate more slowly,
but surface cracking was also better controlled in these nanocomposites. As the grades of
nanoscale fillers are relatively higher in cost compared to conventional fillers, the minimum
volume fractions needed to achieve the desired performance and level of stability are general-
ly used. An experimental study on polyurethane clear-coat formulations investigated the fill-
er levels needed in a thin coating film to block 99% of the incident UV-B radiation.”” Such
coatings can protect wood from light-induced damage. Not only was lacquer containing 4%
by weight nanoscale ZnO reported to protect spruce and pine wood exposed to outdoor sun-
light, but also the performance was superior to that afforded by conventional stabilizers such
as UV absorbers and hindered-amine light stabilizers (HALS)."'

UV degradation of wood and wood-plastic composites

Light-induced damaging effects in wood are generally localized at the surface layers defined
by the UV radiation penetrating into the wood. It is mainly the lignin fraction in wood that
carries chromophores that initiate the degradation process, as confirmed by Fabiyi and
McDonald® and others.”>"*>* Degradation of lignin by solar UV radiation yields low molec-
ular weight materials that support the growth of fungi and therefore helps initiate biodegrada-
tion that rapidly causes deterioration of the material. Controlling light-induced damage to the
wood surface therefore has an impact on the bulk mechanical integrity of wood exposed out-
doors. Recent use of sophisticated microscopic techniques with nanometre-scale resolution
(Atomic Force Microscopy), has allowed a better understanding of structural changes due to
photodegradation.*” The same technique has been employed very successfully to assess pol-
ymer photodegradation.”**!

X -ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of
pine wood show that the water-insoluble oxidized products generated at the surface by pho-
todegradation ~ shields the underlying wood from UV radiation.”> However, the light-
stabilizing effect and mechanism of wood extractives, generally present in all wood, still re-
main unclear. While some studies show that extractives act as stabilizers against light-
induced yellowing in several types of wood,* > there is also evidence that extractives have
little effect on early stages of light-induced yellowing.®® These studies compared regular
samples of wood with those where extractives had been removed by extraction with solvents
or water prior to exposure. The difference reported might be attributable to the different sol-
vents used which selectively extracted the relevant compounds (as well as to differences be-
tween species of wood). In some instances the extractives themselves undergo UV-induced
reactions, contributing to discoloration of the wood.® Chromated copper arsenate used to
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treat wood against biodeterioration can also control the light-induced yellowing of wood used
outdoors.”> Copper ethanolamine treated pine wood showed reduced surface discoloration
(and less damage to lignin) compared to untreated wood.!” However, copper-based wood
treatments have limited application because of their associated negative effects on freshwater
and marine environments.

Most laboratory weathering studies on photodegradation of wood have used filtered
xenon lamps with spectral distributions that simulate solar radiation.® However, work by
Tolvaj and Mitsui’" 7 compared the colour change in several varieties of wood exposed to
sunlight as well as to a xenon source, and showed differences in the levels of discoloration
(hue angle and lightness measurements). Interpreting data on laboratory-accelerated discol-
oration of wood, especially drawing conclusions on natural weathering based on such data,
must be undertaken with caution. Furthermore, the possibility of high intensity radiation
causing reactions not typical of outdoor exposure must be taken into account in accelerated
photodegradation of wood in laboratory tests. Irradiating with high intensity laser radiation
has also been used in laboratory studies of photodegradation of wood but does not yield in-
formation on damage due to solar radiation. High energy, monochromatic radiation from an
argon laser (244 nm), for instance, yields surface degradation products that are very different
from those obtained on exposure to simulated solar radiation.”> >* A positive correlation ex-
ists between the depth of penetration and the wavelength of radiation in the range 246-496
nm.*”> The more damaging UV-B radiation affects the surface layers (but is rapidly attenuat-
ed) and radiation around 400 nm is the most effective in photodegradation of sub-surface
bulk wood.

