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PREFACE

The 1992 Quadrennial Ozone Symposium was held from June 4 to
13 at the University of Virginia in the United States of America.
This was the seventeenth symposium organized by the International
Ozone Commission and was equal in size to the symposium held in
1988. The symposium was devoted to all aspects of atmospheric
ozone, covering both the troposphere and stratosphere. Almost 500
scientists from 35 countries participated in this international
event. Over 400 papers were presented orally or as posters. The
oral papers were divided into the following sessions:-

Troposphere

(a) Ozone Trends and Climatology
(b) Global and Regional Modeling
(c) Ozone: The Human Impact

Stratosphere

(a) Ozone and Climate

(b) Measurements

(c) Results from Upper Atmosphere Research Satellite
d) The Arctic

The Antarctic

Trends

Theory and Modelling

Volcanic Effects

(
(
(
(
(

oQ Hh®
N N N

Published in these two volumes are two hundred and thirty two
of the presented papers. All papers have passed an initial review
process. However, in order to produce this publication as quickly
as possible, it was left to the authors to accommodate the
reviewer’s comments without editorial scrutiny of their final
submission. These papers have been divided into sections that do
not necessarily follow those of the oral presentations. This is due
partly to the fact that some presented papers were not submitted
for publication, and partly because the poster papers did not
always fit into the categories used for the oral papers.

The Editor wishes to acknowledge the assistance rendered by
many colleagues who responded with time and effort to review the
numerous manuscripts.

Robert D. Hudson
College Park
Maryland

H PRGNS PAGE BLAMK NOT FILMED
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ABSTRACT

Ithas been suggested that surface ozone concentrations
in rural areas of Europe have been increasing at a rate of 1
to 3% per year over the past two to three decades, presum-
ably due to human influences (Feister and Warmbt, 1987;
Bojkov, 1988; Penkett, 1989). Recently, we have analyzed
surface ozone data from 20 European stations of differing
character (remote, rural, suburban and urban) for a common
period of 1978-1988 (Low et al., 1992). It was found that
there were pronounced annual and seasonal variations in the
linear trends in different areas, and there was no dominant
region-wide trend. In spring and, most notably, summer,
stations on the maritime fringe of the network generally
exhibited negative trends whilst those located further into
the continental interior exhibited positive trends. In winter,
most of the stations in the network exhibited positive trends.
Relatively few of these trends were statistically significant.
This paper updates our earlier analysis by extending the data
sets of the network up to the year 1990. The spatial variations
in surface ozone trends over the extended period 1978-1990
are examined and discussed in comparison to the 1978-1988
patterns. The update confirms the overall conclusions of the
earlier analysis, specifically that caution should be exercised
in interpreting the results of trend analyses based on station
data representative of a limited period of time and/or geo-
graphical area.

1. INTRODUCTION

During an investigation of the links between surface
ozone concentrations and atmospheric circulation in Europe,
time series of surface ozone data from over 130 stations have
been collected (Davies et al., 1990). Most stations had a time
series of less than ten years. Of those with longer periods of
data, 20 stations were selected and linear trends in surface
ozone concentration were determined for the common pe-
riod 1978-1988. The statistical significance of the trends was
tested taking into account autocorrelation in the data. The
results are detailed in Low et al. (1992).

Recently we have updated the network time series to
the year 1990. The spatial variations in surface ozone trends
over the extended period 1978-1990 are examined in this
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paper and comparison is made with the patterns for the
period 1978-1988.

2.  THE NETWORK OF STATIONS

The stations and their site characteristics are listed in
Table 1 and their locations are shown in Figure la. Most
stations are classified as “rural” with a few classified “‘sub-
urban’’ and two ‘‘remote’’ (these latter stations are located
over 1750m above sea level). London is the only station
classified as “‘urban”. Neuglobsow and Wank are WMQC

Background Air Pollution Monitoring Network (BAPMoN)
stations.

3. SURFACE OZONE TRENDS

The linear trends in the annual and seasonal data for
each station are given in Table 2 for the periods 1978-1988
and 1978-1990. The trends are expressed in terms of percent-
age change per year.

It is notable that the number of statistically significant
trends is greater over the longer period. Moreover, most of
the trends that are statistically significant in one or both
periods remain of similar value, although others change
markedly. This latter result is not surprising given that we
are attempting to define trends over a short period of data.
Sensitivity to the period of analysis has been well illustrated
by Low ef al. (1990, 1991).

The general conclusions reached in Low ez al. (1992)
are confirmed:

(1) Pronounced annual and seasonal variations are
apparent in the trends in different areas.

(2) Relatively few of the trends are statistically signifi-
cant.

(3) There is no dominant region-wide trend, although
most of the stations in the network exhibit positive trends in
the winter average data.

There are certain changes in the spatial character of the
seasonal trends over the extended period (Figure 1b-f). We
noted in Low et al. (1992) that over the period 1978-1988
there was evidence of a contrast between the trends over the
continental interior and those over the maritime fringe of the
network. Most marked in the summer data, stations on the
maritime fringe of the network generally exhibited negative



Table 1 Surface ozone monitoring stations used-in this study.

Location Height  Site

Country Station Record Meas. Comments
(masl) class tech.
Former Arkona 54.68N 42 rural  1956-90 I BAPMOoON; coastal; SO filter from
GDR 13.43E 1972; continuous since 1982
Dresden 51.12N 246  suburban 1972-90 1 SOz filter from 1972; continuous
13.68E since 1981
Fichtelberg 5043N 1213 rural  1970-90 I Continuous recording since 1982
12.95E
Neuglobsow  53.15N 62 rural  1978-90 I BAPMoN; continuous since 1982
13.03E
Schmiicke 50.65N 937 rural  1978-90 I Continuous since 1982
10.77E
FRG Hamburg 53.65N 49  suburban 1976-90 I
10.12E
Hohenpeissenberg 47.80N 975 rural  1971-90 I/C SO filter from 1976
11.02E
Garmisch- 4748N 740 rural  1978-90 C  Valley station
Partenkirchen  11.07E
Wank 47.52N 1780 remote 1978-90 C  BAPMOoN; mountain station
11.15E
Zugspitze 47.42N 2964 remote 1978-90 C  Mountain station
10.98E
United Bottesford 52.93N 32 rural  1978-90 C 1 km south of motorway
Kingdom 0.82W
Central London 51.50N 20 urban  1972-90 C  City centre (Victoria)
0.08W
Sibton 5230N 46 rural  1977-90 C  Open flat cereal farmland; woodland
147E to the northwest
Stevenage 51.88N 90  suburban 1977-90 C  Edge of industrial estate; 100 m east
0.20W of motorway
The Balk 52.92N 1 rural  1978-90 C  Data interruption in 1986
Nether- 5.57E
lands Biddinghuizen  52.42N -5 rural  1978-90 C  Station moved about 200 m in 1986
5.59E
Brandwijk 51.89N  -0.5 suburban 1978-88 C  Data interruption in 1985; record
4.80E ended in 1988
Cabauw 51.97N°  -0.5 suburban 1978-90 C
4.93E /rural
Hellendoom  52.38N 20 rural  1978-90 C  Datainterruption in 1985
6.40E
Kloosterburen  53.40N 1 rural  1978-90 C  Coastal
6.41E '

Although changes$ in instrumentation have occutred at some of the stations, the quality of these data is considered to be
good over the period of record analysed. The site classification follows that of the original observers and may not be
based on entirely comparable criteria. All available data are used. For further details, see Low et al. (1991).