Wood plastic composites have increased in popularity in recent years, because they
are viewed as a ‘green’ recyclable product (in the USA, the growth rate is projected to be
>9% annually). Although often more expensive than lumber, the material does not require
routine maintenance during use.” Previous research has shown that wood-derived fillers in
plastic-wood composites act mainly as light stabilizers. This is expected due to shielding of
light by the opaque wood particles. However, these composites are susceptible to moisture
damage. The swelling of wood particles due to absorption of water results in micro-cracking
of the matrix at the wood/plastic interface,” a phenomenon that depends on the type of poly-
mer used (see Fig. 7-1). A comparison of wood/polymer composites (58-59% wood) made of
polypropylene (PP) and high-density polyethylene (HDPE), showed UV-induced discolora-
tion of the latter to be lower by ca 34%.%°  Similar results were found for PP/wood flour
composites (30 and 60% filler) using the more fundamental molecular weight data that yield
direct evidence of stability at a molecular level.”® However, HDPE/wood showed a deteriora-
tion of mechanical properties of the composite®® * upon water/UV radiation exposure. This
could be controlled to an extent using commercial UV stabilizers. Relatively less damage
was observed on injection moulded surfaces than on planed surfaces where some wood filler
granules are exposed.
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UV degradation and stabilization of polycarbonates

Because of their unique combination of tough-
ness and high clarity, polycarbonates (PC) are
widely used in glazing applications in building
construction (replacing glass) and automotive
manufacture. The material, while more expen-
sive than glass, has the advantage of being light-
er and is increasingly employed also in non-
glazing uses in automobiles, since it reduces the
weight of the vehicle. Exposure of polycar-
bonate to solar UV radiation results in yellowing
and loss in mechanical integrity.'* Yellowing in
polycarbonate is due to two types of photodegra-
dation reactions, the Photo-Fries reaction and
oxidative degradation. The latter reaction is
dominant in outdoor exposure and is confirmed
to be initiated via the formation of charge-
transfer complexes between polymer and oxy-

15
gen.

Pickett et al.”* recently reported wave-
length sensitivity data for yellowing of bis-
phenol-A polycarbonate and its blends with oth-
er thermoplastics on exposure to simulated solar
radiation (a xenon source) at 359 to 45°C. In
addition to demonstrating the effective wave-
length ranges responsible for yellowing in the

Fig. 7-1. (A) Magnified image (electron micro-
graph) of HDPE/pine wood composite with an
inset at the same magnification, showing the
surface after two years of outdoor exposure in
Idaho (USA). Adapted with permission from
Fabiyi et al.”*® (B) Processed wood plastic com-
posite product. Reproduced with permission
from Taylor et al.”'

sunlight spectrum, the study also provided veri-
fication of the reciprocity rule for the materials. The reciprocity rule requires the relative rate
of the degradation process, k, to be a linear function of the intensity, I, of light incident on the
sample. Thus, for systems where the reciprocity rule applies: log. k = log. A + p log. I, with
a constant p equal to unity. For the yellowing degradation in polycarbonate and
poly(butyleneterephthalate) [PBT], the value of p was close to unity but for styrene-
acrylonitrile co-polymer [SAN] and acrylonitrile-butadiene-styrene copolymer[ABS], the
values were 0.63 and 0.34. Accelerated test methods that rely on higher intensities of light
therefore should not be used with the latter polymers. The applicability of the reciprocity rule
for polycarbonates reported here is in agreement with two previous studies on stabilized PC,
one carried out using a solar concentrator to increase the intensity’’ and another using a xen-
on source.'® The results emphasize the critical need to match the spectral characteristics of
the source used in accelerated tests to that of sunlight to ensure meaningful and predictive
quantification of photodamage. In accelerated testing of polymers in general, the distribution
of degradation products was characteristically heterogeneous, affecting the degradation
mechanism and complicating lifetime prediction.”® Virtually no work has been reported on
the applicability of the reciprocity rule in photodegradation of wood species of interest.

Compounds that absorb UV-B radiation, such as hydroxybenzophenones, are com-
monly used light stabilizers in bisphenol A polycarbonate (PC). However, qualitative data on
a superior light absorber additive, a novel block co-polymer, has been reported.'” On expo-
sure to UV-B radiation the block copolymer additive itself undergoes a rearrangement reac-
tion and is converted within hours into an efficient UV-absorbing top layer. Being a polymer
it is not easily leached out when the polycarbonate formulation is used outdoors. Other co-
polymers of polycarbonate that generate a protective UV-absorbing surface coating on initial
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exposure to sunlight were also reported .°' A novel thin ceramic oxide (ZnO and AlO; )
coating on polycarbonate also effectively stabilizes the material.* However, the approach is
not likely to be cost-effective for use in high-volume applications. The use of hybrid organic-
inorganic polymers (ceramers) as a surface coating can impart light stability as well as en-
hance surface hardness in polycarbonates.'” Organic surface coatings can also be used for the
same purpose.”®  These different approaches may allow low-cost alternative light-
stabilization to be achieved in commercial polycarbonate glazing materials.