Key: Meas. tech., Measurement technique; BAPMoN, WMO Background Air Pollution Monitoring Network station;
GDR, German Democratic Republic; FRG, Federal Republic of Germany; I, Iodometric: C, Chemiluminescent.

trends whilst those located further into the continental inte-
rior exhibited positive trends. Over the period 1978-1990,
this pattern becomes clearer in other seasons. Stations on the
maritime fringe of the network generally exhibit negative
trends in the annual, spring and autumn data. Those located
further into the continental interior exhibit positive trends in
the annual, spring and summer data. This clustering of trends
with similar signs in regional groupings does suggest a
common causal mechanism, lack of statistical significance
notwithstanding.

The variations in the trends at different locations re-
flect the complexity and diversity of the processes that
control ozone formation, transport and destruction. The fac-
tors which influence the nature of the trend at a particular
station have been discussed by Low et al. (1992). They
include: :

(1) The specific geographical or topographical loca-
tion of the station. This will determine, for example, the
effectiveness of the surface destruction of ozone (Galbally
and Roy, 1980).

&
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Figure 1

Station locations (a) and linear trends in surface ozone concentration over the period 1978-90,

expressed as percentage change per year, for the (b) annual, (c) spring, (d) summer), (e) autumn
and (f) winter data. * indicates statistical significance at the 5% level, after allowing for

autocorrelation.

(2) Horizontal and vertical variability in the amount of

solar radiation reaching the surface (Feister et al., 1989;
Schmidt, 1989). This is dependent on topography and fluc-
tuations in cloudiness and, perhaps, the concentration of
aerosols (Feister et al., 1989).

(3) The influence of local emission sources as well as
the medium- and long-range transport of pollutants from
elsewhere. These determine the distribution of the concen-
trations of precursors, particularly NOx, and, hence, the
photochemical production and destruction of ozone (Liu et
al., 1987).

(4) Natural climate variability, such as changes in the
atmospheric circulation. This can affect ozone concentration
on the interannual and longer time scales (Davies et al.,
1992).

(5) Station elevation. The higher-elevation stations at
Wank and Zugspitze, for example, which exhibit positive
trends annually and in all seasons (all bar one statistically
significant), may be reflecting free tropospheric conditions
to a much greater extent than the other stations at lower
elevations.

(6) Local climatological factors, such as the frequency
of nocturnal inversions and local circulations (Janach, 1989).

For certain stations which exhibit a negative trend in
ozone concentration (such as Arkona), it should be noted that
the trend is, to a large extent, the result of the marked and
rapid decline in ozone concentration that occurred during the
early 1980s. At other stations showing a negative trend (such
London and stations in the Netherlands), the observed in-
crease in the concentration of NOx (particularly NO) may be
pertinent as it is an important ozone sink (Low et al. 1992).

The positive trends observed in winter at most stations
are consistent with the prediction of a gradual increase of
background ozone in that season because of the longer
photochemical lifetime of ozone and the more efficient ac-
cumulation process of newly-produced ozone (Liu et al.,
1987).

4. CONCLUSIONS

Given the diversity of the trends reported here and the
complex influences on surface ozone concentrations, we



Table 2

Linear trends in the seasonal and annual average data over the periods 1978-88 and 1978-90,

expressed as percentage change per year. * indicates statistical significance at the 5% level.

Spring Summer Autumn Winter Annual

Station 78-88  78-90 78-88 7890 78-88 78-90 78-88 78-90 78-88 78-90
Arkona -2.85  -034 207 140 452 -121 -630 -346 -3.19 -0.76
Dresden 1.57 2.02 0.45 1.36 1.89 2.63 1.57 348 128 204
Fichtelberg -4.17 0.76 002 260 -587 -336 -12.02* -6.67 -4.12 0.06
Neuglobsow 4.55% 4.14* 376  4.54* 258 2.46 3.37 2.86 3.86* 3.69
Schmiicke 1.02 2.79 1.03 062 -0.41 127 -1.36 250 -0.32 1.65
Hamburg 3.16 3.08 1.42 127 -0.06 -0.76 5.86 3.73 2.46 1.95
Hohenpeissenberg 0.43 0.86 1.13 1.83* -0.44 0.31 0.91 2.18* 0.56 1.28*
Garmisch-Partenkirchen 0.93 0.22 0.62 076 -046 -0.53 068 -0.72 0.48 0.10
Wank 2.53 1.74 2.68 2.65*% 212 1.79*  2.22* 2.15* 241 2.11*
Zugspitze 2.76%  2.34% 259*%  250* 2.00 1.78* 245 223*% 240 2.20*
Bottesford -3.16 -3.83* -320 -2.98* -505* -457* -330 -2.87 -3.38* -343*
Central London -5.59 271 230 -256 -3.87 -332° 432 316 275 -1.60
Sibton -0.33  -0.15 -0.08 095 -154 -0.09 -1.19 031 -1.26 -0.06
Stevenage 0.65 031 -0.12 001 -2.80 -1.82 2.64 235  -0.17 0.02
Balk 0.66 0.84 0.04 0.66 0.44 1.33 3.84 2.24 0.86 1.23
Biddinghuizen -1.07  -0.09 -136 -0.18 -2.02 -0.74 1.95 093 -1.12  -026
Brandwijk -2.86 -4.61* -1.02 - 5.08 -2.34*

Cabauow -1.10  -0.03 -221 -1.18 -1.90 -0.07 0.56 211  -1.67 -041
Hellendoorn -0.39 060 -0.86 0.00 -145 -0.19 4.24 295 0.11 0.66
Kloosterburen -1.50 -0.83 0.59 058 -1.83 -0.13 0.91 133 -0.59 0.00

think it would be inappropriate to use surface ozone data
directly to infer any large-scale tropospheric ozone increase
or decrease, unless it is certain that the air sampled at the
surface ozone station is representative of that in the free
troposphere. The mountain stations such as Wank and Zug-
spitze may be the most representative of all, although even
at these stations the possibility of local anthropogenic influ-
ence cannot be excluded.

This analysis of the extended data set confirms the
general conclusions reached by Low et al. (1992). First, it
would be unwise to assume that the trends derived from a
limited number of longer surface ozone records are neces-
sarily representative of a wider area. Second, the occurrence
of marked short-term variability means that conclusions
concerning long-term trends drawn from records of limited
duration may well be misleading.
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Abstract:

In August of 1986 a programme was initiated to measure
atmospheric ozone profiles at mid-latitudes in the Southern
Hemisphere by flying ECC ozonesondes on a regular basis
from the DSIR Physical Sciences Atmospheric Laboratory at
Lauder, New Zealand, 45°S. Flights since that time have
been performed on a regular basis at the rate of two flights
per week during the 5 month period August to December, the
time of maximum variability at mid-latitudes , and once per
week for the remainder of the year.

These data , consisting now of more than 400 profiles has
been analysed and the free tropospheric portion of the
profiles binned as lkm slabs. These data have then been
combined to form a seasonal average values for each season
of each year in 2 ki slabs and the variation observed in these
seasonal averages is the basis of this paper. A biennial
component is apparent in these data and the lack of any
increasing trend over this 5 year period is contrasted with that
measured at similar latitudes in the Northern Hemisphere
over the same period.

Introduction:

Tropospheric ozone can be produced by in situ chemistry
(Crutzen, 1973; Chameides and Walker, 1973; Fishman and
Crutzen, 1978) or by transport down from the stratosphere in
a process that is considered to provide the "natural” or
classical sink for stratospheric ozone.

It has recently been suggested however that the large
reductions in stratospheric ozcne observed in the lower
stratosphere over the last decade, could result in a significant
increase in tropospheric ozone and OH, (Schnell et al, 1991).
Recent other work considering the influence of sulphate
particles on climate change processes suggests that by
increasing the backscattered short wave radiation,
anthropogenic sulphur emissions may in fact have
counteracted climate warming from the increased emissions
of greenhouse gases, (Wigley, 1991). Since over 90% of the
anthropogenic sulphur release to the atmosphere occurs in the
Northern Hemisphere, and since the atmospheric lifetime of
SO and sulphate is less than one week in the troposphere,

this process should be limited to the Northern Hemisphere. In
fact, this latter effect is so significant that Charlson (1991)
suggests that anthropogenic sulphur enhances the
hemispherically reflected solar radiation to such an extent hat
it masks the expected warming through the growth of CO3 in
the Northern Hemisphere. Such an effect could also have a
direct bearing on the oxidising capacity of the troposphere as
it may also work to reduce the formation of OH in the
troposphere.

Staehelin and Schmid, (1991) have found a significant
increase of in tropospheric ozone from their balloon sounding
program at Payerne (Switzerland), . They report an increase
that on average amounts to more than 1% per year over the
last 20 years. It is against this background that it is interesting
to consider what is happening to tropospheric ozone at
similar latitudes in the Southern Hemisphere.

Database and Analysis:

In August of 1986, an ozonesonde sounding program was
instituted at Lauder, New Zealand, 45°S. Lauder itself is
located in the southern centre of the South Island of New
Zealand and is 40km away from the nearest population
“"centre”, Alexandra (population 4000). The site is 150km
from the ocean and has been chosen as the Mid-latitude
Southern Hemisphere Charter site for the international 5
station Network for the Detection of Stratospheric Change
(NDSC).

Flights using regular type 4A ECC ozonesondes in
conjunction with Phillips radiosondes operating at 1680MHz
were flown on the regular basis of one flight per week
augmented by an extra flight per week in the spring early
summer period (August through December). The resulting
chart records were then interpreted manually. At the end of
1989, a change was made to a fully digital system
incorporating type SA ECC ozonesondes and Vaisala RS80
radiosondes. This system was interfaced using a
microprocessor controlled multiplexer board from TMax
back to the Vaisala transmitter so that the hex-ASCII serial
data stream can be transmitted to the ground station at
403MHz and is directly accessible by a PC. Ozone, pressure,
ambient temperature and humidity were analysed from each



flight record. The measured ozone amounts were corrected
for variations in the pump temperature, which was monitored
directly and for pump efficiency, where an empirical
correction was applied. The ozone measurement accuracy has
been assessed in many studies and has found to be £10% in
the troposphere, +5% in the stratosphere to 10hPa and 5 to
+20% between 10 and 3hPa, Hilsenrath et al., (1986).

The Lauder data series, consisting now of more than 400
profiles has been analysed and a subset of flights was then
selected where there was a single well marked tropopause.
This method was used to minimise the influence of
stratospheric "contamination” of the tropospheric data by
direct stratospheric / tropospheric exchange. The free
tropospheric portion of the profiles was then binned in 1km
slabs. These data have then been combined to form a
seasonal average values for each season of each year in 2 km
slabs The number of flights used in each compilation for each
season is given in Table 1.

Table 1
Number of Flights in each Season
Month | FMA | MJJ ASO NDJ | Total
1986 22 14 36
1987 10 13 20 13 56
1988 12 13 19 12 56
1989 9 11 23 16 59
1990 11 10 21 16 58
1991 10 12 24 20 66

The each data point in the series of figures that follow
represents an average of 6 individual measurements for each
2km slab per flight in the analog data set and an average of
36 measurements for the digital data set. The 1 sigma error
bars are shown in each figure.

Results and Discussion:

In the series of figures that follow, the 2km bin data is
presented as a function of season for each year. The 'seasons'
have been chosen through consideration of the phase of the
annual cycle in total ozone at mid-laiitudes. The grouping of
months February , March and April (FMA) coincide with the
total ozone minimum in the Southern Hemisphere, while the
grouping August, September and October (ASO) coincide
with ozone maximum.

Figures 1(a) to 1(d) show the temporal variation in
tropospheric ozone over Lauder in the November, December
and January, (NDJ), period for the available time series. The
data centered at each 5, 6, 7 and 8kms all show the same
form. There is evidence of a 2 year periodicity and a slight
downward trend. The summer period typically has a higher
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Figure 1: The temporal variation in ozone in a 2km slab over
Lauder, centered at (a) 5km, (b) 6km, (¢) 7km and (d)
8 km respectively is shown for the November,
December, January, (NDJ) period from 1986.
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Figure 2: Same as for Figure 1 but for the February, March,
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(MI7) period from 1987.
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tropopause and hence there is no evidence of stratospheric
exchange processes interfering with even the 7-9km bin at
this time of the year. The FMA data, figures 2(a) to 2(d), also
show a similar 2 yearly feature, especially in the upper
troposphere but the marked feature in these figures are the
much lower values recorded in 1989. There is again a
suggestion that the tropospheric levels have decreased over
the period. The MJJ data, figures 3(a) to 3(d), again show
that the tropospheric values in 1989 were much lower than in
any other year in the period. The lower tropopause in winter
and the occasional folding observed at this time of the year
has possibly influenced the data in the 7-9km bin, figure 8,
and hence this graph shows a shape that differs from the rest
of the series. The period ASO in the spring, figures 4(a) to
4(d), is the time of ozone maximum in the column and also
when the highest tropospheric concentrations are observed. It
is also the time of greatest variability as evidenced by the
larger standard deviations despite the larger data sample. A
longer term oscillation is also evident in these data as well as
a slight downward trend.

This 5 year data series from mid-latitudes in the Southern
Hemisphere demonstrates that over this period, tropospheric
ozone levels have not risen at a rate seen in the Northern
Hemisphere and in fact there is a suggestion that tropospheric
ozone levels may have reduced. A longer time series will in
the future establish whether this change is significant and has
been sustained.

Acknowledgements:

From 1986 to 1989, the logistical component of the
ozonesonde program at Lauder was supported by the
Chemical Manufacturers Association whose assistance is
greatly appreciated. The assistance with the establishment of
this program and initial data analysis by Walter Komhyr is
also gratefully acknowledged as is the work by Tracy Beck,
Des Rowles and Brian McNamara at Lauder.

References:

Chameides W.L. and J.C.G. Walker, J. Geophys. Res., 18,
8751-8760, 1973.

Charlson, R.L., J. Langner, H. Rodhe, C.B. Leovy and S.G.
Warren, Tellus, 43A-B, 4, 152-163, 1991.