Effect of increased temperature and humidity on photodegradation

Projected increases in future average ambient temperatures due to global climate change in
certain regions are likely to accelerate the light-induced degradation of materials outdoors.
The oxidative reactions in wood and polymers can be initiated by UV-B radiation or thermal
exposure. Once the photoinitiated oxidative degradation of a material is underway, the rate
of the process increases with increasing ambient temperature. The magnitude of this acceler-
ation depends on the activation energy of the reactions and varies with the chemical nature of
the material. In the case of polymers, the presence of additives may also influence the activa-
tion energy. Increases in the ambient temperatures in some regions due to climate change
will therefore accelerate light-induced degradation of materials. In mulch films made from
polyethylene stabilized with conventional hindered amine light stabilizers (HALS), for in-
stance, the useful lifetime (based on tensile property measurements) can be decreased by 40%
when the temperature in the accelerated weathering chamber increases from 30° to 40°C."
The same phenomenon was mostly responsible for the different rates of outdoor weathering
of polypropylene (PP) in South India, obtained in summer versus in the winter.”

The effect of temperature is also illustrated on rigid poly(vinyl chloride) siding mate-
rial exposed outdoors with and without an insulating backing material. Samples with the
backing reached a relatively higher temperature on exposure to sunlight and underwent more
severe discoloration on exposure to the same dosage of UV-B radiation. Difference in dis-
coloration between the backed and unbacked poly(vinyl chloride) samples showed a high
positive correlation (r =0.96) with the difference in temperatures achieved by the two sets of
samples.”” In assessing the reduced lifetimes of materials due to increased solar UV radiation
levels, the contribution due to increased thermal oxidation and possible synergism between
the two processes also needs to be taken into account.

The magnitude of the thermal acceleration of degradation depends on the activation
energy for the process. Accelerated weathering carried out in the laboratory on polycar-
bonates with a UV-absorbing coating showed that the activation energy for changes in gloss
and yellowing is less than ca 5 kcal/mole.”” This translates to about a 33% increase in rate of
degradation for each 10°C increase in temperature. For polycarbonates, temperature is not an
overwhelming factor that controls the rate of yellowing. This is, however, not true of all
common polymers in general. The activation energies for photodegradation of other common
polymers tend to be much higher.

Increased humidity is well-known to accelerate the photothermal breakdown of poly-
mers, including the coatings.”> Although plastics are hydrophobic materials, they absorb
moisture and are stressed due to the swell/shrink or freeze/thaw cycles. The evaporation of
the absorbed water initially dries the surface layer resulting in stress at the interface with un-
derlying hydrated layers. Beyond the physical impacts such as matrix swelling, erosion, and
stabilizer extraction, humidity can also play a chemical role in chalking of materials such as
titania-filled poly(vinyl chloride) (PVC) used in building applications.
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Approaches to UV-stabilization of materials

Unlike for biota, engineers have stabilization technologies that can be used to mitigate the
acceleration of degradation due to increases in the UV-B component of solar radiation. Bet-
ter understanding of the mechanisms of photooxidation is critical to developing new stabilizer
compounds that can protect materials against light-induced damage. This is particularly im-
portant for plastics used in outdoor applications. The general chemical pathways in the pho-
tooxidation of common polyolefins (PP and PE) are summarized in Fig. 7-2. The polymer
RH is photo-excited into a species [RH]* that reacts with oxygen. The ROOH signifies the
resulting unstable polymer peroxide intermediate in the reaction. The oxidation itself is a
free-radical process where the polymer radical, R-, reacts with molecular oxygen to yield a
polymer peroxy radical ROO-. This radical species is converted to ROOH, which can reform
radicals, making this an autocatalytic process. Five different possible stabilization mecha-
nisms are shown in boxes with the points at which each of these can act in the reactions
scheme indicated in broken lines. Hindered amine light stabilizers (HALS) for instance, can
act as a radical scavenger for R- and ROO- radicals. Novel research techniques are being

used to better understand the changes in the structure of polymers due to photodegradation.
37

Blending light stabilizers (UV absorbers with HALS) to obtain synergistic effects is
of considerable research interest.”* Polyester-polyurethane clear-coat formulations that con-
tained both HALS and UV absorbers, for instance, show a synergistic light-stabilizing effect.
However, this is not a general observation. Mixed stabilizer pairs may not be compatible
with all types of coatings and not all pairs of stabilizers show synergism. Recent work sug-
gests that it is the UV absorbers with a phenolic moiety in their structure that are likely to
show synergy with HALS.”