Crutzen, P., Pure App. Geophys., 106-108, 1385-1399, 1973.

Fishman J. and P. Crutzen, Nature, 274, 855, 1978.

Hilsenrath, E., W. Attmannspacher, A. Bass, W. Evans, R.
Hogemeyer, R.A. Barnes, W. Komhyr, K.
Mausenberger, J. Mentall, M. Proffitt, D. Robbins, S.
Taylor, A. Torres and E. Weinstock, J. Geophys.
Res., 91,D12, 13,137-152, 1986.

Schnell, R.C., S.C. Lui, S.J. Oltmans, R.S. Stone, D.J.
Hofmann, E.G. Dutton, T. Deshler, W.T. Sturges,
J.W. Harder, S.D. Sewell, M. Trainer and J.M.
Harris, Nature, 35, 726-729, 1991.

Staehelin, J. and W. Schmid, Atmos. Envir., 25a, 1739-1749,
1991.

Wigley, T.M.L., Nature, 349, 503-506, 1991.



N95- 10593

30314 2.

MEASUREMENTS OF LOWER TROPOSPHERIC OZONE AT MID-LATITUDES OF
THE NORTHERN AND SOUTHERN HEMISPHERE

Hans-Eckhart Scheell, Rudolf Sladkovicl, Ernst-Giinther Brunke2, Wolfgang Seiler!

1. Fraunhofer Institute for Atmospheric Environmental Research (IFU),
D-8100 Garmisch-Partenkirchen, Germany

2, APMA-EMATEK, Council for Scientific and Industrial Research,
Faure 7131, South Africa

ABSTRACT

Ground-based measurements of ozone have been
carried out at three stations in the German alps (47°N,
11°E, altitudes 740, 1776 and 2962 m a.s.l.) as well as at
the coastal station Cape Point (34°S, 18°E). For the moun-
tain sites (at 1776 and 2962 m), trend calculations based on
monthly [peans have yielded O3 growth rates of 0.8 and 0.9
ppbv yr*, respectively, over the period 1978-91. Seasonal-
ly differentiated data sets have yielded higher rates for
summer than for winter. The impact of near-ground photo-
chemical O3 production on the observed O3 concentration is
shown. No significant long-term O3 trend has been
observed at 740 m (valley floor) as well as at the southern
hemispheric station Cape Point. Evidence exists for a close
relationship between the amplitude variations of the annual
cycles of Oz and CO at Cape Point.

1. INTRODUCTION

The existence of a long-term rising trend of lower
tropospheric ozone over large parts of the Northern Hemi-
sphere seems to be evident (Penkett, 1991 and references
therein). However, the observed growth rates differ
considerably among the different sites of observation (see
e.g. Low et al., 1992), which is at least partly due to
specific characteristics of the individual locations, such as
influences from local meteorology. It is assumed that
enhanced photochemical ozone production in the lower
troposphere is responsible for the increase in O3 observed
during the last decades (Logan, 1985). For thé Southern
Hemisphere, long-term Oj3 records are only available from
a few sites. At none of these sites has a significant increase
in O3 been observed. For Antarctica even a decrease in Og
has been reported (Schnell et al., 1991).

We report here on in-situ measurements of ozone
performed at three neighboring stations in the German alps
(47°N, 11°E) as well as at a coastal station in the south-
eastern part of Africa (34°S, 18°E). The alpine sites are lo-
cated at elevations of 740 m a.s.l. (station Garmisch, on the
floor of the valley), 1776 m a.s.l. (station Wank, ca. 1100
m above ground) and 2962 m a.s.l. (station Zugspitze, ca.
2200 m above ground). Details of the alpine sites and the
O3 measurements have been described by Reiter et al.
(1%87). Information on geographic location and instrumen-
tation of the coastal station Cape Point has been given by
Seiler et al. (1984) and Brunke et al. (1990).

2. NORTHERN HEMISPHERIC RESULTS

Figure 1 shows the monthly means of ozone for
Zugspitze together with trend estimates. The time series is
composed of seasonal variations, pronounced interannual
variabilty, and a long-term trend. The rates of increase were
highest during the period 1978-82. Thereafter the increase
in O3 was considerably slower. This is assumed to be at
least partly related to changes in meteorological conditions,
in particular to periods of enhanced cloudiness. The average
gmf)vth rate for the period 1978-91 amounts to 0.9 ppbv
yr . A time series of similar shape and comparable trend
has been, obtained for the station Wank (growth rate 0.8
ppbv yr‘l). Near the ground, at Garmisch, no trend is indi-
cated. Similar to Zugspitze (cf. Fig. 1) interannual varia-
tions with a period of 4 - 5 years are also present in the
time series of the two lower-laying stations. The ozone con-
centrations observed on the floor of the valley are the result
of source and sink relations that are strongly influenced by
local meteorology. This is evidenced by Figure 2, where the
average diurnal cycles for the individual stations are shown.
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Fig. 1. Monthly mean values of O3 at Zugspitze and 12-
month moving averages (thick curve) together with
trend estimates. The slope of the straight solid line
corresponds to_an average growth rate (1978-91) of
0.92 ppbv yr . The non-linear regression function
(dotted line) indicates an increase in seasonal
amPlitudes with growth rates of 1.2 and 0.7 ppbv
yr™" obtained for the summer maxima and winter
minima, respectively (slope of dashed lines).



In contrast to the valley, at the station Zugspitze local in-
fluence on the diurnal shape of ozone is only observed
during spring and summer. For most of the time, the Oj
concentrations at this site can thus be regarded as represen-
tative of ozone levels characteristic of the lower free tropo-
sphere. )

A temporal increase in the seasonal amplitudes is ex-
pected as a consequence of the seasonal dependence of
photochemical ozone production. In order to test whether
such an increase was reflected by the monthly means, a
non-linear regression function with a linear gain term for
the amplitudes was applied to the data. The resulting least
squares fit has indicated an increase in seasonal amplitudes
(peak-to-peak) of 4.6 ppbv over the whole time period.
Moreover, for Zugspitze the calculations have suggested an
average cycling time of 5.6 years for the interannual varia-
tions.

For a more detailed study of the impact of lower
tropospheric photochemical O3 production at the mountain
sites, trend estimates have been performed on seasonally
differentiated percentiles (Sth, 25th, 50th (=median), 75th,
and 95th) using linear regression. Figure 3 summarizes the
results. Under conditions of enhanced photochemical O3
production, i.e. is for spring and summer, the high ozone
concentrations, as characterized by the 95th percentiles,
have been increasing at a rate which is nearly twice the rate
of the low concentrations. Accordingly, the rate of increase
estimated for high summer concentrations is considerably
greater than the rate determined for high winter concen-
trations (Fig. 3).

: In Figure 4 the seasonal variations of O3 at Zug-
spitze are depicted. The maximum of the seasonal cycle is
observed in spring, which is in agreement with observations
reported from other European locations (cf. Logan, 1985).
For the first half of the measuring period, the seasonal
amplitude is smaller than for the second half. From a differ-
ent approach this confirms the above finding that the ampli-
tudes of the annual cycle have been increasing due to en-
hanced concentrations in spring and summer.

The strong impact of solar radiation and thus of
photochemistry on the ozone concentrations can be seen
from Figure 5. Daily maxima have been -classified
according to the relative sunshine duration (RSD). Under
conditions of cloudy sky (RSD < 1 % of the time), the
annual cycles at the mountain stations show similar levels.

Ozone [ppbv]

Spring

104 Winter Summer
Autumn

Time of cycle: 0:00 ~ 24:00 [CET]

Fig. 2. Average diurnal cycle of O3 (1986-88) at the
stations Garmisch, Wank, and Zugspitze for the dif-
ferent seasons.
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Peak ozone levels in the valley (at Garmisch) are lower by
about 12 ppbv. In contrast, under conditions of intense solar
radiation (RSD > 80 %), the peak of the distribution for
Garmisch even surpasses the one for Zugspitze, which re-
flects a significant contribution from locally produced
ozone. For RSD > 80 %, however, highest O3 concen-
trations are observed at Wank, i.e. at an elevation of about
1000 m above ground. This supports the finding from
model calculations (McKeen et al., 1989) that optimum
conditions for photochemical ozone production can be ex-
pected around this altitude.

RSD <1 % RSD >80 %
80 : WANK
70  GARMISCH ZUGSPITZE
50 |- WANK ZUGSPITZE!
o 50+
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S 40f
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© 3o}
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MONTH OF YEAR

Fig. 5. Average annual distributions of daily O3 maxima
(1978-91)"for low and high relative sunshine dura-
tion (RSD < 1 % and > 80 %).

3. SOUTHERN HEMISPHERIC RESULTS

The time series of O3 at Cape Point as given by the
monthly means (Oct. 82 - Dec 91) is shown in Figure 6.
The shape is characterized by both seasonal cycling and
great interannual variability. Maximum O concentrations
occur in austral winter (July) and minima in summer (Janu-
ary). The annual means of O3 center around 21 ppbv with
average seasonal amplitudes of about +7 ppbv. So far, the
monthly means do not indicate any long-term trend of O3 at
Cape Point. This is confirmed when the monthly means for
the individual seasons are considered separately. However,
in view of the strong interannual variabilty and the severe
data gaps, the results obtained so far should be regarded as
preliminary.

In Figure 7 the average annual cycle of ozone is
shown. As is generally assumed for these southern latitudes,
the cycle of surface ozone is mainly controlled by two types
of processes, i.e. stratosphere/troposphere exchange (Liu et
al., 1980) as well as photochemical ozone destruction
(Fishman et al., 1979). The latter process, which is closely
related to the annual cycle of solar UV radiation (Fig.7), is
assumed to lead to the O3 minima observed around January.
In contrast to the rather symmetric shape of the UV cycle,
the ozone distribution with its maximum in July shows a
slight shoulder between August and November.

The ozone distribution thus suggests that additional
processes might contribute to its shape. One such process
could possibly be biomass burning. This seems to be im-
plicated by the following findings: Firstly, carbon mon-
oxide, which has been measured at Cape Point since 1978
(Seiler et al., 1984; Brunke et al., 1990), shows an annual

distribution with a maximum around September/October
(Fig. 7). The CO maximum thus coincides with the shoul-
der observed in the Og distribution during austral spring.
After various interpretations have been put forward to
explain the annual cycle of CO (Khalil and Rasmussen,
1984; Seiler et al., 1984; Fraser et al., 1986), recent publi-
cations have largely attributed the occurrence of the CO
maximum to biomass burning (Heintzenberg and Bigg,
1990; Fishman et al., 1991, and reference therein). Second-
ly, Fishman et al. (1991), who studied upper tropospheric
ozone from satellite data, have shown that ozone which
originates from biomass burning also displays annual
cycling with increasing concentrations from July to Novem-
ber. According to the results presented by Fishman et al.
(1991), the rise of integrated O3 in the troposphere over
Cape Point partly parallels the shape of the CO distribution
observed at ground-level, but is not in phase with the sur-
face ozone observed at Cape Point (maximum in July). We
thus speculate that the seasonal increase in ozone in the
upper troposphere, which originates from biomass burning,
does put its mark on the distribution of surface O3 at Cape
Point during the months August to November.
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Fig. 6. Monthly means of O3 as obtained for Cape Point
(34°S, 18°E) between Oct. 82 and Dec. 91.
Periods of data loss, which are due to instrumental
failures, have been interpolated by values from the
average annual cycle (dotted line).
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Fig. 7. Average annual cycles of Og (1983-91), UV radia-
tion (1989-91) and CO (1979-91) at Cape Point.



At Cape Point, the annual peak-to-peak amplitudes
of O3 and CO (Fig. 8) show a close relationship (correla-
tion coefficient of 0.9). This result has not yet been ana-
Iyzed in detail; nonetheless it seems to support the view of
either partly common sources or partly common transport
mechanisms for O3 and CO. Interestingly, the highest
amplitudes were observed for El-Nifio years, when among
others the tropical meteorology and thus transport processes
are strongly affected. Such a possible impact of El-Nifio
events on trace gas levels observed at Cape Point seems to
merit further attention when more data are available.
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Fig. 8. Comparison between the annual peak-to-peak ampli-
tudes of O3 and CO at Cape Point. The data yield a
correlation coefficient of 0.9.
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Abstract

A seven year (1984-90) climatology of tropospheric
vertical ozone soundings, performed by -electrochemical
sondes at the OHP (44°N, 6°E, 700m ASL) in Southern
France, is presented. Its seasonal variation shows a broad
spring/summer maximum in the troposphere. The
contribution of photochemical ozone production and
transport from the stratosphere to this seasonal variation are
studied by a correlative analysis of ozone concentrations and
meteorological variables, with emphasis on potential
vorticity. This analysis shows the impact of dynamical and
photochemical processes on the spatial and temporal ozone
variability. In particular, a positive correlation (r = 0.40,
significance >99.9%) of ozone with potential vorticity is
observed in the middle troposphere, reflecting the impact of
stratosphere-troposphere exchange on the vertical ozone
distribution.

1. Introduction

The European project TOR (Tropospheric Ozone
Research) aims at establishing the tropospheric ozone budget
on a regional, European scale. The core of the project is a
network of 39 surface stations measuring ozone, related trace
constituents (NOx, hydrocarbons), and radiative and
meteorological parameters, and of 7 stations for vertical
ozone sounding. The goal of the surface measurements is to
evaluate the impact of photochemical ozone production in the
boundary layer on a regional scale. The vertical ozone
soundings provide information on the photochemical ozone
production in the free troposphere and the transport of ozone
both from the stratosphere and the boundary layer. The
Observatoire de Haute Provence (OHP, 44°N, 6°E, 700m
ASL) in Southern France is part of the TOR network and
vertical tropospheric ozone sounding is performed there both
with a UV-DIAL lidar system and with electrochemical
sondes. In this ‘paper, the tropospheric ozone climatology
obtained at OHP with Brewer-Mast sondes between 1984 and
1990, is presented. By relating the ozone data to
meteorological variables, the relative importance of
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dynamical and photochemical processes for the spatial and
temporal ozone variability will be studied.