Stabilizers with a chemical structure that includes a phenolic moiety as well as a cy-
clic amine moiety (typical of HALS) in the same molecule were commercialized by the addi-
tives industry. A new light stabilizer for plasticized PVC with superior weathering perfor-
mance compared to conventional stabilizers was introduced in 2005.*' In some formulations
of PVC containing the additive, a doubling of the outdoor lifetime compared to conventional
stabilizers was claimed. Yet another new stabilizer commercialized in 2007 is intended to
control light-induced discoloration of thermoplastic polyurethanes.”> The additive itself does
not impart any initial colour to the plastic material, a particular advantage in white or light-
coloured formulations. These recently introduced UV-stabilizers show great promise in low-
cost stabilization of common polymers against UV radiation -initiated degradation.
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This approach of combining HALS stabilizers with a UV absorber has been reported
for protection of wood as well. With wood plastic composites (40% wood) the synergistic
stabilizing effect of diester-based HALS in combination with benzotriazole UV absorbers,
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Fig. 7-2. A schematic diagram of the various reaction pathways involved in the UV radiation-initiated
oxidative degradation of polyolefins.

was shown in an outdoor exposure study.*® Wood is typically protected from elements using
surface coatings. Nanocomposite coatings of zinc oxide (ZnO) can be used to protect wood
from sunlight-induced damage.?’ However, commonly used paints such as acrylic-urethane
paints lose their surface gloss and pliability on natural and artificial weathering.* Using pro-
tective polyurethane (PU) clear coats based on either aliphatic or aromatic chemical structure
can also deter such damage. Discoloration of clear-coated wood may be caused by the yel-
lowing of both the clear coating itself and the underlying wood. While the aliphatic PU coat-
ings increase transmission of UV-B radiation upon aging of the coating, resulting in damage
of the underlying wood, the aromatic PU coatings are much more effective in protecting the
wood from damage by UV-B radiation.'?

Conclusions

Composites of thermoplastic polymers with nanoscale inorganic fillers show improved
strength and durability as materials of construction. These can act as absorbers or screeners
of UV radiation and are more efficient light stabilizers of the polymer matrix compared to
conventional fillers. Initial findings suggest that metal oxide nanofillers impart photostability
as expected, unless oxides such as anatase TiO,, which catalytically promote oxidation of the
polymer, are used. Clay nanofiller materials, however, unexpectedly decrease the photosta-
bility of the polymer matrix because of associated contaminants. The wood-polymer compo-
sites show better UV stability relative to the polymer matrix alone due to the same UV-
shielding mechanism, but tend to be more humidity-sensitive. Based on the limited available
data, polymer nanocomposites based on oxide nanofillers are likely to be more stable com-
pared to comparable conventional composites under increased UV-B radiation in sunlight.
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Estimating the impact of an increased solar UV-B component on the photodegrada-
tion of wood is complicated. In wood, photodegradation is limited to the surface layer de-
fined by the depth of penetration of the UV radiation. Accelerated testing of wood in the la-
boratory therefore needs to use light sources that achieve similar depths of penetration. Even
then, applicability of the reciprocity rule to the wood species may limit the use of the labora-
tory approach to simulate outdoor exposure. The naturally present extractives in some spe-
cies of wood may also modify their photostability.

Polycarbonates, widely used in glazing and other applications, undergo light-induced
yellowing and are mostly affected by solar wavelengths < 300 nm. Studies on intensity-
dependence of the process show that the reciprocity rule is obeyed, suggesting that laborato-
ry- accelerated testing provides a reliable means of estimating lifetimes outdoors. New ap-
proaches to photostabilizing polycarbonates as well as other common polymers are emerging.
The use of novel stabilizers that combine the structural features of the effective UV absorbers
and radical scavengers show particular promise. While stabilizer technology is able to miti-
gate the effects of any potential increase in solar UV radiation, particularly in polycarbonates,
the associated increase in cost remains less clear.