Between 1984 and 1990, 140 ozone profiles up to
approximatively 30 km altitude have been performed at
OHP, using balloon-borne electrochemical Brewer-Mast
sondes. The OHP is a rural site, the largest nearby urban
agglomeration (Marseitle) being located at 150 km distance
in a south-west direction. From the instrument error analysis
and two intercomparison campaigns involving several
measuring techniques, it is concluded that our time series of
ozone measurements is too short to derive an annual ozone
trend with sufficient statistical significance [Beekmann,
1992], but that Brewer-Mast sondes are well suited to match
the temporal variability of tropospheric ozone on a timescale
of some days (20%) or of one year (40%). Furthermore, the
spatial ozone variability (typically 20% in the Western
Europe free troposphere) can be correctly assessed if stations
using the same measurement technique (here Brewer-Mast
sondes) are taken into account.

The ozone climatology at the OHP shows a broad
spring and summer maximum in the troposphere (fig.1), as
expected for a northern mid-latidude station. This seasonal
variation is similar for the other stations in Western Europe.
Figure 1 indicates however a meridional gradient of ozone in
Western Europe, with larger values at the more northerly
stations Uccle and Jiilich (51°N), compared to the more
southerly stations OHP (44°N) and Pic de Midi (43°N).
These differences become more pronounced with increasing
altitude. There might also be systematic differences
depending on the continental character of a ‘station: at
Hohenpeissenberg (48°N, 11°E), located at about the same
latitude as Payerne (47°N, 7°E), but more in the east, the
larger ozone values are found. This analysis raises thus the
question of whether first the spring-summer maximum and
second spatial gradients are caused either by photochemical
ozone production or by transport from the stratosphere.
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fig.1:  seasonal variation of tropospheric ozone at different Western European sounding stations,
station location period instrument reference
PIC Pic de Midi 43°N, 0°E, 3000m ASL 1982-84/90-91 UV-photometer Nedelec, 1991
OHP Obs. de Haute Provence 44°N, 6°E, 670m ASL 1984-90 Brewer-Mast Beekmann, 1992
PAY Payerne 47°N, 7°E, 490m ASL 1982-88 Brewer-Mast Staehelin et al., 1991
HOH  Hohenpeissenberg 48°N,11°E, 980m ASL 1985-89 Brewer-Mast Sonderbeobachtungen 86-90
uccC Uccle 51°N, 4°E, 100m ASL 1984-88 Brewer-Mast Bull. trimestr. 1985-89
JUL Jiilich 51°N, 6°E, 100m ASL 1989-91 ECC Smit et al., 1991.

eorologi

A first approach to relate the observed ozone
variability at OHP to physico-chemical and dynamical
processes, is to perform a statistical analysis of ozone
concentrations with respect to meteorological data such as
potential vorticity, humidity, geopotential height and
trajectories. Contrary to concentrations of ozone precursors
(NOx, hydrocarbons), these data are available in the free
troposphere for each ozone profile, either directly from sonde
measurements (pressure, temperature, humidity) or from
meteorological models, providing objectively analysed
temperature and wind fields for potential vorticity and
trajectory calculations.

In this paper, we focus on the analysis of potential
vorticity, which is a tracer of stratospheric air masses
transported into the troposphere. In the absence of a vertical
gradient of diabatic heating and in the absence of frictional
forces, potential vorticity is a conserved quantity. Due to the
similar vertical gradients of ozone mixing ratios and potential
vorticity (PV) in the lower stratospheie, a positive correlation
of ozone and PV in this region is expected. This is verified
for the OHP ozone data base at the 225 hPa level, where a
strong and significant correlation between both variables is
found (r= 0.82, significance > 99.9%). At the 500 hPa level,
a significant, but weaker, positive correlation between ozone
concentrations and potential vorticity is observed (r= 0.40,
significance > 99.9%). This positive correlation reflects the
impact of stratosphere-troposphere exchange on the ozone
variability in the middle troposphere. The correlation is
weaker for the mid-troposphere than for the lower
stratosphere, because in the troposphere ozone and PV are

partially decorrelated by photochemical processes on one
hand, acting on ozone, and by diabatic processes on the other
hand, acting on PV (e.g. latent heat release, radiative
processes including the interaction with clouds, sensible heat
flux at ground). The ozone/PV correlation is most
pronounced in the period spring/early summer (tab.1),
indicating a larger importance of stratosphere-troposphere
exchange during this period. The correlation coefficients are
almost unchanged if one considers ozone concentrations and
potential vorticity without their seasonal variation (residuals
of monthly means), which means that the variability of both
values is also correlated for timescales smaller than one
month.

r p
225 hPa, all seasons 0.83 >99.9%
500 hPa, all seasons 0.40 >99.9%
mar. - july 0.49 >99.9%
aug. - oct. 0.27 93%
nov. -feb. 0.40 98%

tab.1 : correlation coefficients r between ozone and potential
vorticity; 1 - p is the probability that a higher correlation
coefficient than r would have been obtained if both data sets
were completely uncorrelated (exactly valid omly for
binormal distributions).

The knowledge of potential vorticity offers the
possibility to sort the ozone profiles into two classes: one
with air masses of larger PV values, affected by recent
stratospheric ozone intrusions, the other with air masses of
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fig.2 : above: seasonal variation of ozone profiles of the high
and the low potential vorticity class at 500 hPa,
below: seasonal variation of the net photochemical
ozone production at 50°N and 4 km height [Isakson,

1988}, Sr 90 surface deposition in Southern France
[Marenco and Fontan, 1974].

smaller PV values, which are then, in the absence of recent
stratosphere-troposphere exchange, representative of the
photochemical ozone source. PV values, which are more than
0.1 PV-units above their monthly mean at the 500 hPa level
and which are larger than 0.8 PV-units at the 350 hPa level
(i.e. near the dynamical tropopause of 1.6 PV-units), belong
to the high PV-class (1 PV unit = 1.10-6 K m?/ kg s). Figure
2 shows a similar seasonal variation of ozone for both classes
at the 500 hPa level. The seasonal variation of the high PV-
class compares well with that of the deposition of Sr 90 in
Southern France at the end of the sixties [Marenco et al.,
1974]. Sr 90 is a fission product released during atmospheric
nuclear bomb tests and was widely used as a tracer of
stratospheric air. Furthermore, the seasonal variation is in
good agreement with that of the frequency of occurence of
cut-off lows, which is maximum in June [United Kingdom
Photochemical Oxidants Review Group, 1987]. The seasonal
variation of the low PV-class corresponds well to that of the
seasonal variation of the net photochemical ozone production
at 50°N and at 4 km height, as computed by a 2D-model
[Isaksen, 1988]. The larger amplitude in the seasonal
variation of the ozone sources than in the seasonal variation
of the ozone concentrations is explained by the larger
deposition rates during the period spring/summer [Liu et al.,
1987]. Thus, allthough a quantitative determination of the
respective contribution of the two ozone sources is not
possible by this analysis, it supports nevertheless the seasonal
variation of the ozone sources, derived by photochemical
modeling and by other tracers of stratosphere-troposphere
exchange (Sr 90 deposition, cut-off lows).