References

1 Abel ML and Coppitters C, 2008, Conservation of polymers: A view to the future,
Surf. Inferface Anal., 40, 445-449.

2 Adhikary KB, Pang S and Staiger MP, 2009, Accelerated UV weathering of recycled
polypropylene-sawdust composite, J. Thermoplast. Compos. Mater., 22, 661-679.

3 Andrady AL and Neal MA, 2009, Applications and societal benefits of plastics,
Philos. Trans. Roy. Soc. Lond. B. Biol. Sci., 364, 1977-1984.

4 Andrady AL, Searle ND and Crewdson LFE, 1992, Wavelength sensitivity of
unstabilized and UV stabilized polycarbonate to solar simulated radiation, Polymer
Deg. Stab., 35, 235-247.

5 Andrady AL, Song Y, Parthasarathy VR, Fueki K and Torikai A, 1991,
Photoyellowing of mechanical pulp. Part I: Examining the wavelength sensitivity of
light-induced yellowing using monochromatic radiation, T7APPI Journal, 74, 162-168.

6 Andrady AL, Torikai A and Fueki K, 1989, Photodegradation of rigid PVC
formulations I. Wavelength sensitivity to light-induced yellowing by monochromatic
light, J. Appl. Polymer. Sci., 37, 935-946.

7 Azadfallah M, Mirshokraci SA, Latibari AJ and Parsapajouh D, 2008, Analysis of
photodegraded lignin on cellulose matrix by means of FTIR spectroscopy and high
pressure size exclusion chromatography, Iran. Polymer. J., 17, 73-80.

8 Azuma Y, Takeda H, Watanabe S and Nakatani H, 2009, Outdoor accelerated
weathering tests for polypropylene and polypropylene/talc composites, Polymer Deg.
Stab., 94, 2267-2274

9 Barker P and Branch A, 2008, The interaction of modern sunscreen formulations with
surface coatings, Prog. Org. Coat., 62, 313-320.

10 Chen XD, Wang Z, Liao ZF, Mai YL and Zhang MQ, 2007, Roles of anatase and
rutile TiO; nanoparticles in photooxidation of polyurethane, Polymer Test., 26, 206-
208.

11 Chmela S, Kleinova A, Fiedlerova A, Borsig E, Kaempfer D, Thomann R and
Miilhaupt R, 2005, Photo-oxidation of sPP/organoclay nanocomposites, J. Macromol.
Sci. A: Pure Appl. Chem., 42, 821-829.

222 The Environmental Effects Assessment Panel Report for 2010



Effects of solar UV and climate change on materials

12 Chou P, Chang H, Yeh T and Chang S, 2008, Characterizing the conservation effect
of clear coatings on photodegradation of wood, Biores. Technol., 99, 1073-1079.

13 CIBA, 2007, Ciba presents new light stabilizer for TPU resins, Additives for
Polymers, 2007, 2-3.

14 Diepens M and Gijsman P, 2007, Photodegradation of bisphenol A polycarbonate,
Polymer Deg. Stab., 92, 397-406.

15 Diepens M and Gijsman P, 2008, Photo-oxidative degradation of bisphenol A
polycarbonate and its possible initiation processes, Polymer Deg. Stab., 93, 1383—
1388.

16 Diepens M and Gijsman P, 2009, Influence of light intensity on the photodegradation
of bisphenol A polycarbonate, Polymer Deg. Stab., 94, 34-38.

17 Diepens M and Gijsman P, 2009a, Photostabilizing of bisphenol A polycarbonate by
using UV-absorbers and self protective block copolymers based on resorcinol
polyarylate blocks, Polymer Deg. Stab., 94, 1808—1813.

18 Espi E, Salmeron A, Fontecha A, Garcia Y and Real Al 2007, The effect of different
variables on the accelerated and natural weathering of agricultural films, Polymer
Deg. Stab., 92, 2150-2154.

19 Fabbri P, Leonelli C, Messori M, Pilati F, Toselli M, Veronesi P, Molat-Therias S,
Rivaton A and Gardette JL, 2008, Improvement of the surface properties of
polycarbonate by organic-inorganic hybrid coatings, J. Appl. Polymer. Sci., 108,
1426-1436.

20 Fabiyi JS, Armando A, McDonald G, Michael P, P. W, Peter R and Griffiths R, 2008,
Wood plastic composites weathering: Visual appearance and chemical changes,
Polymer Deg. Stab., 1405-1414.

21 FAO, 2009, State of the World's Forests 2009, Food and Agricultural Organization of
the United Nations Report No. I0350/E, Rome, Italy, p. 144
http://www.fao.org/docrep/011/i0350e/i0350e00.HTM

22 Germinari LT and Shang PP, 2008, Advances in nano and thermal analysis of
coatings, J. Thrm. Anal. Calomet., 93, 207-211

23 Gu X, Zhe D, Watson SS, Chen GN, Zhao M, Stutzman PE, Stanley D, Nguyen T,
Chin J and Martin JW, 2009, Studying Long-term Performance of a Nano-ZnO filled
Waterborne Polyurethane Coating using Spectroscopies and Microscopies in Coatings
Science International Noordwijk, The Netherlands.

24 Hamid SH, 2000, Handbook of Polymer Degradation, Revised and Expanded Second
Edition, Marcel Dekker, New York, NY, USA.

25 Hardcastle HK, III, 2008, Influence of backing on weathering induced color change of
two rigid vinyl building materials in Proceedings of the Society of Plastics Engineers
- Color and Appearance Division Regional Technical Conference 2008. CAD RETEC
2008, San Antonio, TX, pp. 184-188.

26 Howard JL, 1999, Timber Production, Trade, Consumption, and Price Statistics 1965-
1997, USDA, Forest Service, Forest Products Laboratory Report No. FPL-GTR-116,
Maddison, WI, USA, p. 82. http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtrl 16.pdf

27 Imaizumi A and Yoshizumi K, 2006, Effect of substrate on action spectra of fading of
a selected disperse dyestuff under light radiation, Textile Res. J., 76, 757-764.

28 Jianjun C, 2004, Preparation of PP/TiO, nanocomposite and analysis for its
mechanisms of aging resistance, Gongcheng Suliao Yingyong, 32, 43—46.

29 Jirous-Rajkovic V, Turkulin H and Miller ER, 2004, Depth profile of UV-induced
surface degradation, Surf. Coat. Int. B: Coat. Trans., 87, 241-247.

30 Jorgensen G, Bingham C, King D, Lewandowski A, Netter J and Terwilliger K, 2000,
Use of uniformly distributed concentrated sunlight for highly accelerated testing of

The Environmental Effects Assessment Panel Report for 2010 223



Effects of solar UV and climate change on materials

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

coatings, in Service life prediction, methodology and metrologies. ACS Symposium
Series 802 (Eds.: Martin JW and Bauer DR), American Chemical Society,
Washington, DC, USA, p. 115.

Kaczmarek K and Chaberska H, 2009, AFM and XPS study of UV-irradiated
poly(methyl methacrylate) films on glass and aluminum support Appl. Sur. Sci., 2585,
6729-6735.

Kataoka Y, Kiguchi M, Williams RS and Evans PD, 2007, Violet light causes
photodegradation of wood beyond the zone affected by ultraviolet radiation,
Holzforschung., 61, 23-27.

Kathirvelu S, D'Souza L and Dhurai B, 2009, UV protection finishing of textiles
using ZnO nanoparticles, Ind. J. Fibre Textile Res., 34, 267-273.

Kirwan K and Taylor A, 2007, Improving environmental performance of polymer
glazing through novel material hybrids, Plast. Rubber Composites, 36, 85-90.

Krishna K, Pandey KK and Tapani VT, 2008, Comparative study of photodegradation
of wood by a UV laser and a xenon light source, Polymer Deg. Stab., 93, 2138-2146.
Kumar AP, Depan D, Tomer NS and Singh RP, 2009, Nanoscale particles for
polymer degradation and stabilization—Trends and future perspectives, Prog.
Polymer Sci., 34, 479-515.

Kusakabe D, Takayama T and Kuriyama T, 2009, Degradation of surface structure
and mechanical properties in plastics after outdoor exposure test, in Proceedings of
20th Symposium of Materials Life Society Japan, Kyoto, Japan, pp. 47-48.

La Mantia FP and Morreale M, 2008, Accelerated weathering of polypropylene/wood
flour composites, Polymer Deg. Stab., 92, 1252-1258.