The simultaneous knowledge of ozone and PV values
allows to determine the ozone/PV ratio and its seasonal and
altitude dependence at the OHP. The exact knowledge of this
ratio allows the initialisation of ozone fields of models from
PV fields and to calculate ozone fluxes from PV fluxes. At
the OHP, the values of the ozone/PV ratio are much higher in
the mid-troposphere than in the lower stratosphere (fig.3).
They show a spring maximum at the levels 500 hPa and at
225 hPa and an early summer maximum at 350 hPa. The
higher tropospheric values of the ozone/PV ratio are
explained by a decrease of the potential vorticity in the
troposphere due to diabatic processes and an increase of
ozone due to photochemical production, particularly in the
period spring/summer.
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fig.3 : ozone / potential vorticity ratio at OHP for 500 hPa

(upper curve), 350 hPa and 225 hPa.

A comparison of the ozone/PV ratios for a northern
and a southern station (Uccle, 51°N, OHP, 44°N), shows
only small differences compared to the error bars of the
ratios (tab.2). As a consequence, the meridional ozone
gradient in Western Europe is related to a similar gradient of
potential vorticity, which shows the importance of dynamical
effects (e.g. lower tropopause height at Uccle) for the spatial
distribution of ozone in the upper and middle troposphere.

level 500 hPa 300 hPa
station OHP Uccle OHP Uccle
44°N 51I°N 44°N 51°N
ozone [ppb]| 49.6 24.6 | 61.8+4.6 | 58.3+7.7 99 +7.7
potential
vorticity | 0.45+0.02 | 0.61 +0.05 | 0.95+0.05 1.8+0.2
(PV-units)
ozone/PV
ratio 110 = 15 101 £15 6111 55+11
[ppb/PV-
unit}

tab.2: comparison of the ozone / potential vorticity ratio at
Uccle (51°N) and at OHP (44°N)



We now make use of the established correlations
between ozone and potential vorticity and also between

ozone and relative humidity at the 850 hPa level (r = - 0.38,

significance > 99.9%), in order to determine the part of a
potential ozone trend due to dynamical processes. For the
OHP data set between 1984 and 1990, a considerable
variability of relative humidity and potential vorticity has
been/ observed which would yield ozone trends between -
2.7% and + 1.2% for different pressure levels (tab.3). It is
clear that these dynamical induced ozone changes have to be
taken into account, if one wants to deduce accurately the
ozone trend due to anthropogenic activities.

level 850 hPa | 500 hPa | 350 hPa
annual trend of relative -4.5
humidity (84-89) +1.4%
annual trend of potential -2.0 -11.8
vorticity (84-89) 2.2% | £5.2%
annual ozone trend
induced by meteorological| +1.2 -0.5 -2.7
variables +0.4% | 10.7% | £1.2%

tab.3 : the impact of the interannual variability of potential
vorticity and relative humidity on a possible ozone trend.

4 mary and fi rk

The tropospheric ozone climatology obtained at the
OHP in Southern France between 1984 and 1990 shows a
seasonal variation characterized by a clear spring/summer
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maximum of ozone concentrations. A statistical analysis of
the ozone profiles together with meteorological variables,
especially with potential vorticity, shows that this maximum
is both due to tansport from the stratosphere and to
photochemical production. This is in good agreement with
the ozone sources derived from model -calculations
(photochemical production) and from independent tracers of
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The future work has to be devoted to a more
particular analysis of the photochemical source of ozone,
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database. Trajectory analysis, taking into account the
photochemical transformation of air masses (Lagrangian
modeling), could be used to relate the surface emissions of
ozone precursors to the vertical ozone profiles, in order to
establish the impact of the enhanced emissions of ozone
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ozone production in the free troposphere.
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ABSTRACT

From a network of surface ozone monitoring sites
distributed primarily over the Atlantic and Pacific Oceans,
the seasonal, day-to-day, and diurnal patterns are delineated.
At most of the NH (northern hemisphere) sites there is a
spring maximum and late summer or autumn minimum. At
Barrow, AK (70°N) and Barbados (14°N), however, there is
a winter maximum, but the mechanisms producing the
maximum are quite different. All the sites in the SH
(southern hemisphere) show winter maxima and summer
minima. At the subtropical and tropical sites there are large
day-to-day variations that reflect the changes in flow
patterns.  Air of tropical origin has much lower ozone
concentrations than air from higher latitudes. At the two
tropical sites (Barbados and Samoa) there is a marked diurnal
ozone variation with highest amounts in the early morning
and lowest values in the afternoon.

At four of the locations (Barrow, AK; Mauna Loa,
HI; American Samoa; and South Pole) there are 15- through
20-year records which allow us to look at longer term
changes. At Barrow there has been a large summer increase
over the 20 years of measurements. At South Pole, on the
other hand, summer decreases have led to an overall decline
in surface ozone amounts.

1. INTRODUCTION

As part of the Climate Monitoring and Diagnostics
Laboratory, surface ozone measurements have been made for
a number of years at four sites. Beginning in 1988 the
number of sites has been expanded as part of the
Atmosphere/Ocean Chemistry Experiment (AEROCE).
Information on the location and period of data record is
summarized in Table 1. In the discussion of the seasonal
cycle, monthly mean data from three locations in the SH are
taken from the literature to give better geographic coverage.

2. SEASONAL VARIATION

Figure 1 displays the monthly median ozone and its
dispersion for eight sites spanning the latitude range 71°N-
14°N. At all but the most northerly (Barrow) and southerly

Table 1: Elevation, location, and period of observation for
surface ozone measurement stations.
Station Elev. Lat. Long. Period of
Observ.

Barrow, AK 1im 719N 1570W  3/73-2/92
Reykavik, Iceland 60m 64°N  220W 9/91-5/92
Mace Head, Ireland 30m 539N 10°W 7/89-4/92
Niwot Ridge, CO 3000m 40°N 106°W 7/90-5/92
Bermuda 40m 320N 640W 10/88-5/92
Izana, Canary Is. 2360m 28°N  16°W 5/87-10/89
Mauna Loa, HI 3397m 20°N 156°W 10/73-3/92
Barbados 45m 130N  S590W  4/89-5/92
Samoa 82m 1498 171°0W 1/76-12/91
Cape Point, S. Africa 75m 3498 180F 1/83-6/88
Cape Grim, Australia 94m 4198 1450E 1/82-12/86
Syowa, Antarctica 21m 6998  409E 2/89-1/90
So. Pole, Antarctica  2835m  90°S - 1/75-2/92

(Barbados) there is a spring maximum. At high arctic
locations such as Barrow at the surface, the expected spring
maximum is missing because of strong ozone depletion that
is linked to the presence of high bromine concentrations.
(Barrie et al., 1988, Oltmans, 1991). In fact immediately
above the boundary layer, there is a spring maximum
(Oltmans, 1991). At Barbados the maximum in early winter
is a result of the cutoff of flow from northerly mid-latitudes
that occurs much earlier in the year at low latitudes than it
does at Bermuda for instance (Oltmans and Levy, 1992).
Niwot Ridge, Mauna Loa, and Izana are all high altitude
sites at elevations of ~3,000 m. Expectedly, these sites
have the highest ozone concentrations.