Lonkar SP, Kumar AP and Singh RP, 2007, Photo-stabilization of EPDM-clay
nanocomposites: effect of antioxidant on the preparation and durability, Polym. Adv.
Technol., 18, 891-900.

Lowry MS, Hubble DR, Wressell AL, Vratsanos MS, Pepe FR and Hegedus CR,
2008, Assessment of UV-permeability in nano-ZnO filled coatings via high
throughput experimentation, J. Coat. Technol. Res., S, 233-239.

Markarian J, 2004, Advances in PVC heat and light stabilization, Plastics, Addit.
Compounding, 6, 46-49.

Meincken M and Evans PD, 2009, Nanoscale characterization of wood
photodegradation using atomic force microscopy, Europ. J. Wood. Wood. Prod., 67,
227-231.

Merlatti C, Perrin FX, Aragon E and Margaillan A, 2008, Natural and artificial
weathering characteristics of stabilized acrylic-urethane paints, Polymer Deg. Stab.,
93, 896-903.

Morlat-Therias S, Mailhot B, Gonzalez D and Gardette J-L, 2005, Photooxidation of
polypropylene /montmorillonite nanocomposites. 2. Interactions with antioxidants,
Chem. Material., 17, 1072-1078.

Moustaghfir A, Tomasella E, Jacquet M, Rivaton A, Mailhot B, Gardette JL and
Béche E, 2006, ZnO/Al,0; coatings for the photoprotection of polycarbonate, Thin
Solid Films 515, 662-665.

Muasher M and Sain M, 2006, The efficacy of photostabilizers on the color change of
wood filled plastic composites, Polymer Deg. Stab., 91, 1156-1165.

Nguyen P, Pellegrin B, Mermet C, Gu X, Shapiro A and Chin J, 2009, Degradation
and Nanoparticle Release of Polymer Nanocomposites Exposed to UV, in Paper
Presented at the 4th European Weathering Symposium, Budapest, Hungary.

224

The Environmental Effects Assessment Panel Report for 2010



Effects of solar UV and climate change on materials

48 Nzokou P and Kamdem DP, 2006, Influence of wood extractives on the photo-
discoloration of wood surface exposed to artificial weathering, Col. Res. Applic., 31,
425-434,

49 Oksman K and Sain M, 2008, Wood-polymers Composites, Woodhead Publishing
Ltd, Sawston, UK, p. 384.

50 Oltean L, Teischinger A and Hansmann C, 2008, Wood surface discolouration due to
simulated indoor sunlight exposure, Europ. J. Wood. Wood. Prod., 66, 51-56.

51 Pandey KK, 2005, Study of the effect of photo-irradiation on the surface chemistry of
wood, Polymer Deg. Stab., 90, 9-20.

52 Pandey KK and Vuorinen T, 2008, Comparative study of photodegradation of wood
by a UV laser and Xenon light source, Polymer Deg. Stab., 93, 2138-2146.

53 Pastore TCM, Oliveira CC, Rubim JC and Santos KD, 2008, Effect of artificial
weathering on tropical woods monitored by infrared spectroscopy Quimica Nova, 31,
2071-2075.

54 Pickett JE, Gibson DA and Gardner MM, 2008, Effects of irradiation conditions on
the weathering of engineering thermoplastics, Polymer Deg. Stab., 93, 1597-1606.

55 Pickett JE, Sargent JR, Blaydes HA and Babbie N, 2009, The effect of temperature on
the weathering lifetime of coated polycarbonate, Polymer Deg. Stab., 94, 1085-1091.

56 Pospisil J, Pilat J, N.C B, Marek A, Horak C and Nespurek S, 2009, Factors affecting
accelerated testing of polymer photostability, Polymer Deg. Stab., 91, 417-422.

57 Qin H, Zhang S, Liu H, Xie S, Yang M and Shen D, 2005, Photo-oxidative
degradation of polypropylene/montmorillonite nanocomposites, Polymer, 46, 3149—
3156.

58 Qin HL, 2004, UV photo aging of polyamide 6/montmorillonite nanocomposite,
Gaodeng Xuexiao Huaxue Xuebao, 25, 197-198.

59 Rajakumar K, Sarasvathy V, Chelvan AT and Vijayakumar CT, 2009, Natural
weathering studies of pol