The largest seasonal variation is at Bermuda. During
the winter and especially in the spring, there are numerous
events where ‘transport from mid-tropospheric levels over
North America reaches Bermuda (Oltmans and Levy, 1992).
During these events, hourly average ozone mixing ratios fall
in the 50-70 ppb range. During the summer, however, flow
from more southerly latitudes dominates with concentrations
of 15-25 ppb. At the higher altitude site of Izana near the
same latitude, summer values do not dip nearly so low
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Fig. 1. Monthly ozone mixing ratio
at eight sites in the NH. The dot is
the median, the x the mean, the box
the inner 50th percentile, and the
whiskers the inner 90th percentile.
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indicating much of the loss may result from ozone
destruction in the boundary layer (Oltmans and Levy, 1992).

At Izana, unlike Mauna Loa, the spring maximum
extends well into the summer. This difference results from
transport from continental Europe to Izana (Schmitt et al.,
1988). Generally the more southerly sites in the NH have
larger seasonal variations. This is because the subtropical
sites in particular are influenced in the winter and spring by
flow from more northerly latitudes while during the summer
are under the influence of more tropical flow with
correspondingly lower ozone (see data for Barbados).

In the SH (Figure 2) there is a clear winter maximum
and summer minimum at all locations from 14°§-90°S. At
Cape Grim the maximum extends into early spring. There
is a relatively smooth gradient from lower to higher values
going from tropical to polar latitudes. South Pole is at an
altitude of ~2800 m so cannot be compared directly with the
other sites which are at sea level. Comparison of sites in the
SH with locations at similar latitudes and altitudes in the NH
shows higher concentrations in the NH (Fishman et al.,
1979, Oltmans et al., 1989).

The phasing of the seasonal cycle is also different in
the two hemispheres with the exception of Samoa and
Barbados where the two stations are exactly six months out
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of phase with both having winter maxima and summer
minima. This seems to be at least partially related to the
strong photochemical ozone destruction in the boundary layer
in the tropies, with the greater ozone destruction during times
of greatest solar UV input.

3. DIURNAL VARIATION

In some cases the character of the diurnal variation is
useful in determining to what extent the site experiences
photochemical production or destruction during the day. At
two of the high altitude sites (Mauna Loa and Izana) the
mountain wind regime gives highest ozone amounts at night
associated with downslope flow. At Mace Head and Niwot
Ridge there is often a strong diurnal variation during the
summer with the largest values of the year seen during the
daylight hours, Such events are typical of conditions with
ozone production from anthropogenic precursor emissions.
At Barbados and Samoa, on the other hand, there is a very
regular diurnal variation at all times of the year with a
maximum early in the morning and minimum in the
afternoon. This is consistent with a low nitrogen oxides
regime in which ozone is destroyed during the day (Oltmans,
1981; Oltmans and Levy, 1992). At Bermuda the pattern
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appears to be similar but the much larger day-to-day
variability makes the result less definitive. At Barrow and
South Pole there is no discernable diurnal variation.

4. LONG-TERM VARIATIONS

At Barrow (Figure 3a) there has been a significant
overall increase in surface ozone that has been driven
primarily by the large (1.73+0.58%/yr) summer (JUL-AUG-
SEP) increases. By contrast there has been little change
during the winter. Smaller, statistically non-significant
increases are seen in spring and autumn (Table 2). The
observed increases are consistent with the increase in
petroleum extraction activities on Alaska’s North Slope
(Jaffe, 1991).

At Mauna Loa (Figure 3b) there has been a small but
marginally significant increase over the nearly 20 years of
measurement. No individual season shows a statistically
significant increase but during the half-year from DEC-MAY
the increase is 0.58+78%/yr. In recent years (beginning in
1984) the overall increase has been small (0.10+0.71%/yr)
but the spring increase has continued (1.15+2.42%/yr)
though over this short period the increase is not statistically
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significant. The Mauna Loa trend prior to 1984 was
influenced strongly by the anomalously high winter and
spring values during the 1982-83 ENSO event but the 20-
year trend computed when omitting this period is little
affected except to decrease the variance. Since spring is the
seasonal maximum, the increases may be linked to processes
responsible for this peak.

There is. no overall long-term trend at Samoa
(Figure 3c). The summer decrease is fairly large (-0.82
+1.36%/yr) but not statistically significant. The smoothed
monthly anomalies at Samoa (Figure 3d) show a nearly 2-
year fluctuation with a peak-to-peak amplitude of ~2 ppb
which is about 15% of the mean value and about 15% of the
average seasonal variation. The maximum in surface ozone
follows the maximum in the stratospheric east wind
component (largest negative zonal wind) at 30 mb over
Singapore by approximately 6 months. For the six QBO
cycles covered, this relationship fails only during 1982-83
when the maximum in surface ozone is delayed about 6
months. This may be related to the effect of the very strong
warm event of the ENSO that occurred during this time.

South Pole surface ozone amounts have declined
significantly during the 16 years of observations. The drop

Table 2: Trends in deseasonalized surface ozone mixing ratio in percent per year. Ninety-five percent confidence interval

is based on Student's t-test.

Winter Spring

Autumn

Station Period Annual Summer
Barrow 3/73-2/92 0.67+0.30 -0.07+0.81 0.85+1.26 1.734-0.58 0.50+0.61
Mauna Loa 10/73-3/92 0.3740.26 0.56+0.67 0.4940.98 0.28+0.88 0.04+0.63
Samoa 1/76-12/91 0.03+0.44 0.22+0.86 0.004+0.94 -0.82+1.36 0.22+1.35
So. Pole 1/75-2/92 -0.68+0.23 -0.22+0.56 -0.66+1.03 -1.42+0.72 -0.66+0.73
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has been very significant during the summer (Figure 3d,
Table 2) with each of the months (DEC-JAN-FEB) showing
significant declines (-1.44, -1.45, -1.32%/yr).  This
represents a nearly 25% decrease for this season over the
measurement period. Two processes seem to be at work
producing this decline (Schnell et al., 1991). The decline in
stratospheric ozone in the spring which persists well into the
summer allows for greater penetration of UV to the surface
leading to enhanced surface ozone loss for the very low
NO,(NO+NO,) conditions prevailing in this region.
Secondly, enhanced transport from the coast of Antarctica
increases the number of events of lower ozone that reach
South Pole (Schnell et al., 1991).

The trend results from this network can be compared
with some of the long-term results reported from Europe
(Low et al., 1992). In particular the results from the high
altitude site at the Zugspitze can be compared with those at
Mauna Loa. The increase is much larger over Europe, and
at both sites there has been some moderation of the rise after
about 1983.

5. CONCLUSIONS

All of the surface ozone records presented here show
strong seasonal variations. In the NH, for a variety of
locations, spring maxima and autumn minima prevail. The
largest seasonal variation is in the subtropics. In the SH
there is a consistent winter maximum and summer minimum
at all latitudes. Surface ozone mixing ratios in the NH are
consistently higher than for the corresponding latitude in the
SH.

At tropical latitudes of both hemispheres there is a
regular diurnal variation with highest amounts early in the
morning and minima in the afternoon. This is consistent
with a low NO, regime and ozone photochemical loss during
daylight hours.

In the polar regions, there have been large summer
increases at Barrow while at South Pole summer ozone
amounts have declined by nearly 25% over the 17-year
measurement period. A smaller but significant increase at
Mauna Loa, a location generally representative of lower free
tropospheric air in the region, has occurred primarily in the
spring during the time of the annual maximum. At Samoa
there is a small but detectable quasi-biennial variation which
is closely related to the stratospheric wind QBO.
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